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This study introduces a mathematical model aimed at investigating the intricate 
dynamics of infectious diseases, incorporating vaccination and quarantine 
interventions. The model comprises a system of ordinary differential equations that 
delineate interactions among susceptible, infected, and recovered individuals, 
alongside the impacts of vaccination and quarantine measures. The disease 
transmission rate is contingent on the count of infected, asymptomatic, and 
quarantined individuals. The model undergoes a comprehensive analysis to ascertain 
pivotal equilibrium points—disease-free and endemic. Additionally, the stability of 
these equilibria is rigorously examined to discern their resilience in the presence of 
interventions. Furthermore, the model serves as a strategic tool for crafting effective 
disease control strategies. The study underscores the potential potency of synergistic 
vaccination and quarantine interventions by minimising infection rates. Employing 
sophisticated numerical optimization techniques, the study tackles the equations' 
complexity. The findings underscore the substantive impact of coordinated vaccination 
and quarantine strategies in curtailing disease spread. These insights furnish 
policymakers and health authorities with empirically grounded methodologies to 
formulate robust responses to infections such as hand, foot, and mouth diseases. 
Ultimately, this research contributes to the armamentarium of tools that empower the 
formulation of effective strategies to safeguard public health. 

 
 
 
 
 
 
 
 
 
 
Keywords: 

HFMD; Transmission rate; Reproduction 
number; Vaccination; Quarantine 

 
1. Introduction 
 

Hand, foot, and mouth disease (HFMD) is a viral illness that primarily affects young children. It 
is caused by a group of viruses known as enteroviruses, most commonly the coxsackievirus A16 and 
enterovirus 71. The disease is typically characterized by a fever, sore throat, and painful sores or 
blisters on the hands, feet, and mouth, sometimes on the buttocks. It is highly contagious and can 
spread quickly among children in daycare or school settings [1,2]. The first known outbreak of HFMD 
occurred in Toronto, Canada in 1957. Since then, numerous outbreaks have been reported 
worldwide. Several studies have been conducted to understand the epidemiology, clinical features, 
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and management of HFMD [3,4]. A study conducted in Singapore found that enterovirus 71 was 
responsible for more severe cases of HMFD, with a higher risk of neurological complications such as 
meningitis and encephalitis. Another study [5] in China found that the incidence of HMFD was 
highest in children under the age of five and that outbreaks were more common during the summer 
and fall months. There is currently no specific antiviral treatment for HMFD. Prevention measures 
include good hand hygiene and avoiding close contact with infected individuals. overall HFMD 
remains an important public health concern, particularly in countries with high population 
densities and limited healthcare resources. Continued research into epidemiology and 
management is needed to reduce the burden of this disease on children and their families. The 
outbreak of HFMD typically occurs in the summer and fall months [6,7]. During epidemics of 
HFMD, it is recommended that patients be either hospitalized or quarantined at home, as the 
virus can spread rapidly through various modes of transmission, including aerosols, ingestion, 
and contact with contaminated objects [8]. This precaution is taken to minimize direct contact 
with infected individuals. HFMD has also created significant social and economic challenges, 
leading to the closure of schools and other public places and disruptions to parents’ work and 
childcare arrangements. While efforts are made to encourage parents to keep their children 
away from public areas during outbreaks, additional societal and economic issues arise during 
disease outbreaks, which are difficult to quantify [9].  

Mathematical models have been extensively used to study the transmission dynamics of 
infectious diseases, and have been instrumental in the development of control strategies. 
Various models have been developed, ranging from simple compartmental models to more 
complex individual-based models.   

The SIR (Susceptible-Infected-Recovered) model is one of the most well-known and widely 
used models for infectious disease transmission. In recent years, several studies have 
incorporated the effects of vaccination and quarantine into infectious disease models. 
Vaccination is a highly effective intervention in reducing the spread of infectious diseases and 
has been widely used in controlling outbreaks. Quarantine, on the other hand, has been used to 
restrict the movement of individuals who have been exposed to an infectious disease, to prevent 
further transmission [9]. 

Another study by Gerardo et al., [10] investigated the effectiveness of quarantine in 
controlling the spread of Ebola virus disease in West Africa. The study found that the 
implementation of quarantine was an effective intervention in reducing the number of cases. 

In summary, the incorporation of vaccination and quarantine into infectious disease models 
has become increasingly important in the development of effective control strategies. In this 
work, we present a mathematical model for the transmission dynamics of a hypothetical 
infectious disease (HFMD), which includes the effects of vaccination and quarantine, to derive 
the model equations and analyse the properties of the model, to study the impact of 
vaccination, quarantine interventions and trend of the infection on disease transmission 
dynamics. 

The organization of this work is as follows:  
 

i. Chapter 1 provides an introduction to the study of infectious disease transmission 
dynamics and the use of mathematical models in disease control.  

ii. Chapter 2 presents the model diagram and equations for the transmission dynamics of an 
infectious disease with vaccination and quarantine interventions. The properties of the 
model are analysed, and the endemic equilibrium is derived.  
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iii. Chapter 3 discusses the mathematical model analysis, the reproduction number and the 
local stability of the disease-free equilibrium of the model.  

iv. Chapter 4 presents the global stability of disease-free equilibrium, endemic equilibrium 
point, estimation of the model parameters using data fitting, bifurcation analysis of the 
model and showing the impact of vaccination and quarantine interventions on disease 
transmission dynamics.  

v. Chapter 5 summarizes the main findings of the study and provides recommendations for 
future research.  

 
2. Methodology  

 
HFMD is a viral infection that primarily affects young infants, making them more vulnerable to 

the disease. This puts them at risk of spreading the virus quickly, potentially leading to a widespread 
outbreak. The disease is most contagious within the first week of symptoms appearing, and initial 
symptoms include fever, sore throat, reduced appetite, and malaise. Within a short time, the person 
affected will develop painful blisters in the mouth and on the hands, feet, and other areas of the 
body [11,12]. These blisters eventually break and form ulcers. Once the fever and rash subside, the 
patient is considered to have clinically recovered from HFMD. 

 
2.1 Introduction 

 
In an attempt to stop the spread of HFMD, the SIR concept was explored in Sarawak [12]. 

However, the model only showed good accuracy when real data was pushed one week ahead, 
making it difficult to convincingly demonstrate its ability to forecast the actual infectious behaviour. 
To improve prediction accuracy, a new mathematical model called SVEQIAR was developed by 
including compartments for the vaccinated group, quarantine, and the asymptomatic group. 
MATLAB simulations were used to compare the new model with the earlier SEIPR model. The study 
aimed to describe the disease’s quantitative behaviour by incorporating the vaccinated, 
asymptomatic, and quarantine groups in the model. This model of compartments is displayed. The 
parameters are: 

 
i. Susceptible (S): Individuals who are not infected with HFMD and are susceptible to the 

virus. 
ii. Exposed (E): Individuals who have been exposed to the virus and are in the latent period 

of infection during which they are infected but not yet infectious themselves. 
iii. Infected (I): Individuals who have been infected with the virus and are infectious and 

display symptoms. 
iv. Quarantine (Q): Individuals who have been quarantined with the virus and are 

experiencing severe symptoms such as meningitis, encephalitis or acute flaccid paralysis. 
v. Asymptomatic (A): Individuals who have been infected with the virus, were asymptomatic 

and have recovered from the infection. 
vi. Vaccinated (V) is the number of individuals who have been vaccinated against the disease. 

vii. 𝛼	 Natural birth rate. 
viii. μ: Natural death rate. 

ix. 𝜃: Proportion of individuals that move from exposure to infectious. 
x. 𝜔: Rate of vaccine coverage at which a clinically recovered individual fully recovers per 

unit of time. 
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xi. 𝛾: Proportion of infected individuals that are clinically recovered. 
xii. 𝜋: Rate at which a recovered individual loses its immunity. 

xiii. 𝛿: Death rate caused by the disease. 
xiv. 𝛽: Transmission rate of the disease. 
xv. 𝜏: Scaling factor of the vaccine efficacy. 

xvi. 𝐷!: Modification parameter associated with asymptomatic individuals. 
xvii. 𝐷": Modification parameter associated with quarantined individuals. 

xviii. 𝐾: Rate at which infected individuals recover. 
xix. 𝜀: Rate at which quarantined individuals recover. 
 
