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The availability of health monitoring devices that can be used independently, 
conveniently, and portably is increasing in line with busy lifestyles and the 
difficulty of scheduling medical tests. Measuring vital body signals with various 
devices makes measurements longer, less effective, and relatively more 
expensive. The proposed research can monitor vital body signals, such as heart 
rate, body temperature, respiratory rate, oxygen saturation, GSR, blood 
pressure, and snoring, which are integrated into a Raspberry Pi 4B-based 
device, with results displayed on an LCD screen. Data acquisition results show 
reasonably good accuracy in almost all parameters but require improvement 
in respiratory rate measurements. In the subsequent work, these seven-
acquisition data will be used to predict several possible diseases. 
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1. Introduction 
 

The rapid technological advancements and economic progress today have brought about changes 
in human life. These changes have made it necessary for humans to constantly compete in their lives. 
This often results in people not having enough time for routine health tests. Routine medical tests 
can provide insights into one's current health status, allowing diseases to be detected and prevented 
earlier [1]. Meanwhile, medical tests heavily rely on medical practitioners who must serve a large 
number of patients with limited automated monitoring tools. 

Therefore, the current circumstances have prompted the availability of health devices that can 
be used directly and easily but can assist individuals in monitoring their health in real-time without 
the need to always visit a doctor. 

In line with emerging needs, modern technology, as a result of the digital era and scientific 
advancements, has had a positive impact on human life. Evolving modern technology in the field of 
healthcare plays a crucial role in helping to detect and prevent diseases as well as monitor patient 
health. Various vital signs of the body need to be monitored to determine an individual's health 
condition. 

 
* Corresponding author. 
E-mail address: dhona@pcr.ac.id 
 
https://doi.org/10.37934/araset.42.1.4256 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 42, Issue 1 (2024) 42-56 

43 
 

There is a plethora of research that utilizes physiological signals of the body to assess human 
health. Gupta et al., [2] measures respiratory rate to assess human health, while Caldeira et al., [3] 
measures genital temperature in women to predict ovulation periods. Wu et al., [4] utilizes neck 
vibrations to detect obstructive sleep apnea (OSA), whereas A.K. Jayanthy et al., [5] analyse OSA using 
ECG signals. Research by Filipa et al., [6] calculates heart rate variability (HRV) estimates through PPG 
signals to detect heart abnormalities. Additionally, studies by Anusha et al., [7], Ali et al., [8], and Gita 
et al., [9] all detect electrodermal activity to identify various factors such as stress levels, hydration 
levels, and pain levels. 

Conventional physical check-ups require various different devices, performed separately and take 
longer time. Therefore, researchers have been striving to create a single device capable of measuring 
multiple parameters using multiple sensors. The challenge they face is how to create a low-cost 
wearable device that is also highly reliable and multifunctional. 

Several studies have utilized multi-sensors with various parameters to comprehensively evaluate 
human health. For example, Nosirov et al., [10] measured air quality parameters using MQ135, heart 
rate, accelerometer, air pressure, sound detection, temperature, humidity, and patient location. This 
study focused more on measuring the environmental parameters around the patient to assess their 
impact on the patient. Yu et al., [11] designed a smart armband capable of measuring temperature, 
pulse, and position parameters using a triaxial accelerometer. This armband is very lightweight, 
weighing only 42 grams. However, it only includes 2 sensors to measure physiological signals and is 
primarily focused on monitoring elderly people. 

Seulki et al., [12] designed a low-power consumption device to simultaneously measure 
electrocardiogram (ECG), bio-impedance (BioZ), photoplethysmography (PPG), galvanic skin 
response (GSR), and heart sounds. However, this research used two microcontrollers and was 
specifically designed to detect congestive heart failure. Budi et al., [13] also detected coronary heart 
disease early using parameters such as cholesterol, blood pressure, and heart rate. 

Meanwhile, Liu et al., [14] used a chest-mounted belt system to place sensors measuring ECG, 
respiration, temperature, and patient movement for monitoring, especially for elderly people. 
However, in this study, data collected by all these sensors were directly stored on a mobile device, 
limiting storage capacity. 

There are also multi-sensor research studies using commercially available boards, as seen in the 
research conducted by Norhayati Mohd et al., [15]. This study utilized an e-Health Platform and 
parameters such as temperature, pulse oximeter, and air flow for continuous human health 
monitoring. However, the product is relatively expensive and has been discontinued. 

