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With the rapid development of computer technology and the wide application of 
nonlinear constrained optimization problems, many researchers are committed to 
solve large-scale constrained optimization problems. In this article, a new 
combinatorial iterative method is proposed on the basis of previous research, which 
can efficiently solve large-scale nonlinear constrained optimization problems. We first 
transform a large nonlinear constrained optimization problem into a corresponding 
unconstrained optimization problem by using the Lagrange multiplier method, and 
then the Newton iterative method is used to solve the transformed unconstrained 
optimization problem. To perform the iterative method, we need to compute its 
Newton direction, and the inverse matrix of Hessian matrix. To deal with the large-scale 
Hessian matrix, calculation of the inverse matrix for the Hessian matrix may not be easy 
to be determined. To overcome this issue, we propose the matrix iteration method to 
compute the Newton direction by solving the linear system as the internal iteration 
solution. Therefore, this paper investigates a Newton-SOR (NSOR) iterative method to 
solve this problem, in which the proposed NSOR iterative method combines the 
Newton method with Successive Over-Relaxation (SOR) iterative method. Based on the 
numerical experiments, the effectiveness of the proposed NSOR iterative method is 
more effective than the Newton-Gauss-Seidel (NGS) iterative method in terms of 
computing time and number of iterations. 
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1. Introduction 
 

Nonlinear optimization problems widely exist in engineering design, economic management, 
military research, and other applications with the rapid development of computer information 
technology. The requirements for large-scale optimizations are also increasing. For example, in 
petroleum exploration, aerospace, data mining and many other optimization problems, there are a 
lot of unknown variables being used to the optimization problems. In other words, the objective 
function is becoming more complex, and the dimension to the problem is also large-scale. Therefore, 
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the solution of large-scale constrained optimization problems has already become  research hotspots 
for researchers. Due to these issues, this paper mainly considers the following large-scale constrained 
optimization problems. 

 
min	 		𝑓(𝑥)	 
𝑠. 𝑡. 				𝑔!(𝑥) ≤ 0,							𝑖 = 1,… , 𝑞,					                                                            (1) 
𝑔!(𝑥) = 0,							𝑖 = 𝑞 + 1,… ,𝑚. 
 
where 𝑥 = (𝑥", 𝑥#, … , 𝑥$)% ∈ 𝑅$,𝑓(𝑥): 𝑅$ → 𝑅 and	𝑔!: 𝑅$ → 𝑅, 𝑖 = 1,2, … ,𝑚 + 𝑞 are continuous 
functions on 𝑅$. 

In recent years, many researchers began to extend some mature and effective algorithms to solve 
large-scale nonlinear constrained optimization problems. There are many classical methods for 
handling constraints, including Lagrangian multiplier method [1], penalty function method [2-5], 
obstacle function method, adaptive dynamic penalty function method, etc. Among them, the classical 
Lagrangian multiplier method is one of important methods for solving constrained optimization 
problems. Apart from its effective calculation, this method is preferred by many researchers because 
it can combine multiple constraints to reduce the problem as an unconstrained optimization 
problem. In addition to that, the Lagrangian method is mainly used to solve extreme value problems 
under constraint conditions, and additional variables (Lagrangian multipliers) need to be introduced 
to solve constrained optimization problems directly and accurately. Although strict implementation 
of constraints has obvious advantages, this method has some difficulties due to the extra cost of 
solving the multiplier. It means that the Lagrangian multiplier method will result in zero elements on 
the diagonal of the equations and the direct solution method will still be used at this time, in which  
this matter will bring additional difficulties in calculation. However, the formula based on the 
Lagrange multiplier method is widely used. Until today, we can still find the application cases of this 
method [6-8]. Therefore, in this paper, we mainly use the Lagrangian multiplier method to transform 
constrained optimization problems. By introducing Lagrange multipliers, an optimization problem 
with 𝑛 variables and 𝑚 constraints can be transformed into a corresponding unconstrained 
optimization problem with 𝑛 +𝑚 variables. To solve problem Eq. (1), let us define the Lagrangian 
function as 
 
𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆!𝑔!(𝑥)&

!'"  .                                                                 (2) 
 

where, 𝜆 = (𝜆", 𝜆#, ⋯ , 𝜆&)%  is a Lagrangian multiplier. 
By defining the Lagrangian function, we can see that we have transformed the optimization 

problem with inequality constraints in Eq. (1) into an unconstrained optimization problem of Eq. (2). 
For solving the unconstrained optimization problem of Eq. (2), we can use the direct search method 
[9-11] and the indirect search method [12-15] to get the optimal value of this function. However, all 
these methods have the limitation of their slow convergence, especially in dealing with large-scale 
optimization problems. For instance, direct search methods mainly include alternating direction 
method [9], simplex method [10], conjugate direction method [11], etc. These methods only need to 
calculate function values, so they have the advantages of easy use, simple structure, small memory, 
etc. The disadvantage is that most of these methods rely on intuitive skills. Indirect search methods 
mainly include gradient descent method [12], conjugate gradient method [13], Newton method [14] 
and quasi-Newton method [15]. Many researchers have improved these methods and obtained many 
effective methods, such as [16,17]. Based on these methods, the Newton method has become the 
focus of research because of its secondary locally convergence rate. Known as a locally convergence 
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method, the advantage of the Newton method is that if the initial point is close to the minimum 
point, it will show its good convergence. With the characteristic of its locally convergence, we  mainly 
consider the Newton method to solve the large-scale unconstrained optimization problem 
transformed by Lagrangian multiplier method in Eq. (2). 

Although the Newton method has a fast convergence rate in theory [18], in practice, this method 
requires that its Hessian matrix must be positive definite. The selection of the initial point needs to 
select an initial point closer to the optimal solution to ensure the convergence of the method. At the 
same time, additional storage space is required to calculate the value of the Hessian matrix during 
the calculation, particularly when large-scale problems are involved. Therefore, many researchers 
have improved the original Newton method or combined it with other calculation methods to 
conquer the difficulty of this storage space [19-23]. For example, in [20], Grapsa proposed a 
component approximation gradient (CAG) method. When solving unconstrained optimization 
problems, this method uses appropriate gradient correction to make it have a descending 
characteristic, so it is not suitable for linear shrinkage technology. By using the improved Cholesky 
decomposition algorithm and replacing Hessian matrix in the objective function with positive definite 
matrix, an improved Newton method [21] is proposed to solve unconstrained optimization problems 
with local minimization. In [22], the author proposed a new method to solve unconstrained 
optimization problems by using the Newton method and steepest descent method and proved the 
global convergence of the algorithm. In reference [23], the author proposed a method combining 
Newton direction and inverse gradient direction, which improved the convergence speed of Newton 
method. 

We observe that all improvements of these methods are related to solve the Newton direction 
of a linear system. If it refers to a small-scale problem, the original Newton method can be used to 
solve it well. However, to solve any large-scale problem, it is not useful to use the original Newton 
method because of high calculation cost. Therefore, the method needs to be combined with some 
iterative methods to improve its performance. Apart from this Newton method, Young [24] proposed 
an effective point iterative method to solve any large-scale linear system. This iterative method can 
be classified as a point iteration family and known as the Successive Over-Relaxation (SOR) iterative 
method. Further applications of the iterative method have been discussed by [25,26]. Due to the fact 
of its fast convergence rate, we combine the Newton method with the SOR iteration method, known 
as Newton-SOR (NSOR) iterative method. Hopefully, the proposed NSOR can solve large-scale 
unconstrained optimization problems transformed by the Lagrangian multiplier method, see in 
Section 4. Clearly, the main idea of the modified algorithm is the Newton method, in which the SOR 
iteration method is used to calculate Newton direction. During implementation of the iteration 
process, we perform the Newton's method as external iteration process and the SOR iterative 
method occurs for internal iteration process. Such research ideas mainly come from literature [27-
32]. It should be noted that the NSOR method used in this paper is different from the improved 
methods of other Newton methods mentioned above. This paper mainly solves the constrained 
optimization problem after transformation via the Lagrangian multiplier method, and its Hessian 
matrix is not positive definite. To test the computational efficiency of NSOR iteration, we compare it 
with the Newton-GS (NGS) iterative method, which is known as a combination of the Newton method 
and Gauss-Seidel (GS) iteration. 