The diagram presented (Figure 1) along with the subsequent set of differential equations 

illustrate how individuals transition between various compartments. 
 

 
Fig. 1. Flow of Individual Between Compartment 

 
#$
#%
	= 	𝛼	 + 	𝜋𝑅	 −	(𝜆	 + 	𝜔	 + 	𝜇)𝑆	 = 	𝑓₁           (1) 

 
#&
#%
= 	𝜔𝑆	 −	((1	 − 	𝜏)𝜆	 + 	𝜇)𝑉	 = 	𝑓₂           (2) 

 
#'
#%
	= 	𝜆𝑆	 +	(1	 − 	𝜏)𝜆𝑉	 −	(𝜎	 + 	𝜇)𝐸	 = 	𝑓₃          (3) 

 
#(
#%
	= 	𝜃𝜎𝐸	 −	(𝐾	 + 	𝜔	 + 	𝛿	 + 	𝜇)𝐼	 = 	𝑓₄          (4) 

 
#)
#%
	= 	 (1	 − 	𝜃)𝜎𝐸	 −	(𝛾	 + 	𝛿	 + 	𝜇)𝐴	 = 	𝑓₅          (5) 

 
#*
#%
	= 	𝜔𝐼	 −	(𝜀	 + 	𝛿	 + 	𝜇)𝑄	 = 	𝑓₆           (6) 

 
#+
#%
	= 	𝐾𝐼	 + 	𝛾𝐴	 + 	𝜀𝑄	 −	(𝜋	 + 	𝜇)𝑅	 = 	𝑓₇         (7) 
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2.2 Mathematical Model Analysis 
2.2.1 Disease-free equilibrium 

 
At the disease-free equilibrium (DFE), when 𝐸 = 𝐼 = 𝐴 = 𝑄 = 0, it follows that 𝑅 = 0. The 

equilibrium values are given by: 
 
𝑆∗ =	 -

(/	1	2)
	             (8) 

 
𝑉∗ =	 -/

(2(/	1	2))
	            (9) 

 
The equilibrium state is: 
          

(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗, 𝑅∗) = G -
(/	1	2)

, -/
42(/	1	2)5

, 0, 0, 0, 0, 0H                (10) 

 
2.3 Reproduction Number 

 
Let  

 
𝜆	 = 	𝛽(𝐼	 + 	𝐷₁𝐴 + 𝐷₂𝑄).                                (11) 

 
The column vector of the infected class of Eq. (3) to Eq. (6) is given as: 
 

𝐹	 = 	 [𝛽(𝐼	 +	𝐷!𝐴	 +	𝐷"𝑄)𝑆	 +	(1	 − 	𝜏)𝛽(𝐼	 +	𝐷!𝐴	 +	𝐷"𝑄)𝑉, 0, 0, 0]ᵀ              (12) 
 
Differentiating 𝐹 partially with respect to 𝐸, 𝐼, 𝐴, 𝑄 
 

N

0 𝛽(𝑆 + (1 − 𝜏)𝑉) 𝐷!𝛽(𝑆 + (1 − 𝜏))𝑉 𝐷"𝛽(𝑆 + (1 − 𝜏))𝑉
0 0 0 0
0 0 0 0
0 0 0 0

O              (13) 

 

∇𝐹 =

⎝

⎜
⎛
0 6-(21(!78)/)

2(/12)
69!-(21(!78)/)

2(/12)
69"-(21(!78)/)

2(/12)
0 0 0 0
0 0 0 0
0 0 0 0 ⎠

⎟
⎞

                (14) 

 
Let 𝐴! =

6-(21(!78)/)
2(/12)

, 𝐴" =
69!-(21(!78)/)

2(/12)
 and  𝐴: =

69"-(21(!78)/)
2(/12)

 

Also, from the infected model equation, we have  
 

𝑣 = N

(𝛿 + 𝜇)𝐸
(𝐾 + Λ + 𝛿 + 𝜇)𝐼 − 𝜃𝜎𝐸
(𝛾 + 𝛿 + 𝜇)𝐴 − (1 − 𝜃)𝜎𝐸

(𝜖 + 𝛿 + 𝜇)𝑄 − Λ𝐼

O                    (15) 
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∇𝑣 = N

(𝛿 + 𝜇) 0 0 0
−𝜃𝜎 (𝐾 + Λ + 𝛿 + 𝜇) 0 0

−(1 − 𝜃)𝜎 0 (𝛾 + 𝛿 + 𝜇) 0
0 −Λ 0 (𝜖 + 𝛿 + 𝜇)

O                 (16) 

 
We obtained the eigen values from the matrix’s relation |𝐹 ∗ ∇𝑣 − 𝜆𝐼| = 0, we have 

𝜆! = 𝜆" = 𝜆: = 0 and 𝜆; =The Reproduction Number, obtained as 
 
𝑅< =	

9#
(2	(/	1	2)(=	1	2)(>	1	/	1	?	1	2)(@	1	?	1	2)(A	1	?	1	2))

                   (17) 

 
where 
 
𝐷<			 	= 			𝛽	𝛼	𝜎	(𝜇	 +	(1	 − 	𝜏)	𝜔) 	∗ 	 (	(𝜃	(𝛾	 + 	𝛿	 + 	𝜇)) 	∗ 	 (𝐷"	𝜔	 + 	𝜀	 + 	𝛿	 + 	𝜇) 	+	𝐷!	(1	 −
	𝜃)	(𝐾	 + 	𝜔	 + 	𝛿	 + 	𝜇)	(𝜀	 + 	𝛿	 + 	𝜇))                    (18) 

 
2.4 Local Stability of Disease-Free Equilibrium 

 
In mathematical modelling, local stability refers to the behaviour of a system in the vicinity 

of an equilibrium point. An equilibrium point is a point where the values of the variables do not 
change over time. Local stability analysis is important in determining the behaviour of a system 
in the long term. 

To determine the local stability of the system, we need to linearize the system about an 
equilibrium point and examine the eigenvalues of the resulting Jacobian matrix. Let 
(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗, 𝑅∗) be an equilibrium point of the system, i.e., a point where all the 
derivatives are zero. We then compute the Jacobian matrix 𝐽 at this equilibrium point by 
computing the partial derivatives of each equation with respect to each variable and evaluating 
them at (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗, 𝑅∗) 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−(𝜔 + 𝜇) 0 0 76-

(/12)
769!-
(/12)

769"-
(/12)

𝜋

𝜔 −𝜇 0 76(!78)-/
2(/12)

769!(!78)-/
2(/12)

769"(!78)-/
2(/12)

0

0 0 −(𝜎 + 𝜇) 6-(21(!78)/)
2(/12)

6-9!(21(!78)/)
2(/12)

6-9"(21(!78)/)
2(/12)

0

0 0 𝜃𝜎 −(𝐾 + Λ + 𝛿 + 𝜇) 0 0 0
0 0 (1 − 𝜃)𝜎 0 −(𝛾 + 𝛿 + 𝜇) 0 0
0 0 0 Λ 0 −(𝜖 + 𝛿 + 𝜇) 0
0 0 0 𝐾 𝛾 𝜖 −(𝜋 + 𝜇)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝐶! 0 0 −𝐶; −𝐶B −𝐶!" 𝜋
𝜔 −𝜇 0 −𝐶C −𝐶D −𝐶!: 0
0 0 −𝐶" 𝐶E 𝐶!< 𝐶!; 0
0 0 𝜃𝜎 −𝐶F 0 0 0
0 0 𝐶: 0 −𝐶!! 0 0
0 0 0 Λ 0 −𝐶!C 0
0 0 0 𝐾 𝛾 𝜖 −𝐶!E⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                                                     (19)            
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Then, we calculate the characteristic equation of the Jacobian matrix: |𝐽 − 𝜆𝐼| = 0 and obtained 
the following values of 𝜆 
 