Grochala et al., each [1] monitored daily activities using multiple parameters, including ECG, 
respiration, body temperature, barometric pressure, light intensity, and accelerometer. 
Unfortunately, this research still relies on a personal computer as the data processor, making it non-
portable. Our previous research, conducted by Madona et al., [16,17] used five physiological signal 
parameters to assess human stress levels. The parameters employed included GSR, Pulse, respiration 
rate, blood pressure, and body temperature. Aamir et al., [18] also classified human stress levels 
using electroencephalograph (EEG), GSR, and PPG parameters. All three studies primarily focused on 
using these parameters to detect stress levels. 

Upon closer examination, several studies with different disease or condition detection focuses 
actually utilize some of the same parameters. Therefore, in this research, we propose a device for 
health monitoring with various sensors for different disease detections. Our signal acquisition system 
is built using seven sensors, and the variations in future research can be employed to detect various 
conditions such as arrhythmia, OSA, and human stress levels. 
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2. Materials and Methods 
 
Figure 1 illustrates the block diagram of the proposed prototype. There are 7 parameters to be 

acquired, namely temperature, snoring, pulse, respiration, GSR (Galvanic Skin Response), oxygen 
saturation, and blood pressure.  
 

 
Fig. 1. Block Diagram of Multisensory Health Monitoring Device 

 
The relationship between the components and the Raspberry Pi is depicted in the schematic 

diagram in Figure 2. 
 

 
Fig. 2. Schematic Circuit of the Multisensory Health Monitoring Device 
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2.1 Body Temperature Monitoring using DS18B20 
 
The DS18B20 sensor, as seen in Figure 3, is a digital sensor equipped with an internal 12-bit ADC 

and is employed for monitoring body temperature. This sensor boasts exceptional accuracy. With a 
reference voltage of 5V, the smallest detectable change is 5/ (212-1)=0.0012 Volts. The DS18B20 
sensor maintains an accuracy of 0.5°C within a temperature range spanning from 10°C to +85°C. 
Communication with the DS18B20 sensor is established using the 1-Wire (One Wire) protocol, and it 
is connected to Pin GPIO4 (GPCLK0) on the Raspberry Pi. This sensor will be placed on the fold of the 
arm. 
 

 
Fig. 3. Temperature Sensor 
DS18B20 

 
2.2 Heart Rate Monitoring using Pulse Sensor 

 
A pulse sensor is used for heart rate monitoring. The pulse sensor detects heart rate by measuring 

fluctuations in the reflected LED signal, which are influenced by the density of blood flow on the skin's 
surface. The surface of the LED light reflectivity is the skin on the finger. The value of Beats Per Minute 
(BPM) can be obtained from this sensor. Since the Raspberry Pi lacks an analogue pin, the detection 
data from the sensor is then received by the Raspberry Pi via the GPIO pin, specifically by adding the 
ADS1115ADC module as an analogue to digital data converter. The information is entered into BPM. 
To obtain heart rate information the program gets the peak and the trough values. In the process of 
getting the BPM value, a threshold is given to get the BPM value from the sensor readings. The 
determination of this threshold value is based on the sensor output signal which is displayed on the 
signal plotter when the sensor detects a pulse at the fingertip. These sensors will be mounted at the 
fingertip, as depicted in Figure 4. 
 

 
Fig. 4. Pulse Sensor (left) and its placement (right) 

 
2.3 Snore Monitoring 

 
Piezo sensors are used to detect snoring while sleeping. This piezo sensor later is placed on the 

neck of humans, which is a part of the body that vibrates during sleep when snoring. The vibration of 
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the analogue signal is altered by the piezo sensor in the form of voltage. On the raspberry pi, this 
analogue signal then is converted to a digital signal. The sensor's output is the number of snoring 
occurrences per hour (SBI/Hour).  

The number of snores in one hour is calculated in the same manner as the BPM value on the pulse 
sensor. A threshold value is be determined during the data collection process to determine the 
number of snores from the ADC sensor readings. Because there is no calibrated snoring detection 
device, this threshold value is determined by comparing the sensor output signal displayed on the 
signal plotter when the sensor detects a vibration in the neck when snoring occurs with the results 
of the comparison test of the snore value calculated manually by the operator. The snore sensor will 
be positioned on the subject's neck to obtain vibration data when the subject snores, as shown in 
Figure 5. 
 