Next, in Section 2, we briefly describe the formulation of the Hessian matrix, which is a non-
positive definite Newton. Then in Section 3, we give the formulation and algorithm of the NSOR 
iteration. In Section 4, we will report the numerical experimental results of the NSOR iterative 
method and the results of the NGS method iteration act as a reference. At the same time, we give 
some main conclusions in Section 5. 
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2. Methodology  
 
In this section, we briefly describe the derivation of the Hessian matrix, which is a non-positive 

definite Newton, and then construct the linear system, which is generated from calculating the 
Newton direction. Consequently, the following subsections will discuss three steps to implement the 
NSOR iterative method for solving the proposed problem in Eq. (1).  

 
2.1 Derive Newton Iterative Steps with the Full Hessian Matrix 

 
To make each iteration direction of the objective function 𝐿(𝑥) in the unconstrained optimization 

problem in Eq. (2) needs to follow the descending direction of the current point function value. 
Therefore, the Taylor series expansion is performed on the function 𝐿(𝑥) to the second order, and 
then the formulation of the Newton iteration for solving unconstrained optimization is derived as 
follows: 
 
𝐿(𝑥) ≈ 𝐿(𝑥() + ∇𝐿(𝑥()%(𝑥 − 𝑥() 	+

"
#
(𝑥 − 𝑥()%∇#𝐿(𝑥()(𝑥 − 𝑥(),                     (3) 

 
where	∇𝐿(𝑥() is the gradient vector formed by the first partial derivatives of 𝐿(𝑥), 	∇#𝐿(𝑥()=𝐻(𝑥() 
is a square matrix formed by the second partial derivative of 𝐿(𝑥). Because the problem of finding 
the extreme value of a function can be transformed into that the derivative function is equal to 0, so 
take the derivative of Eq. (3) to be 0, that is, the following equation is equal to 0: 
 
∇𝐿(𝑥() + 𝐻(𝑥()(𝑥 − 𝑥() = 0.                                                                     (4) 

 
According to Eq. (4), the following equation is established: 

 
𝑥 = 𝑥( − [𝐻(𝑥()])"∇𝐿(𝑥(),                                                                      (5) 
 
where [𝐻(𝑥()])" is the inverse matrix of the Hessian matrix 𝐻(𝑥(). Then the calculation of the 
current value of the current point,  𝑥(*"   can be obtained from Eq. (5) as follows: 
 
𝑥(*" = 𝑥( − [𝐻(𝑥()])"∇𝐿(𝑥().                                                                  (6) 

 
Therefore, Newton direction, 𝑑( is given as 

 
𝑑( = 𝑥(*" − 𝑥( = −[𝐻(𝑥()])"∇𝐿(𝑥().                                                           (7) 

 
According to Eq. (7), the following Newton equation can be obtained as 

 
𝐻(𝑥()𝑑( = −∇𝐿(𝑥().                                                                              (8) 

 
Because it is uncertain whether the Hessian matrix, 𝐻(𝑥() is positive definite or not. 

Subsequently, we need to multiply the transposed matrix [𝐻(𝑥()]+of the Hessian 𝐻(𝑥() matrix on 
both sides of Eq. (8) to ensure the positive definite of the coefficient matrix in the Newton equation 
as follows: 
 
[𝐻(𝑥()]+𝐻(𝑥()𝑑( = −[𝐻(𝑥()]+∇𝐿(𝑥() .                                                         (9) 
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Because [𝐻(𝑥()],𝐻(𝑥() is positive definite, the Newton direction is the descending direction, 
 
[∇𝑓(𝑥()]%[𝐻(𝑥()]+𝐻(𝑥()𝑑( = −[∇𝑓(𝑥()]%[𝐻(𝑥()]+∇𝐿(𝑥() < 0.                                       (10) 

 
But in this paper, we study the large-scale nonlinear inequality constrained optimization problem, 

and use the Lagrangian multiplier method to transform it into an unconstrained optimization 
problem in Eq. (2), in which 𝐿	(𝑥, 𝜆) is known as an objective function with 𝑛 +𝑚 variables. It is easy 
to see the variables from the function 𝜆 , in which the degree of is 1, so the diagonal elements of the 
Hessian matrix obtained by the Newton method must have 0 elements. Suppose the representation 
of the Hessian matrix, 𝐻( is given as follows: 
 

𝐻( =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

-!.
-/"!

-!.
-/"-/!

⋯ -!.
-/"-/#

-!.
-/"-0"

⋯ -!.
-/"-0$

-!.
-/!-/"

-!.
-/!!