𝜆! = 𝐶!! = (𝛾 + 𝛿 + 𝜇), 𝜆" = −𝐶!E = (𝜋 + 𝜇), 𝜆" = 	𝜇 and 
	𝜆; +	(𝐶" 	+ 	𝐶F 	+ 	𝐶!! 	+ 	𝐶!C)𝜆: +	d𝐶"	𝐶F 	+ 	𝐶"	𝐶!! 	+ 	𝐶"	𝐶!C 	− 	𝐶:	𝐶!< 	+ 	𝐶F	𝐶!! 	+
	𝐶F	𝐶!C 	+ 	𝐶!!	𝐶!C 	− 	(𝜃	𝜎	𝐶E 	+ 	𝐶:	𝐶!<)e𝜆" +	d𝐶"𝐶!!𝐶F 	+ 	𝐶"𝐶F𝐶!C 	+ 	𝐶"𝐶!!𝐶!C 	+
	𝐶F𝐶!!𝐶!C 	− 	 (𝜃	𝜎	𝐶!; 		+ 	𝜃	𝜎	𝐶E	𝐶!! 	+ 	𝜃	𝜎	𝐶E	𝐶!C 	+ 𝐶:𝐶!<𝐶!< 	+ 	𝐶:𝐶!<𝐶!C)e𝜆	 −
	(𝜃	𝜎	𝐶!;𝐶!! 	+ 	𝜃	𝜎	𝐶E𝐶!!𝐶!C 	+ 	𝐶:𝐶F𝐶!<𝐶!C) = 	0    

 
The above equation can be started as 

 
𝑏;𝜆; + 𝑏:𝜆: + 𝑏"𝜆" + 𝑏!𝜆 + 𝑏< = 0                                           (20) 

 
We use Routh-Hurwitz criterion [13] which stipulate that all polynomial roots have a negative 

real component if and only if the coefficients  𝑎G  are positive and the determinant of the matrices  
𝐻G > 0 for 𝑖 = 0,1,2,3,4  thus, 

 
𝐻! = 1 = 𝑏! + 𝑏" + 𝑏: + 𝑏; > 0                               (21) 

 

𝐻" = n𝑏: 𝑏!
1 𝑏"

o = 𝑏:𝑏" − 𝑏! > 0	𝑖𝑓𝑓	𝑏:𝑏" > 𝑏!	                              (22) 

 

𝐻: = p
𝑏: 𝑏! 0
1 𝑏" 𝑏<
0 𝑏: 𝑏!

q = 𝑏: n
𝑏" 𝑏<
𝑏: 𝑏!

o − 𝑏! n
1 𝑏<
0 𝑏!

o = 𝑏:(𝑏!𝑏" − 𝑏<𝑏:) − 𝑏!"  

    
𝐻: = 𝑏!𝑏"𝑏: − (𝑏<𝑏:" + 𝑏!") > 0	𝑖𝑓𝑓	𝑏!𝑏"𝑏: > 𝑏<𝑏:" + 𝑏!"                (23) 

 

𝐻; = r

𝑏: 𝑏! 0 0
1 𝑏" 𝑏< 0
0 𝑏: 𝑏! 0
0 1 𝑏" 𝑏<

s = 𝑏:[𝑏<𝑏!𝑏" − 𝑏:𝑏<"] − 𝑏!(𝑏<𝑏!)  

 
= 𝑏<𝑏!𝑏"𝑏: − (𝑏<𝑏!" + 𝑏<"𝑏:") > 0	𝑖𝑓𝑓	𝑏<𝑏!𝑏"𝑏: > (𝑏<𝑏!" + 𝑏<"𝑏:")                                         (24) 

 
Therefore, all the eigen values of the polynomial have negative real parts, implying that 𝜆G < 0,  

for 𝑖 = 1,2,3,4 when 𝑅< < 1, we conclude that the disease-free equilibrium point is locally 
asymptotically stable.  

 
2.5 Global Stability of the Disease-Free Equilibrium 

 
Using the Castilo-Chavez conditions in [14], we examine the global asymptotic stability of the 

disease-free equilibrium for the model Eq. (1) to Eq. (7). 
Lemma 1: Consider a sample system that takes the form  
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#H
#%
= 𝐹(𝑋, 𝑌)													

#I
#%
= 𝐺(𝑋, 𝑌), (𝑋, 0)

x                                                (25) 

 
Where 𝑋	 = 	 {𝑆, 𝑉, 𝑅} and 𝑌	 = 	 {𝐸, 𝐼, 𝐴, 𝑄} with the components 𝑋 ∈ 𝑅: signifying the 

population that is unaffected and the population 𝑌 ∈ 𝑅; that is sick. The current notation for 
the disease-free state is 𝐸< 	= 	 (𝑋∗, 0), where 𝑋∗ = 𝛼/(𝜔 + 𝜇), 𝛼𝜔/d𝜇(𝜔 + 𝜇)e.  

To ensure worldwide asymptotic stability, the following requirements must be met. Suppose 
that, 

𝐻!: 𝑑𝑋/𝑑𝑡	 = 	𝐹(𝑋∗, 0), 𝑋∗ is globally asymptotically stable; 
𝐻":	𝐺(𝑋, 𝑌) 	= 	𝑃	𝑌	 − 	𝐺(𝑋, 𝑌), 𝐺(𝑋, 𝑌) 	≥ 	0	 for (𝑋, 𝑌) 	∈ 	𝛤 
Where 𝑃 = 𝐷J𝐺(𝑋∗, 0) is an N-matrix (the off-diagonal elements of 𝑃 are non-negative) and 

𝛤 the area where the concepts make biological sense. If so then 𝐸<, is guaranteed to be globally 
asymptotically steady provided that 𝑅< < 1 (Castillo-Chavez et al.,). 

Theorem 1: 
The model Eq. (1) to Eq. (7) at the point (𝑋∗, 0) is globally asymptotically stable provided 

that 𝑅< < 1 and  𝐻!, 𝐻" hold. 
Proof 
We need to show that the conditions 𝐻! and 𝐻" hold when 𝑅< < 1. From our model Eq. (1) 

to Eq. (7) we have, for the group that is not infected 
 

𝐹(𝑋, 0) = �
𝛼 + 𝜋 − (𝜆 + 𝜔 + 𝜇)𝑆

𝜔𝑆 − 𝜆(1 − 𝜏𝜇)
𝐾𝐼 + 𝛾𝐴 + 𝜖𝑄 − (𝜋 + 𝜇)𝑅

�                                 (26) 

 
therefore 𝑋∗ = � -

/12
, -/
2(/12)

, 0� is asymptotically steady across the board. This can be 

demonstrated below, 
 

𝑆(𝑡) = � -
/12

+	�𝑆(0) − /
(/12)

� 𝑒𝑥𝑝7(/12)%�  

𝑉(𝑡) = � -/
2(/12)

+	�𝑉(0) − -/
2(/12)

� 𝑒𝑥𝑝7(/12)%�                    (27) 

 
𝑅(𝑡) = 𝑅(0)𝑒𝑥𝑝72%  

 
As 𝑡 → ∞, 𝑆 → -

/12
, 𝑉 → -/

2(/12)
, 𝑅 → 0 

 
Hence 𝑥∗ convergence is global in Ω. Therefore  � -

/12
, -/
2(/12)

, 0� is globally asymptotically 

stable and satisfied 𝐻! 
The second condition of the theorem 𝐺(𝑋, 𝑌) 	= 	𝑃	𝑌	 − 	𝐺(𝑋, 𝑌), 𝐺(𝑋, 𝑌) 	≥ 	0	, where 𝑝 is 

an 𝑚 ×𝑚  matrix, 𝑌 is a column vector formed from the infectious classes. Recalled 
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𝐺(𝑋, 𝑌) = r

𝜆𝑆 + (1 − 𝜏)𝜆𝑉 − (𝜎 + 𝜇)𝐸
𝜃𝜎𝐸 − (𝐾 +∧ +𝛿 + 𝜇)𝐼

(1 − 𝜃)𝜎𝐸 − (𝛾 + 𝛿 + 𝜇)𝐴
∧ 𝐼 − (𝜖 + 𝛿 + 𝜇)𝑄

s , 𝑌 = r

𝐸
𝐼
𝐴
𝑄

s and  

𝑃 = r

−(𝜎 + 𝜇) 0 0 0
𝜃𝜎 −(𝐾 +∧ +𝛿 + 𝜇) 0 0

(1 − 𝜃)𝜎 0 −(𝛾 + 𝛿 + 𝜇) 0
0 ∧ 0 −(𝜖 + 𝛿 + 𝜇)

s               (28) 

 
Thus 

 

𝐺∧(𝑋, 𝑌) = r

−𝜆𝑆 − (1 − 𝜏)𝜆𝑉
0
0
0

s                               (29) 

 
Since 𝐺(𝑋, 𝑌) ≤ 0, 𝐻" is not fulfilled. It follows from this that 𝐸<may not be universally 

asymptotically stable when 𝑅< < 1, therefore the model may exhibit backward bifurcation. 
 