 
Fig. 5. Snore Sensor (left) and its placement (right) 

 
2.4 Respiration Rate Monitoring using Piezoelektrik  

 
Piezoelectric sensors are employed to detect respiration through the movement of the 

diaphragm. When the diaphragm expands, the piezoelectric sensor is compressed by this 
diaphragmatic movement. This compression generates voltage, which is then read by the Raspberry 
Pi. Therefore, the sensor is placed around the chest of the test subject, as depicted in Figure 6. 
 

 
Fig. 6. Respiration sensor (left) and its placement (right) 

 
2.5 GSR Monitoring 

 
The GSR or Galvanic Skin Response sensor is used to measure skin conductivity values. Testing is 

conducted by placing the GSR sensor electrodes on both fingers, ensuring that the electrodes make 
contact with the skin on the palm of the hand. The GSR sensor and its placement can be observed in 
Figure 7. 
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Fig. 7. Respiration sensor (left) and its placement (right) 

 
2.6 Oxygen Saturation using MAX30100 

 
The Max30100 is a sensor capable of measuring oxygen saturation in the body. In arterial blood 

vessels, oxygen saturation is defined as the ratio of HbO2 (Oxyhaemoglobin) to Hb 
(deoxyhaemoglobin). HbO2 (Oxyhaemoglobin) is haemoglobin that is fully bound to oxygen. To 
measure oxygen levels in the blood, an oximeter operates by exploiting the natural pulsation of blood 
flow in the arteries and the properties of haemoglobin’s ability to absorb light. In this process, 
infrared light is absorbed more by oxygen-rich haemoglobin, while red light is absorbed by 
haemoglobin lacking oxygen. The values detected are then used to determine the amount of oxygen 
in the blood. The placement of this sensor is at the fingertip, as shown in Figure 8. 
 

 
Fig. 8. MAX30100 Module (left) and its placement (right) 

 
2.7 Blood Pressure using MPX5050DP 

  
The blood pressure acquisition device comprises several components, namely the MPX5050DP 

sensor as the pressure sensor, a motor pump to inflate the cuff with air, a solenoid valve to regulate 
the release of air from the cuff, and the cuff itself, which is placed on the upper arm of the test subject 
to obtain blood pressure data. The MPX5050DP sensor and the cuff used can be seen in Figure 9. 
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Fig. 9. MPX5050DP Pressure Sensor (left) and handcuff (right) 

 
3. Results and Discussion 

 
Figure 10 depicts the Raspberry Pi-based multisensory health monitoring prototype with the 

sensors employed. These sensors will be simultaneously attached and their data collected from the 
test subject. 
 

 
Fig. 10. Prototype Proposed System 

 
3.1 Pulse Sensor Test  

 
The pulse sensor measures heart rate using signal fluctuations caused by blood flow. This sensor 

is located at the fingertips. The pulse sensor test's accuracy in producing Beat Per Minute (BPM) 
variables is determined by comparing the sensor's results with heart rate measurements on the 
OMRON sphygmomanometer, as shown in Figure 11.  
 

 
Fig. 11. Pulse Sensor Test and validation using OMRON sphygmomanometer (left) 
and Output Signal on Pulse Sensor (right) 
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The resulting signal is shown in Figure 12. Pulse sensor testing was performed on eight test 
subjects, each of whom was tested three times. 
 

 
Fig. 12 Comparison of Pulse Sensor Output with OMRON sphygmomanometer 

 
Table 1 shows the results of testing the accuracy of heart rate measurements using the Pulse 

sensor compared to the OMRON sphygmomanometer. 
 

Table 1 
Heart Rate Test Results Accuracy 

Subject BPM  
(Sensor Pulse) BPM (Omron) % Error 

1 
80 78 2.50 
80 79 1.25 
72 71 1.39 

2 
78 80 2.56 
79 78 1.27 
63 65 3.17 

3 
68 69 1.47 
65 66 1.54 
77 74 3.90 

4 
89 92 3.37 
88 87 1.14 
68 70 2.94 

5 
70 75 7.14 
73 75 2.74 
68 70 2.94 

6 
90 88 2.22 
93 89 4.30 
70 74 5.71 

7 
65 69 6.15 
66 69 4.55 
69 72 4.35 

8 
73 72 1.37 
72 70 2.78 
72 71 1.39 

ERROR RATE 1.05 
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The smallest error percentage is 0%, and the largest error percentage is 6.15%, according to the 
results of heart rate testing with a total of 8 test subjects in Table 3. Errors can occur due to noise 
during the recording of the heart signal as well as an incorrect position of the sensor on the fingertip. 
The average error rate produced is 1.05%. Figure 6 Illustrates a comparison of data from the pulse 
sensor output and the results of the OMRON sphygmomanometer measurement. 

