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Developing reliable distributed systems poses many challenges such as concurrency, 
failure handling, and scalability. It is due to the non-deterministic execution of threads 
within processes, and communication means. Formal verification methods, such as 
model checking, have been used to ensure the reliability of safety-critical systems. This 
technique systematically explores the complete behavior of the system under test 
(SUT), investigating each reachable state with different thread schedules. Recent 
software model-checking tools, employing cache and centralization, have been applied 
to distributed systems. The caching technique can only check one process at a time, 
while the centralization technique verifies all processes simultaneously. In the 
centralization technique, two "ArrayByteQueue" buffers are utilized to store 
communication and process data byte-by-byte. However, during the backtracking 
process, the read and write operations, involving data insertion and removal from the 
queue, become resource-intensive. As a consequence, existing interprocess 
communication (IPC) models encounter computational limitations and experience a 
rapid state space explosion. To address these challenges, our work proposes the 
remodeling of IPC models by introducing a request and response tree structure to store 
communication data. Additionally, we employ pointers to navigate through the data 
during the backtracking process. Through experimental evaluations, the proposed 
implementation choices have demonstrated significantly improved performance across 
various metrics. By incorporating the request and response tree, we enhance the 
efficiency of storing communication data, while the use of pointers optimizes 
navigation during backtracking. This remodeling of IPC models shows promise in 
mitigating computational limitations and state space explosion, thereby enhancing the 
model-checking process in distributed systems. Our research contributes to advancing 
the field of model checking in distributed systems and offers potential solutions to the 
challenges associated with resource-intensive read and write operations during the 
model-checking process. 
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1. Introduction 
 

Modern societies nowadays rely on software in all aspects of daily living and interacting with each 
other, including safety-critical systems, electric cars, smart home devices, and so on. Software or 
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applications such as Google Search, Facebook, YouTube, Netflix, Shopee, Lazada, Grab, Foodpanda, 
and many more are distributed. A distributed system consists of a group of nodes. Those nodes can 
be generically referred to as physical smartphones, personal computers, smart devices, televisions, 
and so on which cooperate by exchanging messages over communication links to achieve some tasks 
[1]. 

This article focuses on software model checking of distributed systems. Catching bugs as early as 
possible. Big companies like Google have spent most of their cost focusing on finding and fixing, 
processes, and procedures to debug incidents in Google’s distributed systems [2]. Many large 
software systems consist of multiple processes spread across multiple computer processors, 
executing independently. While this provides the advantages of increased performance and 
scalability it also makes such systems much harder to test due to partial failure and asynchrony. 
Partial failure refers to the components in distributed applications that can fail along the way, 
resulting in incomplete results or data. Asynchrony is the indeterminateness of ordering and timing 
within a distributed system that often leads to solutions with a high degree of complexity. Avoiding 
distributed system bugs also requires reasoning about the integration between nodes and must 
tolerate the failure of the underlying hardware. In addition, the probability of human error in either 
design, implementation, or operation also contributes to system bugs. Therefore, developing a 
reliable distributed system is a very challenging task. 

Formal methods, particularly model-checking, can produce rigorous and automated reliability 
proofs for hardware and software systems. The area has focused on distributed systems for two main 
reasons [3]. First, distributed programs are error-pruned, because programmers must consider all 
possible effects induced by different scheduling of events. Second, testing, which is widely used for 
certifying sequential programs, tends to have low coverage in distributed settings, because bugs are 
usually difficult to reproduce. They may happen under very specific thread schedules, and the 
likelihood of taking such corner-case schedules may be very low. Therefore, automated verification 
techniques represent crucial support in the development of reliable distributed applications. 

Model checking is a technique to detect property violations in a concurrent system by exploring 
every possible execution path [4]. Accordingly, every possible state of the system is checked against 
given properties. This technique is very useful for the quality assurance of safety-critical systems and 
core algorithms/protocols of large systems. Model checking was originally developed for hardware 
verification, but the concept of state space exploration has been applied to a wide range of software 
systems as well. 

In the traditional software model-checking process, a system to be verified is abstracted into an 
input language supported by the model checker, a software tool that performs model-checking [5]. 
The model checker then generates a directed graph that represents the state space of the system. It 
traverses the graph and checks if the desired properties hold at every state. This activity is referred 
to as state space exploration. After verification of the model, the system is usually implemented in a 
programming language such as C or Java, based on the verified model. 

