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Mobile Edge Computing (MEC) is considered one of the enabling and promising 
technologies in 5G networks, especially with the massive data movement of various 
devices and the increased demand for computing. Here, computational offloading of 
tasks to edge clouds provides an effective, flexible, low-latency solution for mobile users 
in the network. However, the limited computing resources in edge clouds and the 
dynamic demands of mobile users make it difficult to schedule computing requests to 
appropriate edge clouds, and make the offloading process energetically expensive for 
devices. Therefore, it is very important to design an energy-efficient offloading strategy. 
To this end, we first formulate the transmission power allocation (PA) problem for mobile 
phone users to minimize power consumption. Using a quasi-convex technique, we 
address the (PA) problem using a (Hybrid GAPSO) algorithm resulting from combining the 
Genetic Algorithm (GA) with the Particle Swarm Optimization (PSO) algorithm. Next, we 
model the joint request offloading and resource scheduling (JRORS) problem as a mixed- 
nonlinear program to minimize the response delay of requests. The (JRORS) problem can 
be divided into two problems, namely the request offloading (RO) problem and the 
computing resource scheduling (RS) problem. Therefore, we analyze the JRORS problem 
as a dual decision problem and propose a multi-objective particle swarm optimization 
algorithm referred as (MO-PSO). The simulation results show that (HGAPSO) can save 
transmission power consumption and has good convergence property, and (MO-PSO) 
outperforms existing methods in terms of response rate and can maintain good 
performance in a dynamic network. 
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1. Introduction 
 

5G is the latest generation of mobile networks deployed to facilitate emerging applications and 
services. This technology provides enhanced Mobile BroadBand (eMBB), massive machine-to-
machine (mMTC) communications, and Ultra reliable low-latency communications (URLLC), meeting 
the requirements of many applications such as Autonomous Vehicle (AV) [1], Internet of Thing (IOT) 
technology  which enable a range of applications in various fields such as smart cities, industrial 
automation, healthcare, transportation, agriculture [2-3], and Augmented Reality (AR) applications 
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which are getting more widely applied in various fields such as education, art, manufacturing field 
and entertainment [4-5], and E-learning system which is a helpful tool in a learning process [6]. 

Many of these applications have real-time service needs that have bad consequences if the 
response delay exceeds the tolerable latency. Due to limited resources, such as low battery capacity 
and limited processing power, these devices will not be able to work for a long time as mention by 
Heidari et al., [7]. Therefore, enhancing the efficiency of real-time processing of massive amounts of 
data while reducing energy consumption is a major challenge. Energy efficiency is considered 
absolutely essential from the perspective of future Information and Communications Technology 
(ICT) [8]. 

Recently, (MEC) technology has emerged as a new paradigm to facilitate access to advanced cloud 
computing capabilities at the edge of the network near end devices, thus enabling a rich set of 
latency-sensitive services required by various devices. Recent studies showed that integrating 5G 
networks with (MEC) technology led to expanding the capacity of devices using offloading methods 
[9]. This integration overcomes the limitations of cloud computing and extends its services to the 
edge of the network, which may reduce the load on the main network, reduce device power 
consumption, and enhance scalability [10]. 

The task’s offloading mechanism is an effective way to reduce energy consumption [11]. The 
energy consumed in the offloading process is divided into two parts: the energy consumed for 
sending data and the energy consumed for processing requests. However, the offloading process will 
be useless if there is a lack of homogeneity in the requirements of the tasks that have been offloaded 
(different computing requirements, access time, etc.) and capabilities (MEC) limited. The limited 
computing resources of the edge cloud may consume more energy and lead to additional delays, 
especially if the offloaded task contains a large amount of data or a high workload [12]. Therefore, 
determining the optimal offloading strategy is a complex task due to competing objectives such as 
minimizing energy consumption, minimizing latency, and optimizing resource allocation. 

Metaheuristics and multi-objective optimization methods are powerful tools that can effectively 
address various challenges faced by 5G networks using edge computing. One of the main problems 
that can be solved using these methods is the problems associated with the computational offloading 
process. Metaheuristic algorithms are models of computational intelligence that are used to address 
complex optimization problems due to their robustness and ability to manage nonlinearity and 
discontinuity. In addition, multi-objective optimization algorithms intelligently balance multiple 
objectives and alleviate problems related to task scheduling, workload distribution, and resource 
management simultaneously. Therefore, adopting these technologies in 5G networks leads to more 
efficient and reliable systems, ensures seamless connectivity and meets the demands of the ever-
evolving era [13]. 

In this research, first a mechanism was designed to solve the problem of uplink transmission 
power allocation when applying the Non-Orthogonal Multiple Access (NOMA) scheme by combining 
the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm. Secondly, Multi-
Objective Particle Swarm Optimization (MO-PSO) was used to solve jointly task offloading and 
resource scheduling. Our utilized performance metrics are power consumption, response rate and 
system welfare, we didn't consider some issues which are very important specially for internet of 
things system such as methods of threats and intrusion that could cause security breaches [14], and 
the cybercrime that is probable to effect on network response, recovery, and management [15]. The 
contributions of this paper can be summarized as follows: 
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i. A review of the latest studies related to the research topic. 
ii. Propose a hybrid optimization technique by combining (GA) with PSO called (HGAPSO) to 

achieve optimal power allocation in the offloading process. 
iii. Propose a multi-objective optimization technique to jointly solve task offloading and 

resource scheduling. 
iv. Implement a simulation process to evaluate the performance of the proposed algorithms 

and compare them with other techniques. 
This research is organized as follows: Section 2 provides basic information related to the research. 

Section 3 shows relevant studies related to the research. Section 4 discusses the system model and 
problem formulation. The proposed algorithms are presented separately in Section 5. Section 6 
presents the simulation results. In Section 7 the conclusion and future work are presented. 

 
2. Background  
2.1 Computational Offloading in MEC  

 
The offloading process responsibility is divided among three main agents: mobile devices, 

communication links, and Edge Clouds (EC). Specifically, mobile devices are responsible for 
determining how an application is partitioned, which parts should be executed locally or remotely, 
and the offloading scheme. The communication link is influenced by fluctuation of bandwidth, 
connectivity, and device mobility. (EC) handle the balance of the server load to achieve maximum 
service rates and system throughput [16]. The structure of the (MEC) system is illustrated in Figure 
1. As it is illustrated, this structure has three main layers: 

 
i. At the smart devices layer, there are heterogeneous mobile devices concerning storage, 

processing, and interface capabilities. These mobile devices can exchange information with 
the other nearby smart devices and the adjacent access points of the edge environment. 
The first place to decide whether to offload the particular tasks to the remote edge 
environments can be fulfilled in this layer. 

ii. At the edge layer, the APs and the edge servers with moderately small data centers are 
located. These servers are typically accessed via high data rate powerful communication 
links by a colony of geographically scattered Aps [17]. The APs themselves are usually 
interconnected via fiber optic. 

iii. Center cloud. 
 

 
Fig.1. Structure of the Mobile Edge Computing 
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2.2 Metaheuristics Methods 
 
Metaheuristic methods are generally inspired by nature. The main idea of these methods is to 

improve the result in a reasonable time through an iterative search process for better solutions while 
trying to avoid falling into local optimal solutions, unlike heuristic methods which suffer from this 
problem. A number of metaheuristic techniques have been proposed in the literature, such as genetic 
algorithms GA [18], single-objective particle swarm optimization (PSO) [19], and multi-objective 
particle swarm optimization (MO-PSO) [20]. These algorithms are usually based on the idea of 
population (solution) evolution, where the best solutions for a given goal are kept for the next 
evolutionary step to obtain a new generation of solutions [21].  