2.6 Endemic Equilibrium Point (EEP) 
 
To find the Endemic Equilibrium Point (EEP), we need to solve the system of equations for the 

values of 𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗ and 𝑅∗, that satisfy the condition that the time derivatives of 
𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗ and 𝑅∗ are all zero. This results in a set of equations that we solve 
simultaneously to obtain the values of 𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗	and 𝑅∗ at the EEP. The EEP is also referred 
to as a steady state or a fixed point. 

We obtain: 
 
𝛼	 + 	𝜋𝑅	 −	(𝜆	 + 	𝜔	 + 	𝜇)𝑆	 = 0											
𝜔𝑆	 −	((1	 − 	𝜏)𝜆	 + 	𝜇)𝑉	 = 	0															
𝜆𝑆	 +	(1	 − 	𝜏)𝜆𝑉	 −	(𝜎	 + 	𝜇)𝐸	 = 	0		
𝜃𝜎𝐸	 −	(𝐾	 + 	𝜔	 + 	𝛿	 + 	𝜇)𝐼	 = 	0							
(1	 − 	𝜃)𝜎𝐸	 −	(𝛾	 + 	𝛿	 + 	𝜇)𝐴	 = 	0					
𝜔𝐼	 −	(𝜀	 + 	𝛿	 + 	𝜇)𝑄	 = 	0																					
𝐾𝐼	 + 	𝛾𝐴	 + 	𝜖𝑄	 −	(𝜋	 + 	𝜇)𝑅	 = 0						⎭

⎪⎪
⎬

⎪⎪
⎫

                  (30) 

 
Solving this system of equations, we obtained the values of the variables at the EEP, denoted by  

𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗ 𝑅∗., Let 𝑎! 	= 	𝛿	 + 	𝛬	 + 	𝐾	 + 	𝜇; 𝑎: 	= 	𝜀	 + 	𝛿	 + 	𝜇; 𝑎; = 	𝛾	 + 	𝜔	 + 	𝜇; 
𝑎C 	= 𝛾	 + 	𝜔	 + 	𝜇; 𝑎E 	= 	𝜋	 + 	𝜇; 𝑎E = 	𝛾	 + 	𝛿	 + 	𝜇; 𝑎F 	= 	𝜀	 + 	𝛿	 + 	𝜇; 

 
𝐸∗ = (>1∧1?12)(	

L=
                       (31) 

 
𝐼∗ = L='∗	

>1∧1?12
                                  (32) 

 
𝐴∗ = 7(L7!)(>1∧1?12)(	

L(@	1	?	1	2)
                                  (33) 
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𝑄∗ = (∧(	
(A	1	?	1	2)

                                    (34) 

 

𝑆∗ = M(@"N!	
N%N&N'L

− M(@N!	
N%N&N'

+ M∧(O	
N%N&N(

+ M>(	
N%N&

+ -	
N%

                    (35) 

 
𝑉∗ = 7((M	((7>N'	1	@	N!)	L	7	@	N!)	N'	7	L	P	A	N'	(	7	-	L	N&	N'	N()	/)	

(N&	((QN!	7	N')	L	N(	7	9	P	L	N'	(8	7	!)	(	1	2	L	N'	N()	N%
                  (36) 

 
𝜆 = 𝛽 �(!7L)N!(9!

LN'
+ 9"∧(

N(
+ 𝐼�                      (37) 

 
𝑅∗ = >(∗1@)∗1O*	

M12
                        (38) 

 
At EEP, we have #'	

#%
= 0, which gives #'	

#%
= 𝜆𝑆 + (1 − 𝜏)𝜆𝑉 − (𝜎 + 𝜇)𝐸 = 0. 

Simplifying and expressing the equation in descending power of 𝐼 we obtain the equation in 
form of  

 
𝑍!𝐼: + 𝑍"𝐼" + 𝑍:𝐼 = 0      
⟹ 𝑍!𝐼" + 𝑍"𝐼 + 𝑍: = 0                        (39) 

 
Where 𝑍!and 𝑍" are coefficient of 𝐼" and 𝐼, obtained as  

 
𝑍1	 = 	𝜋	𝛽"𝜎	(−𝐷!𝜃	𝑎!𝑎F 	+ 	𝐷"	𝛬	𝜃	𝑎E 	+ 	−𝐷!𝑎!𝑎F 	+ 	𝜃	𝑎E𝑎F)"(𝜏	 − 	1)(𝐾	𝜃	𝑎E 	+ 	𝛬	𝜀	𝜃	𝑎E 	+
	𝛾"𝑎!𝑎F 	− 	𝛾	𝜃	𝑎!𝑎F)                       (40) 

 
𝑍2	 = 	−(((((−(𝛽	𝛼	(𝜏	 − 	1)	𝑎5	 − 	𝐾	𝜋	(𝜔	𝜏	 − 	𝜇	 − 	𝜔))	𝑎6	 +	(𝐷1	𝛽	𝛼	(𝜏	 − 	1)	𝑎5	 +
	𝜋	𝛾	(𝜔	𝜏	 − 	𝜇	 − 	𝜔)	𝑎1))	𝜃	 −	(−𝑎4	𝑎5	(𝜏	 − 	1)	𝑎6	 + 	𝐷1	𝛽	𝛼	(𝜏	 − 	1)	𝑎5	 + 	𝜋	𝛾	(−𝛾	𝜇	 +
	𝜔	𝜏	 − 	𝜔))	𝑎1)	𝜎	 + 	𝑎1	𝑎4	𝑎5	𝑎6	𝜇	(𝜏	 − 	1))	𝑎7	 − 	𝜎	𝜔	𝑎6	𝜃	(𝐷2	𝛽	𝛼	(𝜏	 − 	1)	𝑎5	 + 	𝜋	(𝜔	𝜏	 −
	𝜇	 − 	𝜔)))	𝛽	𝑎6	𝑎7	𝜃	(((𝐷1	𝑎1	 − 	𝑎6)	𝜃	 − 	𝐷1	𝑎1)	𝑎7	 − 	𝐷2	𝜔	𝜃	𝑎6))               (41) 

      
𝑍: 	= 	 (𝜎	 + 	𝜇)	(𝐾	 + 	𝜔	 + 	𝛿	 + 	𝜇)	(𝛾	 + 	𝛿	 + 	𝜇)	(𝜀	 + 	𝛿	 + 	𝜇)	(1	 −	𝑅<)                                   (42) 

 
2.7 Bifurcation Analysis 

 
Theorem 2: 
If 𝑅< < 1 and 𝑎< = 0 then the system Eq. (1) to Eq. (7) exhibit a backward at 𝑅RSTUV = 1. If 

the inequality holds reversed, then the system exhibits a forward bifurcation at 𝑅< = 1 then 
 

𝛽W∗ =
42	(/	1	2)(=	1	2)(>	1	/	1	?	1	2)(@	1	?	1	2)(A	1	?	1	2)5

-	?	(2	1	/	7	8	/)	(9!	(!	7	L)	(2	1	?	1	A)	(>	1	/	1	?	1	2)	1	L	(2	1	?	1	A)	(@	1	2	1	?)	?	1	L	/	9"	(@	1	2	1	?)	?)
  