 
3.2 Temperature Sensor Test 

 
The DS18B20 temperature sensor data is retrieved continuously for 60 seconds. The reading 

results then be displayed on the LCD display in degrees Celsius (oC). Temperature sensor testing was 
performed on eight subjects, each of whom was tested three times. The sensor readings are 
compared to those of a calibrated digital thermometer. 

Table 2 is the result of the body temperature detection test using the DS18B20 temperature 
sensor and compared with a digital thermometer. As shown in Table 2, the comparison of the 
DS18B20 temperature sensor reading with a digital thermometer has the smallest error of 0.1% and 
the largest error percentage of 2.7%, with the average error of all data collection being 0.259%.  
 

Table 2 
Heart Rate Test Results Accuracy 

Subject Temperature  
(Sensor) 

Temperature  
(Thermometer) % Error 

1 
33.53 33.6 0.2083 
34.32 33.9 1.2389 
34.16 34.3 0.4082 

2 
34.29 34.8 1.4655 
35.82 35.2 1.7614 
35.43 35.3 0.3683 

3 
34.20 35.1 2.5641 
35.20 35.4 0.5650 
34.50 34.2 0.8772 

4 
35.88 35.9 0.0557 
34.42 34.4 0.0581 
35.40 35.2 0.5682 

5 
35.56 35.6 0.1124 
35.32 35.2 0.3409 
35.71 35.8 0.2514 

6 
35.33 34.4 2.7035 
36.14 36.1 0.1108 
34.94 35.3 1.0198 

7 
36.12 35.6 1.4607 
34.52 34.56 0.1157 
36.40 35.7 1.9608 

8 
36.21 36.3 0.2479 
36.28 35.8 1.3408 
36.36 36.2 0.4420 

 ERROR RATE  0.259 
 

Figure 13 illustrates a graph comparing the sensor's output temperature data to that of a 
calibrated digital thermometer. 
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Fig. 13. Hand installation of the Temperature 
Sensor and direct comparison with a digital 
thermometer 

 
3.3 Snore Sensor Test 

 
The snore sensor test was performed on five subjects, with each subject collecting data only once. 

Piezo sensors are very sensitive, so when the sensor's surface is touched, it produces a small voltage 
that can be seen on the Piezo sensor detection signal plot. A piezo sensor is used in this tool to detect 
the number of snoring episodes that occur in patients in one hour. When the sensor detects snoring, 
it generates analogue data in the form of voltage, which is then converted into digital data using an 
ADC converter. Figure 14 illustrates the snoring sensor output signal. 
 

 
Fig. 14. Output signal of the snore sensor 
with the red line as the threshold value 

 
The accuracy obtained by comparing sensor snoring calculations to manual calculations is shown 

in Table 3.  
Table 3 shows that the smallest percentage error is 6.48%, while the largest percentage error is 

11.11%. The overall data collection error rate is 9.22%. There are several possible causes for the 
device detecting more snoring than was manually calculated, including the occurrence of neck 
movement and swallowing activity during data collection, which causes additional vibrations to be 
detected by the sensor and exceed the specified threshold, causing the sensor to be considered 
snoring. To improve the accuracy of snoring data collection, better sensors, as well as determining 
the threshold and separation between snoring and non-snoring, are required. 
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Table 3 
Snoring Sensor Test Results 

Subject Snore 
(Sensor) 

Snore 
 (Manual) %Error 

A 113 102 10.78 
B 110 99 11.11 
C 115 108 6.48 
D 110 103 6.80 
E 122 110 10.91 
 ERROR RATE  9.22 

 
3.4 Oxygen Saturation Test 
 

Figure 15 represents the data readings from the MAX30100 sensor used and then compared with 
a calibrated commercial device. 
 

 
Fig. 15. Oxygen saturation testing (left) and its validation using a 
commercial oximeter (right) 

 
The test results data is presented in Table 4. It is observed that after conducting 10 

measurements, an average error percentage of 2.06% was obtained. 
 

Table 4 
Oxygen Saturation Test Results 

NO. Subject 
SENSOR MAX30100 

ERROR (%) MAX30100 Commercial 
SPO2 SPO2 

1 1 100 99 1.01% 
2 99 97 2.06% 
3 2 98 97 1.03% 
4 92 94 2.13% 
5 3 100 97 3.09% 
6 95 97 2.06% 
7 4 100 98 2.04% 
8 96 99 3.03% 
9 5 100 97 3.09% 
10 97 98 1.02% 
                                    Mean Error 2.06% 
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3.5 Respiration Rate Test 
 
The output signal from the respiration sensor is visible in Figure 16.  