Due to the complexities caused by the dynamics of wireless communications and computing 
technologies, The process of decision making and resource management to improve the efficiency of 
these systems and meet user requirements is becoming more complex. Especially, the incorrect 
offloading decisions can reduce the efficiency of the system. Since metaheuristics are strategies that 
guide the search process, these methods are considered very suitable for addressing the power 
allocation and resource scheduling problem related to the computational offloading process [13]. 

 
2.3 Ultra-Dense Networks (UDN) with Multiple Base Stations and Collaborative Services 

 
To handle dense connections and huge data traffic between devices in Ultra Dense Network 

(UDN), the network operator deploys a large number of (micro-BSs) and (macro-BSs) together to 
provide services to mobile devices in those networks. Thus, a cooperative service scenario will occur 
between multiple micro-BSs and macro-BSs [22]. All micro-BS is connected to the EC via a local 
network, and macro-BS is connected to the resource rich deep cloud over the Internet. Mobile 
devices in UDN can specify that computation requests are offloaded to macro-BSs when micro-BSs 
are not able to process all offloaded requests. A major limitation of UDN is that all single edge cloud 
in micro-BSs that provide mobile access services are more computationally intensive than database 
macro-BSs. Therefore, in the event of a large number of offloading requests, the limited computing 
resources in the EC will lead to increased response time to the requests and increased power 
consumption. Therefore, an appropriate offloading scheme is an important issue to be resolved. In 
this study, the NOMA protocol was considered as a multiple access system between users and base 
stations within an ultra-dense 5G network, consisting of a macro-BS, many micro-BSs, and a large 
number of mobile users. There are many challenges related to offloading tasks in this system, such 
as transmission power allocation and resource scheduling issues, so it is necessary to address them 
to take full advantage of the offloading process.  

 
3. Related works  

 
In this section, recent papers on computation offloading in EC will be reviewed. They can be 

classified into two parts according to used algorithms: 
 

3.1 Using Hybrid Genetic Algorithm with Particle Swarm Optimization 
 
Bi et al., [23] proposed a genetic particle swarm optimization (GPSO) algorithm to solve total 

energy consumption minimization problem. GPSO combines the strengths of genetic algorithms and 
particle swarm optimization. They tested their GPSO algorithm on a real-world dataset collected from 
a smart home system. The results showed that GPSO significantly reduces energy consumption 
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compared to traditional task offloading approaches, while still meeting task deadlines and resource 
constraints. In addition, they performed sensitivity analysis to investigate the impact of various 
parameters on the performance of GPSO. They found that the population size, crossover probability, 
and mutation probability have a significant influence on the algorithm's performance.  

Ezhilarasie et al., [24] proposed an approach that employs Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO) is used to determine the near optimal solution for scheduling off loadable 
components in an application, with the intent of significantly reducing the execution time of an 
application and energy consumption of the smart devices. With a new inertial weight equation, they 
proposed   an Adaptive Genetic Algorithm–Particle Swarm Optimization (AGA-PSO) algorithm which 
uses GA’s ability in exploration and PSO’s ability in exploitation to make the offloading optimized 
without violating the deadline constraint of an application. 

Menbawy et al., [25] proposed a model which utilized to determine the optimal way of task 
offloading for Internet of Robotic Things (IoRT) devices for reducing the amount of energy consumed 
in IoRT environment and achieving the task deadline constraints. The approach was implemented 
based on fog computing to reduce the communication overhead between edge devices and the 
cloud. To validate the efficacy of the proposed schema, an extensive statistical simulation was 
conducted and compared to other related works. The proposed schema was evaluated against the 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), 
Artificial Bee Colony (ABC), Ant Lion Optimizer (ALO), Grey Wolf Optimizer (GWO), and Salp Swarm 
Algorithm to confirm its effectiveness. After 200 iterations, this proposed schema was found to be 
the most effective in reducing energy, achieving a reduction of 22.85%. This was followed closely by 
GA and ABC, which achieved reductions of 21.5%. ALO, WOA, PSO, and GWO were found to be less 
effective, achieving energy reductions of 19.94%, 17.21%, 16.35%, and 11.71%, respectively. 

Guo et al., [26] studied the energy-efficient computation offloading management scheme in the 
MEC system with small cell networks (SCNs). To minimize the energy consumption of all UEs via 
jointly optimizing computation offloading decision making, spectrum, power, and computation 
resource allocation. Specially, the UEs need not only to decide whether to offload but also to 
determine where to offload. So, they First presented the computation offloading model and 
formulate this problem as a mix integer non-linear programming problem, which is NP-hard. Taking 
advantages of genetic algorithm and particle swarm optimization, they design a suboptimal algorithm 
named as hierarchical GA and PSO-based computation algorithm to solve this problem. 

Truong et al., [27] investigated in a performance of MEC surveillance systems using NOMA 
technology. Specifically, two camera units (CUs) perform the monitoring task to be accomplished by 
the MEC access point (AP) through Rayleigh fading wireless links. Then they proposed a four-phase 
protocol for this system. Accordingly, they derive the closed-form exact expressions of the successful 
computation probability (SCP), and study the impact of the network parameters on the system 
performance. Furthermore, they proposed and compared three meta-heuristic-based algorithms, 
namely MSCP-GA, MSCP-PSO, and MSCP-HGAPSO, to find the optimal parameters set to help the 
proposed system achieve the maximum SCP. 

Bi et al., [28] proposed a partial computation offloading method to minimize the total energy 
consumed by Smart mobile devices (SMDs)and edge servers by jointly optimizing the offloading ratio 
of tasks, CPU speeds of SMDs, allocated bandwidth of available channels, and transmission power of 
each SMD in each time slot. It jointly considers the execution time of tasks performed in SMDs and 
edge servers, and transmission time of data. It also jointly considers latency limits, CPU speeds, 
transmission power limits, available energy of SMDs, and the maximum number of CPU cycles and 
memories in edge servers. Considering these factors, a nonlinear constrained optimization problem 
was formulated and solved by a novel hybrid metaheuristic algorithm named genetic simulated 
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annealing-based particle swarm optimization (GSP) to produce a close-to-optimal solution. GSP 
achieves joint optimization of computation offloading between a cloud data center and the edge, 
and resource allocation in the data center. 

Chen et al., [29] designed a multi-unmanned aerial vehicles (UAVs)-enabled MEC system model 
to further enhance the Quality-of-Service (QoS) of MEC systems. Here, UAVs are regarded as edge 
servers to offer computing services for MDs. So, they proposed a two-layer joint optimization method 
(PSO-GA-G) to minimize the average task response time by jointly optimizing UAV deployment and 
computation offloading. First, the outer layer utilized a Particle Swarm Optimization algorithm 
combined with Genetic Algorithm operators (PSO-GA) to optimize UAV deployment. Next, the inner 
layer adopted a greedy algorithm to optimize computation offloading. 

 
3.2 Using Multi-Objective Optimization 

 
Hussain et al., [30] proposed a new computational model called Vehicular Fog Computing (VFC) 

and offloaded the computation workload from passenger devices (PDs) to transportation 
infrastructures such as roadside units (RSUs) and base stations (BSs), called static fog nodes. It can 
also exploit the underutilized computation resources of nearby vehicles that can act as vehicular fog 
nodes (VFNs) and provide delay- and energy-aware computing services. However, the capacity 
planning and dimensioning of VFC, which come under a class of facility location problems (FLPs), is a 
challenging issue. The complexity arises from the spatio-temporal dynamics of vehicular traffic, 
varying resource demand from PD applications, and the mobility of VFNs. So, this paper proposed a 
multi-objective optimization model to investigate the facility location in VFC networks. The solutions 
to this model generated optimal VFC topologies pertaining to an optimized trade-off (Pareto front) 
between the service delay and energy consumption. Thus, to solve this model, they proposed a 
hybrid Evolutionary Multi-Objective (EMO) algorithm called Swarm Optimized Non-dominated 
sorting Genetic algorithm (SONG) which combines the convergence and search efficiency of two 
popular EMO algorithms: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Speed-
constrained Particle Swarm Optimization (SMPSO). First, they solve an example problem using the 
SONG algorithm to illustrate the delay–energy solution frontiers and plotted the corresponding 
layout topology. Subsequently, they evaluate the evolutionary performance of the SONG algorithm 
on real-world vehicular traces against three quality indicators: Hyper-Volume (HV), Inverted 
Generational Distance (IGD) and CPU delay gap. The empirical results showed that SONG exhibits 
improved solution quality over the NSGA-II and SMPSO algorithms and hence can be utilized as a 
potential tool by the service providers for the planning and design of VFC networks. 