Although model checking originally requires the system to be checked written in formal 
languages, e.g., PROMELA, recent work in the community applies model checking directly to source 
codes; this activity is often called software model checking. Direct verification of real codes increases 
confidence in software safety. The fact that the system design meets a specification does not imply 
that the implementation does. Many concurrency-related bugs are still introduced by programming 
mistakes during the implementation phase, such as race conditions, deadlocks, and assert violations. 
Verification in the design phase cannot guarantee the absence of bugs in the final deliveries. The 
software model-checking community focuses on the analysis of real implementations, written in 
mainstream programming languages such as Java or C [6]. 
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This article focuses on utilizing software model checking in the context of distributed systems 
using Java. The research aims to enhance existing techniques by combining the cache approach with 
centralization. The centralization technique verifies all processes within the distributed systems 
simultaneously [7]. This technique employs two 'ArrayByteQueue' buffers to store communication 
and process data at a byte-by-byte level. However, the write and read operations, which involve 
extracting data from the queue during the model-checking process, pose significant resource-
intensive challenges due to the backtracking process. This leads to a rapid expansion of the state 
space and computational limitations in existing interprocess communication (IPC) models. Therefore, 
our study proposes a novel remodeling of the existing IPC models by incorporating a request and 
response tree for storing communication data and employing pointers to navigate through the data 
during the backtracking process. The paper is organized into the following sections: Section 2 
provides an overview of recent advancements in model-checking distributed systems, including 
caching and centralization techniques. Section 3 presents our methodology and the proposed 
solution. Section 4 offers insights into the experiments conducted and the results obtained from the 
proposed method. Finally, in Section 5, we conclude our work. 
 
2. Literature Review 
 

Initially, model checking was developed as a means to verify algorithms, protocols, and system 
models. However, its scope has expanded to include direct verification of software systems or 
implementations. With the increasing complexity of code compared to models, there has been a 
growing interest in model-checking networked applications. This paper focuses on explaining the 
techniques relevant to model-checking networked applications. 

Model checking involves exhaustively and systematically examining the behavior of a system 
under test (SUT) by analyzing each reachable state for different thread schedules. The SUT undergoes 
backtracking during the model-checking process. In the context of model-checking network 
applications, the SUT often engages in repeated messaging (input/output operations) with external 
processes. However, these external processes, which are not controlled by the model checker, lack 
coordination with the SUT's backtracking mechanism, resulting in a breakdown of direct 
communication between the SUT and the external processes. 

Among model checkers, Java PathFinder stands out as the only one capable of verifying 
distributed systems, as demonstrated in the 2019 software verification competition contribution 
[8,9]. Various approaches, such as cache and centralization, have been proposed to tackle the 
challenges of model-checking distributed systems [7,10-17]. 
 
2.1 Cache Approach 
 

The cache approach model checks a single process inside the model checker tool once at a time 
and runs all the other processes externally in their native environment. A process is a self-contained 
execution environment and has its resources such as memory and other resources, whereas threads 
run within a process and share the process runtime resources. In the cache-based approach, the SUT 
and peers denote the single process inside the model checker and the external processes, 
respectively. The SUT executed by the model checker is subjected to backtracking, while external 
processes run normally. 

Figure 1 illustrates the overall architecture of the cache approach for model-checking network 
applications. The model checker executes the single-process SUT in exhaustive ways thus making 
repeated requests. The special cache layer intercepts all the communications between the SUT and 
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its peers. It represents the state of communication at different points in time. Data previously 
received by the SUT is held in the cache and if the SUT makes the same request, the response will be 
sent from the cache rather than incur all the processing involved in resending the request to the 
peers. 
 

 
Fig. 1. Overall architecture of cache approach 

 
The main challenge of this approach is the synchronization between the single-process SUT and 

its peers since the SUT is subjected to backtracking by the model checker, and the model checker 
does not have any control over its peers. During model checking SUT, the SUT may resend data which 
might interrupt the correct behavior of the peers, and the peers may not send the correct data back 
to the SUT. A special cache layer has been developed to solve these problems. Existing cache-based 
techniques address this problem by introducing a special cache layer between the SUT and its peers 
for state synchronization. 