 

 
Fig. 16. Respiratory Sensor Signal 

 
The results of the measurement of respiratory frequency in one minute using the piezoelectric 

sensor and manual calculation are shown in Table 5. It can be seen that the average error percentage 
from 5 tests is 7.00%. The error occurs due to the presence of noise that arises when the subject is 
moving or speaking. 
 

Table 5 
Respiration Rate Test Results 

No Respiration 
Sensor Repiration with manual calculation Error (%) 

1 13 14 7.14 
2 16 16 0.00 
3 15 13 15.38 
4 20 21 4.76 
5 12 13 7.69 
Mean Error (%) 7.00 

 
3.6 GSR Test 

 
The GSR or Galvanic Skin Response sensor is used to measure skin conductance values. Testing is 

conducted by attaching GSR sensor electrodes to both fingers, ensuring that the electrodes make 
contact with the skin on the palm of the hand. GSR measurement is done by comparing the sensor 
output results in ohms with theoretical skin resistance calculations in ohms, as shown in Table 6. The 
testing was performed on 4 subjects and repeated for data collection 3 times. The average error 
obtained from the testing is 0.54%. 
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Table 6 
GSR Test Results and their comparison with theoretical 
calculations 

Subject ADC Value Skin Resistance  
with Sensor (Ω)  

Skin Resistance  
with theoretical  
calculations (Ω) 

Error (%) 

1 313 83644 82914.57 0.88 
289 72506.86 71838.56 0.93 
319 86352.92 85567.01 0.92 

2 321 87684.84 87225.13 0.53 
333 94922.05 94413.4 0.54 
343 101626.86 101183.43 0.44 

3 430 230153.39 229756.09 0.17 
430 230153.39 229756.09 0.17 
428 226060.84 223809.52 1.01 

4 395 156905.06 155042.73 1.20 
400 164054.34 162857.14 0.74 
388 145306.02 145161.29 0.10 

Mean Error 0.54 
 
3.7 Blood Pressure Test 

 
The blood pressure detection circuit consists of the MPX5050dp sensor and a signal conditioning 

circuit. The MPX5050dp sensor is responsible for acquiring the measured blood pressure data. Blood 
pressure is the result of blood circulation in the human body. Blood pressure reaches its maximum 
when the heart contracts to pump blood, known as systolic pressure. When the heart is at rest 
between two contractions, blood pressure reaches its minimum value, known as diastolic pressure. 
By applying an air-filled cuff to the arm and inflating it to a certain pressure, the pressure sensor 
receives pressure signals from the cuff, which are then interpreted as systolic or diastolic pressure 
through the Raspberry Pi 4B.  

Blood pressure measurement tests were conducted on 9 subjects. The measurement results will 
be compared simultaneously with the results from the commercial OMRON device. The comparison 
of blood pressure readings between the MPX5050dp sensor and Omron is shown in Table 7, where 
it can be seen that the average error percentage from 9 tests is 6.63% for systolic readings and 5.53% 
for diastolic readings. 
 

Table 7 
The results of blood pressure testing using the device and the commercial 
OMRON device 

NO. Blood Pressure (MPX550DP) Blood Pressure Omron Error (%) 
Systolic Diastolic Systolic Diastolic Systolic Diastolic 

1 120 76 126 79 4.76 3.80 
2 128 81 128 80 0.00 1.25 
3 126 80 125 82 0.80 2.44 
4 119 76 127 78 6.30 2.56 
5 136 87 121 78 12.40 11.54 
6 119 76 106 75 12.26 1.33 
7 142 84 137 84 3.65 0.00 
8 115 71 127 84 9.45 15.48 
9 125 74 139 82 10.07 9.76 
Average Systolic Error 6.63 
Average Diastolic Error 5.35 
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4. Conclusion 
 
In this study, seven body signals were monitored with high accuracy, including BPM, body 

temperature, GSR, blood pressure and oxygen saturation. However, improvements in measuring the 
amount of snoring and respiration rate are still required. In future work, the already developed 
wearable sensor will be integrated with data processing using artificial intelligence to become a 
wearable telemedical health monitoring system capable of predicting various diseases. 
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