Almasri et al., [31] proposed a multi-objective optimization solution to assign different 
application tasks to different edge devices while minimizing the energy consumption of edge devices 
and the computation time of tasks. Task dependencies and data distribution were considered within 
a new and more general MEC model. Multi-objective evolutionary algorithm (MOEA) framework was 
used to solve the optimization problem subject to deadline and power consumption constraints. 
Results showed that the proposed multi-objective approach achieved better performance in terms 
of energy and computation time when compared to a single objective approach. 

Peng et al., [32] studied the optimization problem of the UAV from a multi-objective viewpoint 
by considering the UAV’s flight safety which provide offloading services for nearby devices. A 
constrained multi-objective optimization problem (CMOP) involving two objective functions about 
the energy-efficient offloading and safe path planning was formulated for the UAV. To solve the 
formulated CMOP, they presented a constrained decomposition-based multi-objective evolution 
algorithm. To further improve the algorithm, they particularly utilized the infeasible individuals with 
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great objective values, which provided useful information for improving the optimized objective 
values during the evolution process. experimental results demonstrated that, this scheme is 
beneficial to simultaneously reduce energy consumption and ensure safe flight for the UAV. 

The response time of the computing tasks, the energy consumption of the mobile terminal device 
and the load balance of the server were regarded as three optimization objectives by Zhu et al., [33]. 
Here a multi-objective optimization model was set up, and an offloading decision scheme based on 
multi-objective optimization immune algorithm was proposed. A large number of comparative 
experiments were done to verify the effectiveness of proposed scheme. Experimental results showed 
that the proposed scheme can make the whole server system achieve a better load balancing state 
while meeting the requirements of response time and energy consumption. 

Jinglei et al., [34] investigated in a multi objective task scheduling problem in MEC-aided 6G 
network where computation-intensive applications that were commonly modelled as Directed 
Acyclic Graphs (DAG) can be performed locally and offloaded to MEC servers to enhance execution 
efficiency. Then, an improved multi objective cuckoo search (IMOCS) algorithm was proposed to deal 
with a DAG-based task scheduling problem, which aims to reduce the execution latency and energy 
consumption of UE. Particularly, the proposed IMOCS algorithm was based on the single-objective 
cuckoo search algorithm and Pareto dominance. An external archive was used to record 
nondominated solutions, whose update strategy improved the quality of solutions by the aid of fast 
nondominated sorting and crowding distance sorting. Simulation results demonstrated that IMOCS 
algorithm outperforms other four benchmark algorithms, which can provide optimal task scheduling 
policy for MEC severs in 6G networks. 

Asghari et al., [35] investigated that the proper placement of mobile cloud resources has an 
important impact on their efficiency and energy consumption. The appropriate resource placement 
model can reduce latency and improve energy consumption. Because of the large number of mobile 
servers, finding the best geographical placement of all resources is an NP-Hard problem, so 
researchers have introduced a novel multi-objective edge server placement algorithm using the trees 
social relations optimization algorithm (TSR) and the DVFS (dynamic voltage and frequency scaling) 
technique (MSP-TD), has been introduced for optimal placement of edge servers to extend the 
network coverage. Parallelization methods can improve the scalability of the resource placement 
problem and reduce the time complexity of finding the optimal solution. The simulation results 
showed that our proposed model leads to less latency and energy consumption reduction than some 
state-of-the-art and similar algorithms. 

Zhu et al., [36] investigated in task offloading decisions when the system's mobile and service 
device count rises. which become a significant difficult. So, they modelled the problem of response 
time and energy consumption of the system as a multi-objective optimization problem, and they 
designed an improved evolutionary algorithm based on immune algorithm, which can effectively 
obtain a set of solutions between response time and energy consumption. The simulation results 
showed that this scheme can meet the response time requirements and obtain a lower energy 
consumption strategy when compared to the offloading scheme in the existing literature. 

A new multi-objective strategy based on the biogeography-based optimization (BBO) algorithm 
was proposed for MEC offloading to satisfied users’ multiple requirements (the execution time, 
energy consumption and cost) by Li et al., [37]. In this strategy, a time-energy consumption model 
and a cost model were constructed for task offloading firstly. Based on these models, the BBO 
algorithm was introduced into task offloading for MEC to solve the problem of multi-objective 
optimization. Compared with the traditional strategies, the offloading strategy based on BBO 
decreased the average task completion time by an average of 25.03%, and compared with the 
technique for order preference by similarity to an ideal solution (TOPSIS) strategy, the BBO offloading 
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strategy proposed in this paper reduced energy consumption 75% and cost by 36.9%. The proposed 
strategy can well solve the problem of multi-objective optimization in the task offloading for MEC. 

 
4. System Model  
 

We consider an 5G network consisting of a set of mobile users U, a set of micro-BSs (micro-BSs 
are abbreviated as BSs in the following) with edge clouds N, and a macro-BS with a deep cloud C. As 
shown in Figure 2. The system problems are formulated as shown in Figure 2, but we will solve those 
problems by using different algorithms. 
 

 
Fig. 2. System model [38] 

 
It is assumed that each BS covers a local area called a zone, and a mobile user should be associated 

with only one zone. Edge server may be a physical server or a virtual machine with computing 
capacities, and we assume that its associated BS is interconnected by backhaul links, allowing a 
mobile user to be served by a nonlocal BS. Each mobile user can offload computing request to a BS 
in its zone. we assume that the macro-BS is used as the central controller, which is responsible for 
collecting task information, computing resource information of edge clouds in BSs, and the network 
status. Specially, the set of mobile users and BSs are denoted by 𝑈	 = 	 {1, 2, … , 𝑢} and 𝑁	 =
	{1, 2, … , 𝑛}, respectively. We assume each mobile user 𝑢	 ∈ 𝑈 generate one computing request at a 
time, given as 𝑞! = 〈𝑤" , 𝑠" , 𝑝𝑟" , 𝑇𝑔" , 𝑇𝑏"〉. Here, 𝑤"denotes the workload of request q, i.e., the 
required computing to accomplish the request, and 𝑠" denotes the request input data size. We use 
𝑝𝑟" to denote the request priority representing the importance of different requests. 𝑇𝑔" and 𝑇𝑏" 
are ideal delay and tolerable delay thresholds, respectively [38]. 

Considering the position of mobile user varies over time, we use 𝑝!# = (𝑥!, 𝑦!, 0) to denote the 
location of mobile user u at time t. All BSs are fixed and the location of BS n is given as 𝑝$# =
(𝑥$, 𝑦$, 𝐻) with the same attitude h.  
 