⋯ -!.
-/!-/#

-!.
-/!-0"

⋯ -!.
-/!-0$

⋮ ⋮ ⬚ ⋮ ⋮ ⬚ ⋮
-!.

-/#-/"

-!.
-/#-/!

⋯ -!.
-/#!

-!.
-/#-0"

⋯ -!.
-/#-0$

-!.
-0"-/"

-!.
-0"-/!

⋯ -!.
-0"-/#

-!.
-0"!

⋮ -!.
-0"-0$

⋮ ⋮ ⬚ ⋮ ⋮ ⬚ ⋮
-!.

-0$-/"

-!.
-0$-/!

⋯ -!.
-0$-/#

-!.
-0$-0"

⋯ -!.
-0$! ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.                                                                (11) 

 
2.2 Derivation of Proposed Iterative Methods 

 
By mean of the coefficient matrix of Eq. (11) to solve Eq. (9) directly, we can also consider using 

the Gaussian elimination method [33] or simultaneous method [34]. Because of the large-scale of the 
coefficient matrix in Eq. (11), more storage space and computing time are required. For solving this 
problem, both methods will have their difficulty to deal with large-scale problems. As we know, we 
need to pay a high calculation cost to compute the value of the Newton direction by solving the 
Newton Eq. (9), which arises from first and second partial derivatives of the Lagrangian function of 
Eq. (2). Therefore, we consider improving the Newton direction, that is, using an iterative method to 
solve the Newton direction. Eq. (9) is just a linear system that can be solved by iterative methods. In 
view of these iterative methods, we consider an iterative method to solve the linear system, see 
Sulaiman et al., [27,28] and Ghazali et al., [29-31]. To gain the internal iteration solution, let us rewrite 
the linear system of Eq. (9) as follows: 
 
𝐴𝑑 = 𝑏,                                                                                                     (12) 
 
where， 
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎"," 𝑎",# ⋯ 𝑎",$ 𝑎",$*" ⋯ 𝑎",$*&
𝑎#," 𝑎#,# ⋯ 𝑎#,$ 𝑎#,$*" ⋯ 𝑎#,$*&
⋮ ⋮ ⬚ ⋮ ⋮ ⬚ ⋮
𝑎$," 𝑎$,# ⋯ 𝑎$,$ 𝑎$,$*" ⋯ 𝑎$,$*&
𝑎$*"," 𝑎$*",# ⋯ 𝑎$*",$ 𝑎$*",$*" ⋮ 𝑎$*",$*&
⋮ ⋮ ⬚ ⋮ ⋮ ⬚ ⋮

𝑎$*&," 𝑎$*&,# ⋯ 𝑎$*&,$ 𝑎$*&,$*" ⋯ 𝑎$*&,$*&⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑑 =

⎣
⎢
⎢
⎢
⎡

𝑑"
𝑑#
⋮

𝑑$*&)"
𝑑$*& ⎦

⎥
⎥
⎥
⎤

, 𝑏 =

⎣
⎢
⎢
⎢
⎡

𝑏"
𝑏#
⋮

𝑏$*&)"
𝑏$*& ⎦

⎥
⎥
⎥
⎤

, 

 
Clearly in Eq. (11), we need to solve the linear system for obtaining the approximate value of the 

Newton direction. Consequently, the following subsection will discuss the formulation of the SOR 
iterative method. 

 
2.3 SOR Point Iteration 

 
Based on the large-scale diagonal matrix 𝐻( with 0 elements, we need to use such as a coefficient 

matrix 𝐻( being considered to solve the linear system in Eq. (8). In line with testing the computational 
efficiency of NSOR iteration, we propose the SOR iterative method [30,31] to solve the linear system  
of Eq. (8). To ensure the proposed iterative method being used to solve the linear system of Eq. (8), 
in which each diagonal element of its Hessian matrix, 𝐻(𝑥() is not zero, we need to rewrite the linear 
system in Eq. (8) as: 

 
𝐻(, ∙ 𝐻(𝑑( = −𝐻(, ∙ 𝑔( . 