 
                       (43) 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−(𝜔 + 𝜇) 0 0 76)∗ -

(/12)
76)∗ 9!-
(/12)

76)∗ 9"-
(/12)

𝜋

𝜔 −𝜇 0 76)∗ (!78)-/
2(/12)

76)∗ 9!(!78)-/
2(/12)

76)∗ 9"(!78)-/
2(/12)

0

0 0 −(𝜎 + 𝜇) 6)∗ -(21(!78)/)
2(/12)

6)∗ -9!(21(!78)/)
2(/12)

6)∗ -9"(21(!78)/)
2(/12)

0

0 0 𝜃𝜎 −(𝐾 + Λ + 𝛿 + 𝜇) 0 0 0
0 0 (1 − 𝜃)𝜎 0 −(𝛾 + 𝛿 + 𝜇) 0 0
0 0 0 Λ 0 −(𝜖 + 𝛿 + 𝜇) 0
0 0 0 𝐾 𝛾 𝜖 −(𝜋 + 𝜇)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 
From the characteristic equation of the Jacobian matrix: |𝐽 − 𝜆𝐼| = 0, we obtained an 

expression in the form  
 
𝑎;𝜆; + 𝑎:𝜆: + 𝑎"𝜆" + 𝑎!𝜆 + 𝑎< = 0                               (44) 

 
𝜆! = 𝐶!! = (𝛾 + 𝛿 + 𝜇), 𝜆" = −𝐶!E = (𝜋 + 𝜇), 𝜆" = 	𝜇 and 
 

	𝜆; +	(𝐶" 	+ 	𝐶F 	+ 	𝐶!! 	+ 	𝐶!C)𝜆: +	d𝐶"	𝐶F 	+ 	𝐶"	𝐶!! 	+ 	𝐶"	𝐶!C 	− 	𝐶:	𝐶!< 	+ 	𝐶F	𝐶!! 	+
	𝐶F	𝐶!C 	+ 	𝐶!!	𝐶!C 	− 	(𝜃	𝜎	𝐶E 	+ 	𝐶:	𝐶!<)e𝜆" +	d𝐶"𝐶!!𝐶F 	+ 	𝐶"𝐶F𝐶!C 	+ 	𝐶"𝐶!!𝐶!C 	+
	𝐶F𝐶!!𝐶!C 	− 	 (𝜃	𝜎	𝐶!; 		+ 	𝜃	𝜎	𝐶E	𝐶!! 	+ 	𝜃	𝜎	𝐶E	𝐶!C 	+ 𝐶:𝐶!<𝐶!< 	+ 	𝐶:𝐶!<𝐶!C)e𝜆	 −
	(𝜃	𝜎	𝐶!;𝐶!! 	+ 		𝜃	𝜎	𝐶E𝐶!!𝐶!C 	+ 	𝐶:𝐶F𝐶!<𝐶!C) = 	0                 (45) 

 
𝑎< =

((!	7	L)	=	(>	1	/	1	?	1	2)	6)∗ 	Q!	-	(2	1	(!	7	8)	/)	(A	1	?	1	2))
2	(/	1	2)

+ (/	L	=	Q"	-	(2	1	(!	7	8)	/)	(@	1	?	1	2))
(2	(/	1	2))

	+ 	

				+ 	(L	=	6)∗ 	-	(2	1	(!	7	8)	/)	(@	1	?	1	2)	(A	1	?	1	2))
(2	(/	1	2))

                  (46) 

 
Hence  

 
(𝜎	 + 	𝜇)	(𝐾	 + 	𝜔	 + 	𝛿	 + 	𝜇)	(𝛾	 + 	𝛿	 + 	𝜇)	(𝜀	 + 	𝛿	 + 	𝜇)(1	 −	𝑅<)              (47) 
 
𝑎< = 0, therefore (𝑎;𝜆; + 𝑎:𝜆: + 𝑎"𝜆" + 𝑎!)𝜆 = 0, we can observe that the seven eigen are real 
and negative and that 𝜆; = 0, now we denote by 𝑤 = (𝑤!, 𝑤", 𝑤:, 𝑤;, 𝑤C, 𝑤E, 𝑤F)X  the right eigen 
value correspond to 𝜆; = 0. 

 
𝑤F	𝜋	 −	𝑤!	𝐶! 	− 	𝑤;	𝐶; −	𝑤C	𝐶B 	− 	𝑤E	𝐶!" = 	0
−𝑤"	𝜇 + −𝑤!	𝜔 − 𝑤;	𝐶C −𝑤C	𝐶D −𝑤E	𝐶!: = 0		
−𝑤:	𝐶" +𝑤;	𝐶E +𝑤C	𝐶!< +𝑤E	𝐶!; = 0																	
𝑤:𝜃𝜎 − 𝑤;𝐶F = 0																																																								
𝑤:𝐶:𝜎 − 𝑤C	𝐶!! = 0																																																			
𝑤;Λ − 𝑤E	𝐶!C = 0																																																								
𝜖𝑤E + 𝛾𝑤C −𝑤F	𝐶!E + 𝐾 = 0																																		 ⎭

⎪⎪
⎬

⎪⎪
⎫

                 (48) 

 
Thus at 𝑤; = 1, we have 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 47, Issue 2 (2025) 193-212 

204 
 

𝑤! =
Y6	-	(>	1	Z	1	?	1	2)9!	(A	1	?	1	2)1	L	(@	1	?	1	2)4Z	9"	1	[%	(A	1	?	1	2)5\

4(/	1	2)"L	(@	1	?	1	2)(A	1	?	1	2)5

− ((A	1	?	1	2)	(M	>	L	(@	1	?	1	2)	(M	1	2)	1	M	@	(>	1	Z	1	?	1	2))	1M	Z	A	L	(@	1	?	1	2))
(L	((/	1	2)	@	1	?	1	2)	(M	1	2)	(A	1	?	1	2))

𝑤" =
(6	-	/	(!	7	8)	

	2^"
� !
(/	1	2)

+ 	(9!	(>	1	Z	1	?	1	2))	
(L	(/	1	2)	(@	1	?	1	2))

+ (Z	9")	
((/	1	2)	(A	1	?	1	2))

� − ["	/
2
	

𝑤: =
(>	1	Z	1	?	1	2)	

L	=

𝑤C 	=
	(>	1	Z	1	?	1	2)	
(L	(@	1	?	1	2)

𝑤E =
Z	

(A	1	?	1	2)

𝑤F = 𝐾	 + 	(Z	A)	
(A	(M	1	2)	1	?	(M	1	2)	1	2	(M	1	2))

+ @	(>	1	Z	1	?	1	2)
L	(@	1	?	1	2)	(M	1	2) ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

               (49) 

 
The left eigen vector 𝑣 = (𝑣!, 𝑣", 𝑣:, 𝑣;, 𝑣C, 𝑣E, 𝑣F) satisfying 𝑣𝑤 = 0, is given by 
 

𝜔𝑣" − 𝑣!𝐶! = 0	
−𝑣"𝜇 = 0

𝜃𝜎𝑣; − 𝐶"𝑣: + 𝐶:𝑣C = 0
𝐾𝑣F + Λ𝑣E − 𝐶;𝑣! − 𝐶C𝑣" + 𝐶E𝑣: − 𝐶F𝑣; = 0
𝛾𝑣F + 𝐶B𝑣! − 𝐶D𝑣" + 𝐶!<𝑣: − 𝐶!!𝑣C = 0
𝜖𝑣F − 𝐶!"𝑣! − 𝐶!:𝑣" + 𝐶!;𝑣: − 𝐶!C𝑣E = 0

𝜋𝑣! − 𝐶!E𝑣F = 0 ⎭
⎪⎪
⎬

⎪⎪
⎫

                    (50) 

 
𝑣! = 𝑣" = 𝑣F = 0, 𝑣; = 1	

𝑣: =
((^	1	_	1	`)	a	b	`	(c	1	`))	

(`	(c	1	`)	(^	1	_	1	`)	(b	1	`)	1	d!	b	e	f	(`	1	(!	7	g)	c)	(!	7	a))

𝑣C =
(f	e	d!	(`	1	(!	7	g)	c)	a	b)