4.1 Delay Model 
 

In this paper, Non-Orthogonal Multiple Access (NOMA) scheme was applied as the 
communication scheme between mobile users and BSs. Therefore, mobile users in the same zone 
can transmit data to BS simultaneously at the expense of the interference. In this case, the 
interference may cause performance degradation, i.e., the decrease of uplink rate. Suppose that the 
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location of each mobile user is unchanged during the time interval, The uplink rate 𝑣!$(𝑡) from 
mobile user u to BS n can be formulated as follows [38]: 
 

𝑣!$(𝑡) = 𝐵𝑙𝑜𝑔% C1 +
	'!"(#)*!"(#)

+#$,∑ '!,"(#)*!,"(#)
&"
!,

E                     (1)      

                                                             
where	𝑝!$ denotes the transmitting power from mobile user u to BS n, B and 𝜎.%	represent the 
bandwidth of the uplink system and background white Gaussian noise power respectively. The 
channel power gain between mobile user u to BS n is defined as follows [39]: 
 
𝑔!$(𝑡) =

*#
/0!10"(#)2

$
,/3!13"(#)2

$
,4$

, 𝑢 ∈ 𝑈, 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                   (2) 

 
where 𝑔. represents the channel power gain at the reference distance 𝑑. 	= 	1 m and the 
transmitting power is 1W. Suppose that 𝑥"$ is a binary variable, in which 𝑥"$ 	= 	1 indicates that 
request q is offloaded to BS n, and 𝑥"$ 	= 	0 indicates the request q is offloaded to macro-BS. Thus, 
the time taken to transmit data 𝐼" from mobile user u for offloading is given as: 
 

𝑡!'
" = I

5'
6!"(#)

,										𝑥"$ = 1
5'

6!"(#)
,											𝑥"$ = 0

                                                                                                         (3) 

 
Suppose 𝑅"$ denotes the amount of computing resource that BS n schedules to request q. Thus, the 
execution time of request q at BS or macro-BS is given as: 
 

𝑡'78
" = I

5'
9'"

,										𝑥"$ = 1
5'
9(
,											𝑥"$ = 0

                                                                                                            (4) 

	
where 𝑅:  is the computing capacity of macro-BS. Therefore, the total delay for offloading request q 
is assigned: 
 
𝑡" = 𝑡!'

" + 𝑡'78
"                                                                                                                                 (5) 

 
4.2 Energy Model 
 

The energy consumption for offloading requests includes the energy consumed for transmitting 
the data and the energy consumption of processing requests. Thus, the transmitting energy 
consumption for data offloading from mobile user u to BS n at time t is defined as: 
 
𝐸!#7;(𝑡) = 𝑝!$(𝑡)	𝑡!'

"                                                                                                                        (6) 
 
Given the average power consumption of BS and macro-BS, the energy consumed by executing 
request q is defined as: 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 47, Issue 2 (2025) 237-265 

246 
 

𝐸!
'78(𝑡) = L

𝑝<=	𝑡'78
" 	, 											𝑥"$ = 1

𝑝: 	𝑡'78,?
" 	, 											𝑥"$ = 0

                                                                                             (7) 

 
 where 𝑝<= and 𝑝:  are the average power consumption of BS and macro-BS, respectively. 
 
4.3 Problem Formulation 
 

Assume that every mobile user aims to reduce its power consumption allocated to data 
transmission. Since the protocol applied in this study is NOMA as a communication scheme, i.e. 
mobile users can send data simultaneously using the bandwidth of the entire system. In this case the 
transmission delay can be reduced for mobile users who use more transmission power, but this may 
result in more interference and power consumption. Therefore, to reduce the power consumption 
needed to transmit data of the entire system at time t, we formulate the power allocation (PA) 
problem as in Reference [38]: 
 
𝑃1:	min

@
= ∑ ∑ 𝐸!#7;A

!
B
$           (8a) 

 
𝑠. 𝑡			0 ≤ 𝑃!$(𝑡) ≤ 𝑃C;0	،	∀	𝑛 ∈ 𝑁،	𝑢 ∈ 𝑈			                    (8b) 
 

The objective in Eq. (8a) minimizes the power consumption of data transmission using  𝐸!#7;(𝑡) 
given in Eq. (6). While constraint in Eq. (8b) ensures that the transmission power for each mobile user 
is less than 𝑃C;0 and greater than (0). Mobile users in the same zone compete for the computing 
resources of the same BS to complete the requests within the ideal delay. Referring to [40], we define 
the edge system utility for processing request q as: 
 

𝑘' =

⎩
⎪
⎨

⎪
⎧

1																																																																																											𝑡" ≤ 𝑇𝑔" 	

1 − D

D,E)*+,-./0'1 *+,-./+.'12 																																							𝑇𝑔" < 𝑡" ≤ 𝑇;6*
D

D,E)*0'/+,-.1 *+3'/+,-.12 																								 																				𝑇;6* 	< 		 𝑡" ≤	𝑇𝑏"
0																																																																																							𝑡" >		𝑇𝑏"

					         (9)	

 
where  
	
		𝑇;6* =

F*',FG'
%

	 	 	 	 	 	 	 	 	 																									(10)	
 
and the edge system cost for processing request q is defined as [38]: 
 

𝑐" = 𝛼 ∫ 𝑒0 D.⁄I#1I40,I!
546

I#1I40
𝑑𝑥                      (11) 

 
where α is a user-defined constant to ensure that 𝑐" is in the range [0, 1], 𝐸. and 𝐸7# are the initial 
energy and residual energy at time t of BS. With the increase of power consumption of executing 
requests, the energy cost 𝑐" of the edge server is increased. Given the fixed computing resources, 
the BS may not be able to process all requests in a timely manner. 
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Therefore, mobile users can choose to send the request to the macro-BS for processing, and the 
edge system should pay for this work. The extra cost for offloading to macro-BS is defined as: 
 
𝑒" = 𝜀𝑘' + (1 − 𝜀)𝐸"

'78                                       (12)     
 
where ε is a constant implying the relative importance of total delay and executing power 
consumption. Thus, we define the total system welfare as: 
                                                                                     
𝑊 = ∑ ∑ 	d𝑥"$e𝑘' − 𝑐'f − e1 − 𝑥"$f𝑒"g

J
"

B
$                                                                                     (13) 

 
The joint request offloading and computing resource scheduling problem is formulated as a 

system welfare maximization problem: 
 
𝑃%: maxK,L

𝑊					                        (14) 

 
𝑠. 𝑡:		 ∑ 𝑥"$$∈B 	≤ 1	, ∀		𝑞 ∈ 𝑄				                   (14a) 
 
𝑥"$ ∈ {0,1}		∀		𝑞 ∈ 𝑄	, 𝑛 ∈ 𝑁	                   (14b) 
 
∑ 𝑅"$ ≤ 𝑅$		,"∈J ∀	𝑛 ∈ 𝑁                     (14c) 
                                                                           
𝑅"$ > 0, ∀		𝑞 ∈ 𝑄	, 𝑛 ∈ 𝑁				                                         (14d)                                                 
 

Constraint in Eq. (14a) and constraint in Eq. (14b) imply that each request generated by mobile 
user can be either offloaded to only one BS or macro-BS. Given the fixed computing resources, the 
BS may not be able to process all requests in a timely manner. Therefore, mobile users can choose 
to send the request to the cloud center for processing. Constraint in Eq. (14c) ensures that the total 
computing resources scheduled to requests should not exceed the BS’s computing capacity. 
Constraint in Eq. (14d) ensures that BS must schedule a positive computing resource to each request 
that offloaded to it. 
 
5. Efficient Algorithms 
5.1 Power Allocation (PA) 
 

The (PA) problem can be expressed as follows: 
 
'!"(#)5!
6!"(#)

= min
'
𝐸			                       (15) 

 
= ∑ ∑ ∑ ∑ '!"(#)5!

< NOP$QD,
5!"(0).!"(0)

9#
$:∑ 5!́"(0).!́"(0)

&"
!́=!

R

A
!

B
$

A
!