 
Again, let the above linear system be rewritten as 

 
𝐻𝑑 = 𝑔,                                                                                              (13) 
 
where 𝐻 = 𝐻(, ∙ 𝐻(, 𝑔 = −𝐻(, ∙ 𝑔(, 𝑑% = [𝑑", 𝑑#, 𝑑2…𝑑$], and 𝑔% = [𝑔", 𝑔#, 𝑔2, … , 𝑔$]. Before 
starting to perform any point iterative method, we need to decompose the coefficient matrix,  H  into 
the following form: 
 
𝐻 = 𝐷 − 𝐸 − 𝑈,                                                                                       (14) 
 
where 𝐷 is the non-zero diagonal part of 𝐻, L is the strictly lower triangle part, and 𝑈 is the strictly 
upper triangle part. The decomposition in Eq. (14) is applied to linear system of Eq. (13), and then 
the expression form of the SOR iterative method can be stated as [29-32]: 
 
𝑑(*" = (𝐷 − 𝜔𝐸))"(𝜔𝑈 + (1 − 𝜔)𝐷)𝑑( + 𝜔(𝐷 − 𝜔𝐸))"𝑔,                                      (15) 
 
where, 𝜔 represents the relaxation factor. Its optimal value is in the range of [0, 2), and its true value 
is selected according to the minimum number of internal iterations. 

As taking 𝜔 = 1, the SOR iterative method is naturally transformed into the GS iterative method, 
and its formulation can be given as  
 
𝑑(*" = (𝐷 − 𝐸))"𝑈𝑑( + (𝐷 − 𝐸))"𝑔.                                                           (16) 
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Therefore, we use the formulation of SOR iterative method to calculate an approximate value of 
the Newton direction of Eq. (9) by solving the linear system in Eq. (13). Clearly to solve the proposed 
problem in Eq. (1) via the NSOR iterative method, the following is Algorithm 1 that may be used to 
describe all steps to get the approximate optimal value of the Lagrangian function of Eq. (2).  

 
Algorithm 1: NSOR Scheme 
Step 1. 
 
Step 2. 
 
 
 
Step 3. 
 
 
 
 
Step 4. 
Step 5. 
Step 6. 

Assign the initial value 𝑥3 , accuracy threshold 𝜀" = 10)4，𝜀# = 10)"3 , 𝛼( = 1	and let 
k: =0. 
Calculate gradient 𝑔( 	and matrix 𝐻(. 
If ‖𝑔(‖ < 𝜀, that is, the value of the gradient at this point is close to 0, then the extreme 
point is reached, and go to Step 6,  
otherwise, go to Step 3.1. 
Step 
3.1. 
Step 
3.2. 
 
Step 
3.3. 
 

Calculate the matrix 𝐻 = 𝐻(, ∙ 𝐻(, matrix 𝐷, 𝐸, 𝑈. 
Calculate the search direction 𝑑(*" = (𝐷 − 𝜔𝐸))"(𝜔𝑈 + (1 − 𝜔)𝐷)𝑑( +
𝜔(𝐷 − 𝜔𝐸))"𝑔. 
Calculate the convergence condition, if ‖𝑑(*" − 𝑑(‖ < 𝜀#, then go to step 4, 
otherwise go to Step 3.2. 

Calculate the new iteration point as 𝑥(*" = 𝑥( + 𝛼(𝑑(. 
Let 𝑘 ≔ 𝑘 + 1, go to step 2. 
Display the numerical results 

 
3. Results  
3.1 Symbol Description 

 
We use the following symbol abbreviations as shown in Table 1. 
 

Table1   
Description of symbols used in the depicted results 

Notation Description 
n Number of variables 
M Method 

𝜔 Optimal value of 𝜔 in SOR iterative method 
NOI Number of internal iterations 
NGS Newton-GS method 
NSOR Newton-SOR method 
TM computational time (Unit: Second) 
LOP Local optimal point (𝑥%, … , 𝑥&) 
L2-g L2 Norm of Function Gradient at Termination 

of Calculation 
FOV Local optimal Value 	𝑓(𝑥) 

 
3.2 The Test Functions 

 
In this section, we have carried out the numerical experiments using Algorithm 1 and highlighted 

the observed comparison results. In Table 2, there are four test functions considered to execute the 
numerical experiment part. All four test functions are classified as nonlinear inequality constrained 
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optimization problems. Basically, each test function is selected based on the type of its Hessian 
matrix, which is known as a full Hessian matrix and not necessarily as a positive definite matrix. At 
the beginning of calculation over each test function, we use the randomly selected initial point 𝑥3 =
(1,… , 1). For the implementation of numerical experiments, we use the MATLAB software to test 
the effectiveness of the proposed NSOR and NGS iteration algorithms by considering five different 
order Hessian matrices such as n = 100, 200, 300, 400, 500. Therefore, these five different values of 
n are equivalent to providing a total of 20 test cases. Clearly, each test function has a different Hessian 
matrix. For the sake of implementing the iteration process, Algorithm 1 considered at two 
convergence tests such as the external iteration condition as ^|∇𝑓(𝑥)|^ < 10)4, and the internal 
iteration condition as ^|𝑑( − 𝑑3|^ < 10)"3 .  