(`	(b	1	`)	(^	1	_	1	`)	(c	1	`)	1	f	e	9!	(!	7	a)	(`	1	(!	7	g)	c))

𝑣E =
4f"9""b	(`	1	(!	7	g)c)a"e"5	

((c	1	`)	(h	1	_	1	`)	(`	(c	1	`)	(^	1	_	1	`)	(b	1	`)	7	f	(`	1	(!	7	g)	c)(!	7	a)	e	9!))	⎭
⎪⎪
⎬

⎪⎪
⎫

                           (51) 

 
From the bifurcation process, we have to compute 𝐴 and 𝐵, where  

 

𝐴 = ∑ 𝑣i𝑤G𝑤j
k"

kl*kl+
𝑓im

i,G,jo!  and 𝐴 = ∑ 𝑣i𝑤G
k"

kl*kl,
𝑓im

i,G,jo! .                  (52) 

 
Let 𝑥! = 𝑆, 𝑥" = 𝑉, 𝑥: = 𝐸, 𝑥; = 𝐼, 𝑥C = 𝐴, 𝑥E = 𝑄 and 𝑥F = 𝑅.  
Since 𝑣! = 𝑣" = 𝑣F = 0, then 

 

𝑣:∑ 𝑤G𝑤j
k"p-
kl*kl+

F
G,jo! + 𝑣C ∑ 𝑤G𝑤j

k"p&
kl*kl+

+ 𝑣E ∑ 𝑤G𝑤j
k"p'
kl*kl+

+ ∑ 𝑤G𝑤j
k"p%
kl*kl+

F
G,jo!

F
G,jo!

F
G,jo!               (53) 

 

𝑣C∑ 𝑤G𝑤j
k"p&
kl*kl+

= 𝑣E∑ 𝑤G𝑤j
k"p'
kl*kl+

= ∑ 𝑤G𝑤j
k"p%
kl*kl+

F
G,jo! = 0F

G,jo!
F
G,jo!                 (54) 

 
Therefore 

 

2𝑣: �𝑤!𝑤;
k"p-

kl!kl%
+𝑤!𝑤C

k"p-
kl!kl&

+𝑤!𝑤E
k"p-

kl!kl'
+𝑤"𝑤;

k"p-
kl"kl%

+𝑤"𝑤C
k"p-

kl"kl&
+𝑤"𝑤E

k"p-
kl"kl'

�(55) 
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𝑓: = β	(𝐷!𝑥C +	𝐷"𝑥E 	+ 	𝑥;)𝑥! 	+ 	β	(1	 − 	τ)	(𝐷!𝑥C 	+ 	𝐷"𝑥E +	𝑥;)	𝑥" 	− 	(σ	 + 	µ)	𝑥:            (56) 
 
We have the following expressions 

 
k"p-

kl!kl%
= 𝛽, k"p-

kl!kl&
= 𝛽𝐷!,

k"p-
kl!kl'

= 𝛽𝐷",
k"p-

kl"kl%
= β	(1	 − 	τ), k"p-

kl"kl&
= β	(1	 − 	τ)𝐷! and  

k"p-
kl"kl'

= β	(1	 − 	τ)𝐷!                      (57)

     
Also 

 
k"p-

kl%kl,
= 𝑥!(1	 − 	τ)𝑥",

k"p-
kl&kl,

= 𝐷!𝑥! + (1	 − 	τ)𝐷!𝑥",
k"p-

kl'kl,
= 𝐷!𝑥! + (1	 − 	τ)𝐷!𝑥"            (58) 

 
All the remain partial derivatives are zero, hence we have 
 

𝐴 = "	f	a	b	`	(_	1	^	1	`)	(`	1	c)
(`	(`	1	c)	(_	1	^	1	`)	(b	1	`)	1		d!	b	e	f	(`	1	(!	7	g)	c)	(!	7	a))	

𝑀!                (59) 

 
𝑀! = �(>	1	P	1	?	1	2)	9!

L	(@	1	?	1	2)
+ 9"	P

A	1	?	1	2
+𝑤;� (𝑤! 	+ 	(1	 − 	𝜏)	𝑤")                (60) 

 
𝐵 = (e	a	b	(d!	1	d"	1	!)	(7c	g	1	`	1	c)	(^	1	_	1	`))

(`	(c	1	`)	(^	1	_	1	`)	(b	1	`)	1	d!	b	e	f	(`	1	(!	7	g)	c)	(!	7	a))	
𝑀"                (61) 

 
 
𝑀" = 𝑤! +

(f	e	c	(!	7	g))
`"

� !
(c	1	`)

+ 9!(q	1r	1_	1	`)
(a	(c	1	`)	(^	1	_	1	`))

+ 9"	r
(c	(h	1	_	1	`)	1	`	(h	1	_	1	`))

� 			+
(q	1	r	1	_	1	`)	

a	b
+𝑤; +

q	1	r	1	_	1	`
a	(^	1	_	1	`)

+ r	
h	1	_	1	`

+ 𝐾 + r	h
h	(s	1	`)	1	_	(s	1	`)	1	`	(s	1	`)

+ q	1	r	1	_	1	`
a	(^	1	_	1	`)	(s	1	`)

−
[!c
`

                                 (62) 

 
Since the coefficient of 𝐵 is always positive, its the sign of the coefficient of 𝐴 (𝑀!) which decides 

the local dynamics around the disease-free equilibrium at β = 𝛽∗, if the coefficient is positive then 
the direction of the bifurcation is backward otherwise its forward. EEP is both locally and globally 
asymptomatically stable when 𝑅< > 1, while DFE is locally asymptotically stable when 𝑅< < 1 but 
it’s not globally asymptotically stable when 𝑅< < 1 

Figures 2 to 4 depict the influence of vaccine efficacy on the bifurcation diagram. As vaccine 
efficacy increases, a noticeable transformation occurs in the bifurcation diagram, shifting it from a 
backward pattern to a forward one. 
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Fig. 2. Infected versus basic reproduction number 
at 𝜏 = 1 

 Fig. 3. Infected versus basic reproduction 
number at 𝜏 = 0.5 

 

 
Fig. 4. Infected versus basic reproduction number at 𝜏 = 0.0 

 
3. Global Stability of the Endemic Equilibrium 

 
Theorem 3: if 𝑅< > 1, the endemic equilibrium 𝐸< of the model is globally asymptotically 

stable. 
Proof: By Lyapunov’s direct method and Lasale’s invariant principle [15,16], we prove the 

above theorem by defining a Lyapunov’s function 
 
𝐿(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗, 𝑅∗) = �𝑆 − 𝑆∗ − 𝑆∗ ln $

∗

$
� + �𝑉 − 𝑉∗ − 𝑉∗ ln &

∗

&
� + �𝐸 − 𝐸∗ − 𝐸∗ ln '

∗

'
� +

�𝐴 − 𝐴∗ − 𝐴∗ ln )
∗

)
� + �𝑄 − 𝑄∗ − 𝑄∗ ln *

∗

*
� + �𝐼 − 𝐼∗ − 𝐼∗ ln (

∗

(
� + �𝑅 − 𝑅∗ − 𝑅∗ ln +

∗

+
�              (63)  

 
Differentiating 𝐿 with respect to 𝑡 and substituting the values of #$

#%
, #&
#%
, #'
#%
, #(
#%
, #)
#%
, #*
#%
, #+
#%

 into  
#t
#%

 and then simplify to get 
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#t
#%
= α	 +	$

∗

$
(λ	 + 	ω	µ)S + &∗

&
d(1	 − 	τ)λ	 + 	µeV + '∗

'
(σ	 + 	µ)E	 + (∗

(
(K	 + 	ω	 + 	δ	 + 	µ)I	 +

	σ	E	 + )∗

)
(γ	 + 	δ	 + 	µ)A	 + *∗

*
(ε	 + 	δ	 + 	µ)Q +	+

∗

+
(π	 + 	µ)	R	 −	�µ	S	 + $∗

$
α + $∗

$
π	R	 + 	µ	V	 +

+ &∗

&
ω	S	 +	(σ	 + 	µ)	E	 + '∗

'
λ	S + '∗

'
(1	 − 	τ)	λ	V	 +	(δ	 + 	µ)I + (∗

(
θ	σ	E		 + (δ	 + 	µ)A + )∗

)
(1	 −

	θ)	σ	E	 +	(δ	 + 	µ)	Q	 + *∗

*
ω	I	 + 	µ	R	 +	β<	�                 (64) 