B
$ 		                              (15a) 

 
𝑠. 𝑡			0 ≤ 𝑃!$(𝑡) ≤ 𝑃C;0	،	∀	𝑛 ∈ 𝑁،	𝑢 ∈ 𝑈			                 (15b) 
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Problem in Eq. (15) is difficult to solve because the objective function in Eq. (15a) is nonlinear, 
and the term 𝑣!$(𝑡) depends on the transmission power 𝑝!$(𝑡) and on 𝑔!$(𝑡) associated with the 
location of other mobile users in the same area, Assume that each base station calculates the power 
allocation (PA) to its associated mobile users (𝑷𝒏)	independently to minimize the power 
consumption (𝑬𝒏)  every time (t). Then the (PA) problem can be solved by solving a set of sub-
problems as follows [38]: 
 
min
'"

𝐸$ = ∑ 𝜙(𝑝!$) =
A"
! ∑ '!"5!

< NOP$(D,T.'!")
A"
! 			                 (16a) 

 
𝑠. 𝑡			0 ≤ 𝑃!$(𝑡) ≤ 𝑃C;0	،		∀	𝑛 ∈ 𝑁،	𝑢 ∈ 𝑈	                 (16b) 
 
where 
 
𝛾 = *!"(#)

+#$,∑ '!́"(#)*!́"(#)
&"
!́=!

			                      (17)

         
The second-order derivative of the objective in Eq. (16a) with regards (𝒑𝒖𝒏) is not always positive, 

so the problem in Eq. (16a) is non-convex. Therefore, it cannot be solved with standard techniques 
such as the Lagrange multiplier, Lyapunov stochastic method, or successive convex approximation 
techniques as it is a non-convex problem. This problem is well suited for the use of metaheuristic 
algorithms, because these algorithms are one of the models of computational intelligence that are 
used to address complex optimization problems due to their ability to manage nonlinearity and 
discontinuity. There are many types of metaheuristic algorithms such as GA, PSO, and others. We 
presented a previous survey on these two algorithms and their hybrid algorithm [41]. We compared 
these algorithms based on different performance metrics, use cases, and evaluation tools, as well as 
discussing the strengths and weaknesses of each algorithm. However, each algorithm has its 
advantages and disadvantages. For example, PSO convergence is fast, but can be limited to locally 
optimal solutions when used to solve complex problems with high-dimensional solution spaces. In 
addition, GA has great ability to search comprehensively and provide diverse solutions, but their 
convergence process takes a long time. Therefore, in this study, we propose a hybrid optimization 
technique based on GA with PSO called (HGAPSO) to solve the power allocation (PA) problem. 

Figure 3 shows the main steps of the HGAPSO algorithm. It will be implemented in two stages: 
 

i. The first stage: HGAPSO begins by implementing the GA algorithm up to a specified 
number of iterations, where the solutions are developed until reaching an appropriate 
standard through successive iterations, i.e. reaching the pre-determined fitness value or 
reaching the maximum number of generations. 

ii. The second stage: The PSO algorithm then starts. Once the optimized solutions for the GA 
are available, the particles will be initialized, where the position of the particles reflects the 
solutions of the GA algorithm and the speed of each particle is initially initialized.  

The HGAPSO is formulated as shown in Table 1. Here GA was used as the basis for the algorithm while 
PSO is used to enhance the solution provided by GA and improve its performance.  
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Fig. 3. Flow chart of the HGAPSO algorithm used in power allocation 
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Table 1 
Hybrid Optimization Method based on GA with PSO 

Algorithm 1: Hybrid Optimization Method based on GA with PSO 
1: Input: the size of population S، the number of variables N، THE Max iteration 

of HGAPSO 𝐼، the parameters of GA 𝑃> ، 𝑃?، 𝐼@، tournament size 𝑡A، the 
parameter of PSO w، 𝐶@ ،𝐶B، 𝐼B 

2: Output: the optimal values of 𝑣CD، 𝑥ED، and 𝐸 
3: Begin 
4: Randomly generate individuals in initial population 𝑃 and assign number of 

generations to 0 (𝑖 = 0) 
5:  While termination criteria are not satisfied  

do 
6: 
7: 
8: 

/
𝑝𝑒𝑟𝑓𝑜𝑟𝑚	𝐺𝐴	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	2
𝑝𝑒𝑟𝑓𝑜𝑟𝑚	𝑃𝑆𝑂	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	3

𝑖 = 𝑖 + 1
 

9: End 
10: Obtaining the optimal values of 𝑣CD، 𝑥ED 
11: The Optimal power allocation can be obtained by equation (10) with optimal 

values from in the previous step 
12: END 

 
5.1.1. Genetic algorithm (GA) scheme 
 

Algorithm 1 starts by randomly initializing the population. Individuals are then processed through 
GA operations in Algorithm 2 (Table 2) up to (𝐈𝟏)number of iterations. Here, GA uses a random search 
strategy that mimics biological evolution, which uses the idea of survival of the fittest as an 
evolutionary concept. Selection, crossover and mutation are the three basic factors in the GA model. 
 

Table 2 
Genetic Algorithm operations 

Algorithm 2: Genetic Algorithm operations 
1: Input: the population 𝑃 ، 𝑃> ، 𝑃?، 𝐼@، tournament size 

𝑡A، MAX iteration 𝐼@ 
2: Output: the 𝑆 solutions after 𝐼@ iterations 
3: Begin 
4: Calculate the fitness of individuals and assign number 

of generations to 0 (𝑖 = 0) 
5:  While termination criteria are not satisfied  

do 
6: 
7: 
8: 
9: 
10: 

E
E

𝑠𝑒𝑙𝑒𝑐𝑡	𝑝𝑎𝑟𝑒𝑛𝑡𝑠	𝑏𝑦	𝑡ℎ𝑒	𝑡𝑜𝑢𝑟𝑚𝑎𝑛𝑒𝑡	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
𝐴𝑝𝑝𝑙𝑦	𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟	𝑏𝑦	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑃F
𝐴𝑝𝑝𝑙𝑦	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑏𝑦	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑃>
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒	𝑡ℎ𝑒	𝑛𝑒𝑤	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑖@ = 𝑖@ + 1

 

11: End 
 
Chromosome structure and GA processes: 
 

i. Initial stage: Each individual is represented by a chromosome, which is a string (usually 
binary or decimal) that encodes the solution [42]. Figure 4 shows the method of 
chromosome coding. Since a population matrix consists of a number of individuals, each 
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individual has a set of genes !𝒙𝒒𝒏،𝐯𝐮𝐧$. In each iteration, the individual with the lowest 
value of the allocated power is chosen as the optimal individual. 
 

 
Fig. 4. Coding of individuals 

 
ii. Selection Process: There are two widely used methods for the selection process, namely 

roulette wheel and tournament [42]. This study adopts the tournament method because 
the roulette wheel selection technique is more suitable for maximization problems. In 
tournament selection, N individuals are randomly selected and the fittest is chosen to 
become a parent. A similar process is then performed to select the new parent. 

iii. Crossing Process: Parents use crossing procedures to generate new offspring to enhance 
diversity and provide better solutions to this problem. Crossing helps in improving and 
promoting convergence [42]. Crossing over is performed when parents are exchanged by 
choosing a random point on the chromosome. After that, hybridization occurs with the 
formation of new offspring according to the chosen point of intersection with certain parts 
of the parents. Figure (5) shows an example of a single-point intersection process. Whether 
or not a crossover will occur is decided based on the crossover probability. The results of 
practical and theoretical research indicate a much greater probability of intersection in the 
field {Pc=0.95-0.6}. 