 
Table 2  
Test function of numerical experiments  

Test 
No 

Test function Lagrangian function FOV LOP 

1 𝑚𝑖𝑛𝑓(𝑥) = ∑ 𝑥'(&
')%   

𝑠. 𝑡.		 ∑ −𝑥'&
')% − 𝑛	 ≤

0  

𝑚𝑖𝑛𝑃*(𝑥) = ∑ 𝑥'(&
')% +

𝜆(∑ −𝑥'&
')% − 𝑛	)  

𝑓∗
= 𝑛 

𝑥∗ = (−1,… ,−1) 

2 𝑚𝑖𝑛𝑓(𝑥) = ∑ (𝑥' −&
')%

𝑥%)(	  
𝑠. 𝑡.		 ∑ −𝑥'&

')% − 1	 ≤
0	  

𝑚𝑖𝑛𝑃*(𝑥) = ∑ (𝑥' − 𝑥%)(&
')% +

𝜆(∑ −𝑥'&
')% − 1)  

𝑓∗
= 0 

Different dimensions 𝑛 have 
different advantages 

3 𝑚𝑖𝑛	𝑓(𝑥) = ∑ (𝑥'(&
')% −

𝑥' 	)	  
𝑠. 𝑡. ∑ (𝑥'( − 1)&

')% ≤ 0  

𝑚𝑖𝑛𝑃*(𝑥) = ∑ (𝑥'(&
')% − 𝑥'	) +

𝜆(∑ (𝑥'( − 1)&
')% 	)  

𝑓∗
= 0 

𝑥∗ = (1,… ,1) 

4 𝑚𝑖𝑛𝑓(𝑥) = ∑ (𝑥' −&
')%

𝑥%)(	  
𝑠. 𝑡. ∑ (𝑥'(&

')% − 1	) ≤ 0  

𝑚𝑖𝑛𝑃*(𝑥) = ∑ (𝑥' − 𝑥%)(&
')% +

𝜆(∑ (𝑥'(&
')% − 1	)	)  

𝑓∗
= 0 

𝑥∗ = (1,… ,1) 

 
To make a comparative analysis, we performed both NGS and NSOR iterative methods and 

tabulated all numerical results in Table 3. Since the external iterations of all four test functions are 
one, we mainly considered the total computing time and internal iterations. 

 
Table 3  
Calculation Results of Newton-GS and Newton-SOR 

Test No n 𝜔 NOI TM L2-g FOV 
NGS NSOR NGS NSOR NGS NSOR NGS NSOR 

 
 
1 

100 0.250 736 199 48.25  26.29  8.20E-10 1.02E-9 100 100 
200 0.140 2674 386 440.36  255.44  1.62E-9 2.19E-9 200 200 
300 0.100 5819 573 1803.96  825.51  2.44E-9 3.19E-9 300 300 
400 0.070 10168 756 5868.83  3038.18  3.21E-9 6.51E-9 400 400 
500 0.050 15708 948 11482.07  4732.38  4.01E-9 5.13E-9 500 500 

 
 
2 

100 0.120 8225 883 387.30  56.24  4.40E-8 3.51E-8 9.02E-18 8.05E-18 
200 0.063 31900 1735 4000.81  398.59  1.44E-8 1.39E-7 4.18E-17 4.32E-17 
300 0.042 70742 2579 17488.25  1559.04  1.15E-7 1.44E-7 4.79E-17 5.29E-17 
400 0.032 124698 3414 57163.24  4033.78  1.02E-7 2.49E-7 1.89E-16 1.07E-16 
500 0.020 193499 4245 121971.22  9510.46  2.51E-7 4.39E-7 1.22E-16 2.16E-16 

 
 