 
Which can be written as 
 

#t
#%
= ℑ! − ℑ"                       (65) 

 
β< =

+∗

+
𝐾𝐼 + +∗

+
𝛾𝐴 + +∗

+
𝜖𝑄                    (66) 

 
#t
#%
≤ 0	𝑖𝑓𝑓	ℑ! < ℑ"                      (67) 
 
#t
#%
= 0 if and only if 𝑆 = 𝑆∗	, 𝑉 = 𝑉∗	, 𝐸	 = 	𝐸∗, 𝐼 = 𝐼∗	, 𝐴	 = 𝐴∗	, 𝑄	 = 	𝑄∗, 𝑅	 = 	𝑅∗ Therefore, 

the largest invariant set in {(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑄∗, 𝑅∗) 	∈ 	Ω} is the singleton set 𝐸<∗ where E∗ 0 is 
the endemic equilibrium of the system (1). Therefore, by Lasalle’s Invariant principle, it implies that 
𝐸<∗ is globally asymptotically stable in Ω if ℑ! < ℑ".  

 
3.1 Global Stability of Threshold Analysis and Effect of Imperfect Vaccine 

 
Given that we considered the HFMD vaccination was flawed, it is instructive to assess whether 

or not widespread use in a community is constantly assured.   
To measure the effect of such a vaccine on disease transmission, a qualitative approach can be 

utilized as discussed in [19-21] by differentiating the expression R< with respect to the fraction of 
individuals immunized at the steady state and permitting 
 
θ∗ =

&∗

u∗
                       (68) 

 
As a result, θ∗ can be regarded as a variable that decides R< therefore 

 
R< = R<(θ∗) = R<(1 − 𝜏θ∗)                     (69) 

 
Observing that R< ≤ Rv if 𝜔 = 0, i.e., θ< = 0 or 𝜏 = 0, That is to say, even if the vaccine does 

not work effectively, it is essential to note that as the rate of infection declines, so will the spread 
of the disease. With 𝜔 > 0 and 𝜏 > 0 illness’s effect would be reduced. As a result, the prerequisite 
for θ∗ is equally critical and sufficient for control, just as R< ≤ 1 is a necessary and sufficient 
condition for disease elimination.  
 
θ∗ ≥

!
8
�1 − !

w.
� = θr	                     (70) 

 
Combining the information from bifurcation analysis with theorem 3 yields the desired outcome. 
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Lemma 2: HFMD is removable from the population if θ∗ > θr	. Our definition of the 
percentage vaccinated at equilibrium point θr	 is the same as that found in [19]. Figure 5 depicts 
the crucial value, θr	, as a function of 𝜏 for a variety of R< values. According to Eq. (70), both the 
vaccinated fraction, θ and vaccine efficacy, 𝜏 play important roles in reducing R<, and both must 
be high in order to reduce the value of R<to less than one and thereby manage the disease. 
Inequality can be confirmed as well. 
 
θ∗𝜏 ≥

!
8
�1 − !

w.
�                        (71) 

 

 
Fig. 5. Contour plot of the basic reproductive 
number as a function of vaccine efficacy 

 
3.2 Estimation of Parameters  

 
The SVEIAQR model takes into account weekly fluctuations in government-imposed travel 

restrictions and lockdown circumstances in Malaysia in 2021 due to COVID 19, Data were 
gathered from [17,18] sources, estimated and incorporated into the model as functions of (𝑡) 
and 𝐼(𝑡). We obtained time-series data on the number of infections, and positive rate for 
Sarawak in Malaysian for the year 2021, from the ministry of economy department of statistics 
Malaysia official portal (https://www.dosm.gov.my/portal-main/landingv2). 

 
Table 1 
Summary of the parameter’s values  
Parameters Values Reference 
𝛼  0.0002923000             [18]            
𝜇  0.0001077000 [18] 
𝐷/  0.0000400000 Assume 
𝐷0  
𝜔  
Λ  
𝛾  
𝜃  
𝛿  
𝛽  
𝜏  
𝜖  
𝜋  

0.0000600000 
0.0001010101 
0.0001010101 
0.0001000000 
0.5000000000 
0.0001731000 
0.0000300000 
0.0001010101 
0.1000000000 
0.1000000000 

Assume 
Assume 
Assume 
[17] 
Data fitting 
[18] 
[18] 
Assume 
[17] 
[18] 

https://www.dosm.gov.my/portal-main/landingv2
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𝜎  
𝐼1  
𝐸1  
𝐴1   
𝑅1  

0.1042308906 
53.371777754 
4.786108e+03 
8.267797e+05 
4.5329e-14 

Data fitting 
Data fitting 
Data fitting 
Data fitting 
 

 
Figure 6 illustrates a Comparison Graph showcasing the Hand, Foot, and Mouth Disease (HFMD) 

data from Sarawak, Malaysia, alongside the simulation outcomes generated by Model Eq. (1) to Eq. 
(7). This visual representation offers a valuable comparison between the actual HFMD data and the 
predictions produced by the mathematical model. By presenting real-world observations alongside 
modelled results, Figure 6 provides insights into the model's performance and its ability to replicate 
observed trends. This figure plays a crucial role in validating the model's accuracy and in assessing 
its capacity to simulate HFMD dynamics in the Sarawak region. 
 

 
Fig. 6. The Comparison Graph of HFMD data in Sarawak (Malaysia) and Simulation 
Results by Model Eq. (1) to Eq. (7) 

 
4. Results  
4.1 Graphical Representation 

 
This section discusses the graphical results obtained from the model equations and the 

parameters. The effects of 𝐾, 𝜏 and 𝜋 are discussed in the next sub section.  
The graphical solution depicting the rates of exposure to infected (𝝈), infected to recovery (𝑲), 

and recovery to susceptible (𝝅) provides a dynamic insight into the disease transmission and 
recovery processes. 
 

i. Infected to Recovery Rate (𝑲): Figure 7 and 8 demonstrates the pace at which infected 
individuals recover and transition to the recovered state. As K increases, it signifies a 
swifter recovery process, reducing the number of infected individuals and contributing to 
the overall control of the disease spread. The curve's behaviour reflects the interplay 
between recovery rates, medical interventions, and the immune response. 

ii. Rate of Exposure to Infected (𝝈): Figure 10 illustrates how the rate of individuals 
transitioning from the susceptible state to the exposed state is influenced by factors such 
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as contact rates and transmission probabilities. As the values of 𝝈  rises, it indicates an 
increase in the rate at which individuals become exposed to the disease due to 
interactions with infected individuals. This rate becomes a critical determinant in shaping 
the course of an outbreak. 

iii. Recovery to Susceptible Rate (𝝅): The graph of the recovery rate (Figure 9.) provides a 
visual representation of how quickly infected individuals transition to the recovered state. 
It showcases the impact of medical interventions, immune responses, and other factors 
influencing recovery time. As the recovery rate increases, the infected population 
reduces, indicating a faster resolution of infections. This graph is essential in 
understanding the effectiveness of treatments and the potential to control disease 
spread. It offers valuable insights into the temporal dynamics of recovery within a 
population and guides strategies for managing outbreaks and minimizing the impact of 
infectious diseases. 

iv. By visualizing these rates collectively, the graphical solution underscores the intricate 
balance between exposure, recovery, and immunity within the population. This dynamic 
perspective aids in comprehending the interdependencies that govern disease 
transmission and informs public health interventions aimed at mitigating outbreaks. 

 

 

 

 
Fig. 7. Graph of Infected Population at different 
values of  𝐾 

 Fig. 8. Graph of Infected Population at different 
values of  𝐾 

 

 

 
Fig. 9. Graph of Recover Population at different 
values of 𝜋 

 Fig. 10. Effect of 𝜎 on infected Population 
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5. Conclusions 
 
From the given model equation and the data provided, we were able to simulate the dynamics 

of the infectious disease and estimate the values of the parameters using curve fitting. The analysis 
showed that the model exhibits a backward bifurcation, indicating that increasing the vaccination 
rate alone may not be sufficient to eliminate the disease. 