iv. Mutation process: It is described as a small random modification of chromosomes in order 
to find a new solution. It is used in order to maintain population diversity and create new 
adaptive individuals that prevent local optima. It is generally used with low probabilities 
around {Pm=0.001-0.05}. For an integer representation, a gene chosen at random from a 
list of possible values is assigned a random value. Figure 6 shows the exact procedure of 
the operation. Note that a new random value is assigned to the mutation if the modified 
gene is higher than the restriction limit. 
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Fig.5. Example of one intersection process 

 

 
Fig.6. Mutation process 

 
5.1.2 Particle swarm optimization (PSO) scheme 
 

PSO particles are then initialized once the optimized solutions of GA from Algorithm 2 are 
provided and implemented PSO operations in Algorithm 3 (Table 3) up to (𝐈𝟐) number of iterations. 
This approach searches for the best solution using agents called particles. A collection of moving 
particles is called a swarm. Particles have only two properties, namely position and velocity, as each 
particle adjusts its position in the search space in response to the motion experiences of the 
surrounding particles in order to achieve the best suitable position [43]. Note that the position of the 
particle in PSO represents the solution in the GA population, while the speed indicates the rate of 
change in the position of the particle. Each particle has a record that recalls its previous best position 
called (𝐩𝑩𝒆𝒔𝒕). The particle with the highest fitness value is referred to as the best group position 
(𝐠𝐁𝐞𝐬𝐭). 

Assuming that the search space has dimensions S, then the position of particle (i) in the swarm is 
expressed by the vector:	(𝑿𝒊 	= 𝑿𝒊،𝟏،	𝑿𝒊،𝟐،… ،	𝑿𝒊،𝒔)، Another dimensional vector (S) is used to 
describe the speed of this particle: (𝑽𝒊 	= 𝑽𝒊،𝟏،	𝑽𝒊،𝟐،… ،	𝑽𝒊،𝒔)، each particle adjusts its position 
according to the new velocity with each iteration. The particle's velocity and position are updated as 
follows: 
 
𝑉b،cd,D = ωV(b،c)

d + rD. cDepBest(b،c)d − X(b،c)
d f + r%. c%egBest(b،c)

d − X(b،c)
d f                                                (18) 

 
𝑋b،cd,D = Xb،cd + Vb،cd,D                                                                                                                                           (19) 
 
where (t) represents the repetition number, and 𝐝 = {𝟏،𝟐،	𝟑،	 … ،	𝐒} represents the number of 
dimensions; And 𝒊	 = 	 {𝟏،	𝟐،	 … ،	𝑴},	where (M) is the swarm size, and (ω) is the inertia, which means 
the weight of the particle at its previous speed. (𝐜𝟏)  and (𝐜𝟐)	are acceleration constants. 
(𝒓𝟐)	and	(𝒓𝟏) are two random parameters that take their value within (1-0) to increase randomness 
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in the search. The particle is directed to its optimal position through a set of acceleration parameters 
represented by the constants (𝐜𝟏)  and (𝐜𝟐). If the values of (𝐜𝟏) and (𝐜𝟐)	are large, a rapid search 
will occur, and thus the ideal solutions may be neglected. If the values of (𝐜𝟏) and (𝐜𝟐)	are low, the 
search time will be slow [43], and the local optimal solution can be found. So, we will assume that 
(𝐜𝟏)	= 2 and (𝐜𝟐)	= 2. Individuals are iteratively improved using GA and PSO until convergence or the 
maximum number of generations is reached. 
 

Table 3 
Particle Swarm Optimization operations 

Algorithm 3: Particle Swarm Optimization operations 
1: Input: The best solution (particles) produced by algorithm 

2, inertia weight (𝑤),𝐶@ , 𝐶B, MAX iteration 𝐼B 
2: Output: The position of  𝑆 particles after 𝐼B iterations 
3: Begin 
4: Initialize the velocity of	𝑆 particles and assigning number 

of generations to 0 (𝑖B = 0) 
5:  While termination criteria are not satisfied  

do 
6: 
7: 
8: 
9: 

10: 

E
E

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝑡ℎ𝑒	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒		𝑃GHAI	𝑎𝑛𝑑	𝑔GHAI	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑖B = 𝑖B + 1

 

11: End 
 

5.2 Joint Request Offloading and Resource Scheduling 
 

After allocating transmission power for mobile users, Delay-sensitive requests from users must 
be offloaded to BS or Macro-BS. In particular, the problem can be expressed as Eq. (14), We note that 
constraints (a) and (b) for offloading policy X, and constraints (c) and (d) for offloading policy Y are 
separate from each other. Problem in Eq. (14) can be divided into two problems, namely the request 
offloading (RO) problem and the computational resource scheduling (RS) problem. Thus, the RO 
problem of minimizing the extra cost of the edge system can be expressed as: 
 
min
K
𝑀 = ∑ ∑ e1 − 𝑥"$fe𝜀𝑘' + (1 − 𝜀)𝐸"

'78fJ
"

B
$                                       (20) 

                                
𝑠. 𝑡:		 ∑ 𝑥"$$∈B 	≤ 1	, ∀		𝑞 ∈ 𝑄                                                                                               (2a) 
 
𝑥"$ ∈ {0,1}		∀		𝑞 ∈ 𝑄	, 𝑛 ∈ 𝑁                      (2b) 

	
The RS problem of maximizing the welfare of the edge system can be expressed as: 

 
max
L
𝑊 = ∑ ∑ 	d𝑥"$e𝑘' − 𝑐'fg

J
"

B
$                                                                                              (21) 

 
∑ 𝑅"$ ≤ 𝑅$		,"∈J ∀	𝑛 ∈ 𝑁	                                                                                                                     (21a) 
 
𝑅"$ > 0, ∀		𝑞 ∈ 𝑄	, 𝑛 ∈ 𝑁                                                                                             (21b) 
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Therefore, this problem is a dual decision-making problem which is very complex and involves a 
trade-off between two conflicting objectives. In this paper, we propose a multi-objective 
optimization algorithm based on Particle Swarm Optimization, referred to as (MOPSO), to solve the 
problem which is divided into Problem (20) and Problem (21). 

Multi-objective particle swarm optimization (MOPSO), which arises from simulating the behavior 
of bird flocks, is one of the most promising stochastic research methodologies due to its ease of 
implementation and high convergence speed. The MOPSO algorithm intelligently sifts the large 
amount of information contained within each particle representing a filter solution and exchanges 
information to increase the overall quality of particles in the swarm. In the multi-objective 
optimization problem, there is one best solution for each objective. However, this solution may not 
achieve all other goals. One of the main differences between single objective (SO) and Multi-objective 
(MO) optimization is that MO problems form a multi-dimensional objective space. This leads to three 
possible states of the MO problem, depending on whether the goals are completely conflicting, not 
conflicting, or partially conflicting [20]: 

 
i. First category: The conflicting nature of the objectives are such that no improvements can 

be made without violating any constraints. This result in an interesting situation where all 
feasible solutions are also optimal.  

ii. Second category: A nonconflicting MO problem if the various objectives are correlated and 
the optimization of any arbitrary objective leads to the subsequent improvement of the 
other objectives. This class of MO problem can be treated as a SO problem by optimizing 
the problem along an arbitrarily selected objective or by aggregating the different 
objectives into a scalar function. Intuitively, a single optimal solution exists for such a MO 
problem. 

iii. Third category: A partially conflicting objectives which more often than not, real world 
problems are instantiations of this type and this is the class of MO problems that we are 
interested in. One serious implication is that a set of solutions representing the tradeoffs 
between the different objectives rather than a unique optimal solution.  Assuming that the 
two objectives are indeed partially conflicting, this presents at least two possible extreme 
solutions, one for lowest cost and one for highest performance. The other solutions, if any, 
represent the varying degree of optimality with respect to these two objectives [20]. 