3 

100 0.260 579 166 44.20  31.29  8.15E-10 1.10E-9 1.52E-19 3.04E-19 
200 0.150 1946 310 362.81  222.63  1.63E-9 2.17E-9 6.55E-19 1.18E-18 
300 0.110 4032 451 1405.12  1065.80  2.43E-9 3.09E-9 1.46E-18 2.37E-18 
400 0.070 6784 581 6254.08  2941.89  3.24E-9 4.62E-9 2.61E-18 5.33E-18 
500 0.058 10170 711 9262.85  8793.55  4.02E-9 5.67E-9 4.02E-18 8.03E-18 
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4 

100 0.160 1549 292 91.83  33.48  2.35E-8 3.25E-8 1.97E-18 3.76E-18 
200 0.080 5326 544 854.66  279.60  5.73E-9 2.52E-8 6.63E-18 3.09E-19 
300 0.070 11040 791 3028.51  1036.17  1.17E-7 6.97E-8 1.70E-17 1.34E-17 
400 0.048 18510 1012 9717.70  3240.24  1.75E7 2.41E-7 2.92E-17 5.52E-17 
500 0.040 27621 1240 26796.84  6148.74  2.51E-7 3.42E-7 4.73E-17 8.68E-17 

 
3.3 Comparison Results 

 
As we observe in Subsection 3.1, two proposed Newton iterative methods have successfully 

solved the proposed problems in Eq. (2). It means that we calculated the numerical results using the 
NGS and NSOR iteration via Algorithm 1 and all observed numerical results obtained from both 
iteration methods have been presented in Table 3. Since the number of external iterations of 
Algorithm 1 is one, only the values of internal iterations and the computing time in seconds for both 
proposed iteration methods are compared as measurement parameters. Then the function value and 
gradient norm at the end of the calculation are also shown in Table 3. For the sake of comparison, 
we reserve two decimal places for all values listed in Table 3. Therefore, the value 1 of the function 
gradient norm at the iteration where the termination is performed, is lesser than the convergence 
condition. Note that in Table 3, 20 test cases indicate that its approximate value is the optimal value 
of the problem. These values were obtained using both proposed methods. For n = 100, 200, 300, 
400, 500, we have five different optimal values of 𝜔 for the NSOR iterative method in Table 3. 
Obviously, all these optimal values are still the range of the interval, [0, 2). By taking a consideration 
for all numerical results in Table 3, we performed a comparative analysis between number of 
iterations and computing time of the NSOR iterative method compared to the NGS iterative method 
as depicted in Table 4. 
 

Table 4  
Decreasing Percentage of Iterations of Newton-SOR Relative to Newton-GS 

Test 
case 

Range of decreasing 
percentage of iterations 

Computing time 
NGS (𝐼) NSOR (𝐼𝐼) 𝐼

𝐼𝐼 

1 72.96 ~93.91 19643.47 10468.08 1.88  
2 89.26 ~97.81 201010.8 15558.11 12.92  
3 71.33 ~93.01 17329.06 13055.17 1.32  
4 81.15 ~95.51 40489.55 10738.23 3.77  

 
4. Conclusions 

 
In this article, the combination of Newton method and Successive Over-Relaxation (SOR) iterative 

method is more effective than the reference NGS iterative method in solving large-scale 
unconstrained optimization problems transformed by the Lagrange multiplier method. Based on the 
findings in Table 3, the proposed NSOR iterative method has fewer iterations and shorter calculation 
time compared with the reference method. It means that the conclusion indicates the high efficiency 
of the proposed iterative method. As we can see in Table 4, the decreasing percentages of iteration 
times and computing time of the NSOR iterative method have reduced the calculation storage when 
the iteration process used the optimal value of 𝜔. As a result, the number of internal iterations using 
the NSOR method is lesser than that using the NGS iterative method with a minimum reduction of 
71.33% and a maximum reduction of 97.35%. It means that the calculation of the NSOR iterative 
method is faster than the reference method when the over-relaxation factor 𝜔 is used. At the same 
time, in Table 4, the calculation time of the proposed iterative method is 12.92 times faster than the 
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NGS iterative method. Therefore, it can be concluded that our proposed iterative method can 
substantially improve the number of iterations and computing time compared with the reference 
method. To expand this research, the combination concept of Newton method should be imposed 
with the existing block iterative methods (see in Ghazali et al., [30,31]). 
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