To effectively control the disease, a combination of control strategies, including vaccination, 
quarantine, and increasing public awareness through education, should be implemented. The 
control strategy should aim to reduce the basic reproduction number to below 1, thereby achieving 
disease elimination. 

The objective of the control strategy should be to minimize the number of infected individuals, 
reduce the impact of the disease on public health and the economy, and prevent future outbreaks. 
To achieve these objectives, there should be effective coordination and collaboration between 
public health officials, policymakers, and the public. 

In conclusion, the analysis highlights the importance of a multi-faceted approach to disease 
control and the need for accurate data and modelling to inform decision-making. 
 
Acknowledgement 
This research is supported by the research University Grant (RUI) (1001/PMATHS/8011131) 
Universiti Sains Malaysia. 
 
References 
[1] Liu, Junli. "Threshold dynamics for a HFMD epidemic model with periodic transmission rate." Nonlinear 

Dynamics 64 (2011): 89-95. https://doi.org/10.1007/s11071-010-9848-6 
[2] Schmidt, Nathalie J., Edwin H. Lennette, and Helen H. Ho. "An apparently new enterovirus isolated from patients 

with disease of the central nervous system." Journal of infectious diseases 129, no. 3 (1974): 304-309. 
https://doi.org/10.1093/infdis/129.3.304 

[3] Aswathyraj, S., G. Arunkumar, E. K. Alidjinou, and D. Hober. "Hand, foot and mouth disease (HFMD): emerging 
epidemiology and the need for a vaccine strategy." Medical microbiology and immunology 205 (2016): 397-407. 
https://doi.org/10.1007/s00430-016-0465-y 

[4] Ho, Monto. "Enterovirus 71: the virus, its infections and outbreaks." Journal of Microbiology, Immunology, and 
Infection= Wei Mian yu gan ran za zhi 33, no. 4 (2000): 205-216. 

[5] Huang, Zehong, Mingzhai Wang, Luxia Qiu, Ning Wang, Zeyu Zhao, Jia Rui, Yao Wang et al., "Seasonality of the 
transmissibility of hand, foot and mouth disease: a modelling study in Xiamen City, China." Epidemiology & 
Infection 147 (2019): e327. https://doi.org/10.1017/S0950268819002139 

[6] Chan, L. G., Umesh D. Parashar, M. S. Lye, F. G. L. Ong, Sherif R. Zaki, James P. Alexander, K. K. Ho et al., "Deaths of 
children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological 
characteristics of the disease." Clinical infectious diseases 31, no. 3 (2000): 678-683. 
https://doi.org/10.1086/314032 

[7] Coates, Sarah J., Mark DP Davis, and Louise K. Andersen. "Temperature and humidity affect the incidence of hand, 
foot, and mouth disease: a systematic review of the literature–a report from the International Society of 
Dermatology Climate Change Committee." International journal of dermatology 58, no. 4 (2019): 388-399. 
https://doi.org/10.1111/ijd.14188 

[8] Shi, Lei, Hongyong Zhao, and Daiyong Wu. "Modelling and analysis of HFMD with the effects of vaccination, 
contaminated environments and quarantine in mainland China." Mathematical Biosciences and Engineering 16, no. 
1 (2019): 474-500. https://doi.org/10.3934/mbe.2019022 

[9] Dolin, Raphael. "Enterovirus 71—emerging infections and emerging questions." New England Journal of 
Medicine 341, no. 13 (1999): 984-985. https://doi.org/10.1056/NEJM199909233411309 

[10] Chowell, Gerardo, and Hiroshi Nishiura. "Transmission dynamics and control of Ebola virus disease (EVD): a 
review." BMC medicine 12 (2014): 1-17. https://doi.org/10.1186/s12916-014-0196-0 

[11] Qiu, Jane. "Enterovirus 71 infection: a new threat to global public health?." The Lancet Neurology 7, no. 10 (2008): 
868-869. https://doi.org/10.1016/S1474-4422(08)70207-2 

https://doi.org/10.1007/s11071-010-9848-6
https://doi.org/10.1093/infdis/129.3.304
https://doi.org/10.1007/s00430-016-0465-y
https://doi.org/10.1017/S0950268819002139
https://doi.org/10.1086/314032
https://doi.org/10.1111/ijd.14188
https://doi.org/10.3934/mbe.2019022
https://doi.org/10.1056/NEJM199909233411309
https://doi.org/10.1186/s12916-014-0196-0
https://doi.org/10.1016/S1474-4422(08)70207-2


Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 47, Issue 2 (2025) 193-212 

212 
 

[12] Liew, Chin Ying, Nor Shamira Sabri, Boon Hao Hong, and Jane Labadin. "Exploring Bipartite Network Approach in 
Hand, Foot and Mouth Disease Hotspot Identification." Journal of Smart Science and Technology 3, no. 1 (2023): 
25-36. https://doi.org/10.24191/jsst.v3i1.39 

[13] Mahardika, R., Widowati, and Y. D. Sumanto. "Routh-hurwitz criterion and bifurcation method for stability analysis 
of tuberculosis transmission model." In Journal of physics: Conference series, vol. 1217, no. 1, p. 012056. IOP 
Publishing, 2019. https://doi.org/10.1088/1742-6596/1217/1/012056 

[14] Castillo-Chavez, Carlos, Sally Blower, Pauline van den Driessche, Denise Kirschner, and Abdul-Aziz Yakubu, 
eds. Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory. Vol. 
126. Springer Science & Business Media, 2002. https://doi.org/10.1007/978-1-4613-0065-6 

[15] LaSalle, Joseph P. "Stability theory and invariance principles." In Dynamical systems, pp. 211-222. Academic Press, 
1976. 

[16] Rwat, Solomon Isa, and Noor Atinah Ahmad Ahmad. "Backward Bifurcation and Hysteresis in a Mathematical Model 
of COVID19 with Imperfect Vaccine." MATEMATIKA: Malaysian Journal of Industrial and Applied 
Mathematics (2023): 87-99. https://doi.org/10.11113/matematika.v39.n1.1458 

[17] Li, Yong, Jinhui Zhang, and Xinan Zhang. "Modeling and preventive measures of hand, foot and mouth disease 
(HFMD) in China." International journal of environmental research and public health 11, no. 3 (2014): 3108-3117. 
https://doi.org/10.3390/ijerph110303108 

[18] Chan, Sze Jan, Jane Labadin, and Yuwana Podin. "A dynamic SEIPR model for the spread of hand, foot and mouth 
disease in Sarawak." Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 9, no. 3-10 (2017): 
125-129. 

[19] Duan, Xichao, Sanling Yuan, Zhipeng Qiu, and Junling Ma. "Global stability of an SVEIR epidemic model with ages of 
vaccination and latency." Computers & Mathematics with Applications 68, no. 3 (2014): 288-308. 
https://doi.org/10.1016/j.camwa.2014.06.002 

[20] Feng, Zhilan, Sherry Towers, and Yiding Yang. "Modeling the effects of vaccination and treatment on pandemic 
influenza." The AAPS journal 13 (2011): 427-437. https://doi.org/10.1208/s12248-011-9284-7 

[21] Lai, C-C., D-S. Jiang, H-M. Wu, and H-H. Chen. "A dynamic model for the outbreaks of hand, foot, and mouth disease 
in Taiwan." Epidemiology & Infection 144, no. 7 (2016): 1500-1511. https://doi.org/10.1017/S0950268815002630 

 
 

https://doi.org/10.24191/jsst.v3i1.39
https://doi.org/10.1088/1742-6596/1217/1/012056
https://doi.org/10.1007/978-1-4613-0065-6
https://doi.org/10.11113/matematika.v39.n1.1458
https://doi.org/10.3390/ijerph110303108
https://doi.org/10.1016/j.camwa.2014.06.002
https://doi.org/10.1208/s12248-011-9284-7
https://doi.org/10.1017/S0950268815002630