 
5.2.1 Basic MOPSO 
 

The general MOPSO framework can be represented as in the algorithm 4 (Table 4). There are 
many similarities between SOPSO and MOPSO with both techniques involving an iterative adaptation 
of a set of solutions until a pre-specified optimization goal/stopping criterion is met [44]. What sets 
these two techniques apart is the manner in which solution assessment and gbest selection are 
performed. in addition to incorporation of elitism which consider one of the distinct features that 
characterizes the MOPSO algorithms. The different MOPSO algorithms can be distinguished by the 
way in which the mechanisms of elitism and diversity preservation are implemented. Elitism in 
MOPSO involves two closely related process, 1) the archiving of good solutions and 2) the selection 
of gbest for each particle from these solutions. Before presenting the MOPSO algorithm, we provide 
an explanation of the components of this algorithm. 
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Table 4 
MO-PSO 

Algorithm 4: MO-PSO 
P ← Particle initialization 
A ← Create archive while (stopping criteria not satisfied) 
P ← Evaluate (P) 
A ← Update (A) 
P ← Select pbest (P) 
P ← Select gbest (g) 
P ← Update (P) 
END        While 

 
5.2.2 MOPSO Components 
 

The framework presented in the previous section serves to highlight the primary components of 
MOPSO, elements without which the algorithm is unable to fulfil its basic function of finding Pareto 
optimal front satisfactorily. The main components of this algorithm are: 
 

i. Fitness Assignment: Based on the literature, it is possible to identify two different classes 
of fitness assignment: 1) Pareto based assignment, 2) aggregation-based assignment. At 
this point, it seems that Pareto based fitness are more effective in low dimensional MO 
problems while aggregation-based fitness has an edge with increasing number of 
objectives. Naturally, some researchers have attempted to marry both methods together. 
For example, the reference study in [45] proposed a hybrid MO fitness assignment method 
which assigns a nondominated rank that is normalized by niche count and an aggregation 
of weighted objective values. Since the example problem in this paper contains only two 
objectives, we will rely on Pareto-based fitness assignment. 

ii. Diversity Preservation: A basic component of diversity preservation strategies is density 
assessment. Density assessment evaluates the density at different sub-divisions in a 
feature space, which may be in the parameter or objective domain. Depending on the 
manner in which solution density is measured, the different density assessment techniques 
can be broadly categorized under 1) Distance-based, 2) Grid-based, and 3) Distribution-
based.  

iii. Elitism: The use of the elitist strategy is conceptualized by De Jong in reference [46] to 
preserve the best individuals found during the searching process.  The first issue to be 
considered in Elitism is Archiving which storage elitist solutions. Archiving usually involves 
an external repository and this process is much more complex than in (SO) since we are 
now dealing with a set of Pareto optimal solutions instead of a single solution. The fact that 
Pareto front is an infinite set raises the natural question of what should be maintained? 
Without any restriction on the archive size, the number of nondominated solutions can 
grow exceedingly large. Therefore, in the face of limited computing and memory resources 
in implementation, it is sometimes unwise to store all the nondominated solutions found. 
So, it is only natural to truncate the archive based on some form of density assessment 
discussed earlier when the number of nondominated solutions exceeds the upper bound. 

iv. Selection of gbest: The next issue to be considered is the introduction of elitist solutions 
into the gbest selection process. Contrary to SO optimization, the gbest for MO 
optimization exist in the form of a set of nondominated solutions which inevitably leads to 
the issue of gbest selection for each particle. One problem faced is the “exploration-
exploitation” dilemma. A higher degree of exploitation attained through the selection of 
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gbest according to domination relationship leads to the loss of diversity which led to fail to 
span the entire Pareto front uniformly and, in the worst case, premature convergence to 
local optimal solutions. While too much exploration through selection of least crowded 
nondominated solution as gbest may lead to slow convergence speed. gbest selection 
schemes that sought to balance the tradeoff between exploration and exploitation have 
been proposed. For example, the paper [47] presented a general framework for MOPSO) 
which allows designers to control the balance between exploration of diversity and 
exploitation of proximity. Figure 7 shows the flow chart of the used multi-objective particle 
swarm optimization algorithm. 

 

 
Fig. 7. flow chart of the multi-objective particle swarm optimization algorithm 

 
Therefore, the PA problem can be addressed using the quasi-convex technique and solved using 

the HGAPSO algorithm shown in Algorithm 1. In addition, we formulate the joint request offloading 
and resource scheduling problem as a dual decision-making problem that can be solved using the 
MOPSO algorithm shown in Algorithm 4. 
 
6. Performance Evaluation 
6.1 Simulation Setup 
 

To evaluate the effectiveness of the proposed algorithms, we implemented the HGAPSO and 
MOPSO algorithms using (MATLAB 2021a). The simulations were conducted on an Intel core i7 
laptop, with 16GB RAM. Assuming that the area is equipped with a number of base stations (BSs) 
with a computing ability of (60GHz), and a (macro-BS) with a computing ability of (120GHz). Assuming 
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that the bandwidth used is (Bw = 20 MHZ) and the white noise energy is ( 𝜎.% = -100 (dBm))  in a 
communication environment. We quantize a mobile user into a zone associated with the BS based 
on the location of the mobile user and the area covered by the BS. The parameters of the simulation 
are shown in Table 5. 
 

Table 5 
Average node degree vs. time 

Parameter Value 
Number of mobile users U {12,20,32,40,52,60,72,80,92,100} 
Number of BSs N {3,5,8,10,13,15,18,20,23,25} 
Workload of request wq 1000-2000 (MHz) 
Input data of request Iq 600-1000 (KB) 
Priority of request q prq (0, 1) 
Ideal delay of request q Tgq [0.4, 0.6] (s) 
Tolerable delay of request q Tbq Tgq + [0.1, 0.15] (s) 
Computing capacity of BS n Rn {60,70, 80} (GHz) 
Computing capacity of macro-BS Rc 120 (GHz) 
The fixed bandwidth B 20 (MHz) 
The fixed altitude of BS H 10 (m) 
Noise power𝜎JB -100 (dBm) 
The maximum transmitting power of mobile user {4, 5, 6} (w) 

 
The performance of MOPSO algorithm and HGAPSO algorithm are compared with the following 

methods: 
 
i. The performance of the HGAPSO algorithm was compared with the GA and PSO algorithms 

alone, and the noncooperative game model based on sub-gradient (NCGG) algorithm 
which proposed in reference [38]. We apply HGAPSO to solve the PA problem defined in 
Section 5.  

ii. The performance of the MOPSO algorithm was compared with the single-objective PSO 
algorithm and the multiple-objective optimization algorithm based on i-NSGA-II (MO-
NSGA) algorithm which proposed in reference [38]. We apply MOPSO to solve the joint 
request offloading and resource scheduling problem defined in section 5. 

The evaluation of performance by using both the system welfare and the response rate which means 
ratio of the number of completed calculation to the total number of requests within the tolerant 
delay of the request. 
 
6.2 HGAPSO Performance 
 

Each user in the network has a unique task that must be calculated. The workload for each task 
is randomly determined from (1000) to (2000) MB for each user. The simulation parameters are 
summarized in Table 1. Finally, the simulation was run to evaluate power consumption when the 
number of mobile users increases. 

 
i. Power consumption versus number of mobile nodes: In this case the maximum power for 

mobile users is set to (5w). Figure 8 shows the performance of the proposed algorithm 
compared to (GA) and (PSO) alone. It is noticeable that the total transmission power 
consumption increases when the number of mobile phone users increases. It is also noted 
that the power consumption of the hybrid algorithm is always smaller than the power 
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consumption of both algorithms individually under different numbers of mobile users, 
which means that the hybrid algorithm gave a better result for power allocation compared 
to the two mentioned algorithms. It is also noted that as the number of user devices 
decreases, the difference in power consumption between the compared algorithms will 
become almost non-existent. While when the number of devices increases, the difference 
in energy consumption between the compared algorithms becomes clear and the 
proposed approach becomes more efficient than other methods. This is because GA and 
PSO are more likely to fall into the local optimal solution as the number of devices present 
increases. 

 

 
Fig.8. Performance of the proposed algorithm compared to  
(GA) and (PSO) alone 

 
The performance of the proposed hybrid algorithm was compared with the performance 
of the NCGG algorithm proposed in the reference study [38] to solve the transmission 
power allocation problem. The results showed that the proposed algorithm reduced power 
consumption by an average of (9%) compared to the NCGG algorithm. The Figure 9 shows 
the difference in power consumption between the two algorithms when the number of 
users changes. 

 

 
Fig.9. The difference in energy consumption between the two algorithms 
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ii. Power consumption versus maximum power	(𝒑𝒎𝒂𝒙): As shown in Figure 10, the power 
consumption was evaluated under different number of mobile phone users and at 
different values of maximum power (𝒑𝒎𝒂𝒙 = 𝟒𝒘،	𝟓𝒘،	𝟔𝒘). It is noted that the power 
consumption is related to the maximum power, that is, the higher the maximum power for 
mobile users, the higher the power consumption. This is because the average transmission 
power for mobile users is higher under the maximum power value. 

 

 
Fig. 10. Power consumption versus maximum power (𝒑𝒎𝒂𝒙) 

 
iii. Convergence property of (HGAPSO): The system was run to evaluate the effect of the 

number of iterations on the power consumption of the devices when (𝒑𝒎𝒂𝒙 = 5w).   First, 
the cost of mobile users decreased rapidly. In the following rounds, the rate of decline 
increased with the increasing repetitions. From Figure 11, it can be seen that the total 
energy consumption of the proposed algorithm tends to converge after (70) iterations 
when the number of mobile users is (32). That is, increasing the number of repetitions from 
one to seventy led to a decrease in energy consumption by (83.3%) from (62J to (10J). After 
that, the rate of decline stabilized when the number of generations increased above 
seventy. While the PSO algorithm required only fifty iterations, meaning that increasing 
the number of iterations from one to fifty led to a reduction in energy from (62J to (17J), 
i.e., by (72.6%). As for the genetic algorithm, it required (295) iterations to reduce the 
energy from (62J to (13J), i.e., by (79%). Table (6) summarizes the convergence iterations 
of the three algorithms under a different number of mobile users. It can be seen from the 
table that it takes, for example, (115) iterations to converge (HGAPSO) when the number 
of mobile users is (100), which indicates that our proposed (HGAPSO) has good 
convergence property. 
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Fig. 11. convergence Property (HGAPSO) when the  
number of users is 32 

 
Table 2 
Convergence iterations under a different number for mobile users 

users number Iterations of the (HGAPSO) 
algorithm 

Iterations of the (PSO) 
algorithm 

Iterations of the (GA) 
algorithm 

12 21 18 98 
20 29 24 195 
32 70 50 295 
40 76 65 403 
52 84 73 550 
60 91 82 700 
72 97 90 810 
80 102 97 915 
90 109 101 1050 

100 115 108 1230 
 

When comparing the convergence of the HGAPSO algorithm with the convergence of the genetic 
algorithm [42] and the particle swarm optimization algorithm [43], according to the convergence 
perspective, PSO will be the best choice, followed by HGAPSO and finally GA. Although (HGAPSO is 
the most energy efficient, but PSO is the most convergently efficient, while GA's performance is 
somewhere in the middle between HGAPSO and PSO. This is due to the fact that HGAPSO combines 
the benefits of GA and PSO. Where GA is better at searching the global domain and PSO is faster at 
convergence. 
 
6.3 (MO-PSO) performance 
6.3.1 Effect of number of mobile users 
 

In this case, the computing capacity of all BSs are the same, i.e., Rn = 70 GHz, and all mobile users 
offload the same profile request with wq = 1500 (Magacycles), Iq = 700 (KB), Tgq = 0.5 (s) and Tbq = 
0.65 (s). As shown in Figure 12, we evaluate the performance including system welfare and response 
rate of MOPSO, compared to the other two algorithms against different number of mobile users. 
From Figure 12(a), all algorithms have same responses rate when the number of users was low. It 
should be noted that MOPSO can achieve a high response rate even in the case of a large number of 
mobile users, which also reflects the extensibility of MOPSO. From Figure 12(b), It can be seen that 
with the increasing number of mobile users, the system welfare increases and MOPSO can achieve 
best compared to both algorithms. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 47, Issue 2 (2025) 237-265 

261 
 

 
(a)         (b) 

Fig. 12. Performance vs different number of mobile uses: (a) Welfare, (b) Response rate 
 
6.3.2 Effect of request workload 
 

Here, we evaluate the performance of MO-PSO under different request workload, wq = 1500, 
2000, 2500 and we assume the number of users is 60. As shown in Figure 13, we observe that with 
the decrease of request workload, both the system welfare and response rate increases. In particular, 
when the request workload exceeds 2000, the response rate decreases. This is because, the 
computing resources of BS are not sufficient to be scheduled for offloading requests with more 
workloads, thus degrading the response rate and the system welfare. 

 

  
(a)       (b) 

Fig. 13. Performance under different request workload: (a) Welfare, (b) Response rate 
 
6.3.3 Effect of request profile 
 

In this case, different request profiles in terms of request workload wq and request input size Iq 
are configured to evaluate the performance of MOPSO, compared with other approaches. The 
system welfare and response rate are plotted in Figure 14(a, b) under different values of wq, we 
observe that MOPSO always outperforms PSO and MONSGA in response rate and system welfare. 
whereas MONSGA sacrifices part of the system welfare to maximize the response rate in the 
optimization process. From Figure 14(a), we observe that when wq increases, the response rate 
decreases. It is evidently because the computing overhead of BS becomes higher as wq increases, 
leading to more and more requests being unable to response in same time. Similarly, as shown in 
Figure 15(a, b). It can be seen that with the increase of lq, the response rate also decreases, which is 
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because a large amount of input data increases the transmitting delay. Even though, the MOPSO has 
the best performance in terms of response rate, even under different request profiles. 
 

  
(a)                                           (b) 

Fig. 14. Performance vs different request workload, with U = 60, Iq = 700 KB: (a) Welfare, (b) Response rate 
 

   
(a)        (b) 

Fig. 15. Performance vs different request input, with U = 60, wq = 1500 Magacycles, (a) Welfare, (b) 
Response rate 

 
7. Conclusions 
 

In this paper, we studied the problems of power allocation for data transfer and joint tasks 
offloading and resource scheduling in the edge computing network in 5G networks. We consider a 
network consisting of a Macro-BS, many Micro-BS units, and a large number of mobile users within 
a 5G network. In particular, we consider the interference between mobile users and base stations 
under the NOMA protocol. The power allocation (PA) problem is formulated as a non-convex problem 
and a hybrid algorithm is proposed to solve this problem. The joint tasks offloading and resource 
scheduling problem is formulated as a nonlinear mixed integer program problem. It is analyzed as a 
dual decision problem, and then we proposed a multi-objective optimization algorithm based on MO-
PSO to address it. 

The simulation results showed that the HGAPSO algorithm is able to outperform the two methods 
(GA and PSO) alone in terms of its reduction in the power consumed in data transfer and its 
acceptable convergence. The results also show that our algorithm (MO-PSO) outperforms existing 
methods in terms of response rate which about average 98% and maintains good performance in a 
dynamic MEC system. However, the proposed algorithms have not been implemented in real-world 
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applications. In future studies, the computation offloading model will be improved by applying it to 
realistic settings. Additional methods to improve task offloading in a dynamic mobile environment 
will be tested. 
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