Initial work by Artho et al., [10] proposes a solution for model-checking network applications by 
developing a special caching layer for stream-based input/output (I/O). They introduce the idea of 
I/O caching via deterministic communication. The method is called linear-time cache. A linear cache 
models communication data using a pair of arrays called a request array and a response array. The 
linear data structure stores request and response messages, respectively. The initial solution works 
if the I/O operations of the SUT always produce the same data stream regardless of the 
indeterminacy of the thread schedules. The communication between the SUT and its environment 
must be independent of the thread schedules. For instance, if the client sends a sequence of 
characters to the server, the server is supposed to send the same sequence of characters back to the 
client, regardless of the thread schedules. If this is not the case, the behavior of the communication 
traces would be undefined. 

The later work by Artho et al., [11] extends the idea of caching I/O traces to a wider range of 
network applications by developing the tree data structure that allows diverging communication 
traces between different thread schedules. This concept is called branching-time cache. The 
technique captures the communication traces and stores them in a tree data structure. The major 
advantage of branching cache is to allow the non-determinism of thread schedules within the SUT, 
but it does not allow non-determinism within the peers. For this approach, the SUT at least can send 
sufficient different data from the previously observed ones. 

To allow non-determinism within peers, the proposed work by Artho et al., [11] combines 
branching-time cache with process checkpointing [12]. This is called the hybrid approach. Process 
checkpointing environment can run, pause, and replay the peers at any point in time. During model 
checking of SUT, the checkpointing idea can be incorporated when the SUT requires the 
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synchronization of data from the peers, at those points, checkpointing can play and replay the peers’ 
states accordingly to the requests from the SUT. By doing this, this concept gives a broader range of 
model-checking network applications. 
 
2.2 Centralization Approach 
 

The centralization approach is to model-check all processes within a model checker. These 
techniques can be applied at the SUT Level, OS Level, and model checker level. Figure 2 shows the 
overall architecture of existing centralization techniques: (a) SUT level; (b) OS level; and (c) Model 
checker level. At the SUT level, the processes are transformed into one main process, so each process 
is mapped into a thread, and the model checker verifies the main process. At OS-level centralization, 
it does not involve transforming the SUT. Instead, all the processes are running on top of the 
virtualization tool, and the model checker tool is extended to capture the state of the virtualization 
tool for state-space exploration. Finally, the centralization approach can be applied at the model 
checker level. This technique is to extend the model checker so that the tool can capture multiple 
processes within the tool itself. 
 

   
(a) (b) (c) 

Fig. 2. Overall architecture of centralization approach; (a) SUT level, (b) OS level, (c) model 
check level 

 
2.2.1 SUT level centralization 
 

Initial work by Stoller and Liu [13] applying the centralization technique at the SUT level. They 
propose the concept of transforming processes into a single process by replacing remote method 
invocation (RMIs) with local ones that simulate RMIs. In addition, Stoller and Liu developed the 
CentralizedThread class that extends Thread and initializes an instance of field type integer to denote 
process id. By doing this, they can map each process into a thread, and each thread communicates 
with the other via the simulated local RMIs. Stoller and Liu initially introduced centralization at the 
system level, which involves merging all distributed Java application processes into one and replacing 
remote method invocations with simulated local ones. Java RMI, which enables the communication 
between Java processes, is used for objects in different JVMs to call each other's methods remotely. 

Later work by Artho and Garoche [14] provides a more accurate transformation of processes into 
a single process, and they also address some of the limitations of previous work by Stoller and Liu. In 
contrast to previous work, Artho and Garoche perform bytecode instrumentation which applies to 
systems compatible with a newer version of Java, and, in addition, their technique is also applicable 
to applications that use sockets for communication. 

Like the solution proposed by Stoller and Liu, the approach presented by Artho and Garoche 
replaces calls to methods that end the process, such as "System.exit(int)", by throwing the 
"java.lang.ThreadDeath" exception. However, their approach also doesn't offer a mechanism for 
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killing other threads within the terminating process. If all remaining threads are daemons, their 
solution suggests ignoring the failures in a dead process. They do provide a mechanism for freeing 
resources after processes terminate, but starting shutdown hooks requires manual modification of 
the centralized program. On the other hand, the RMI model proposed by Stoller and Liu cannot be 
extended to support communication via sockets, while the centralization technique of Artho and 
Garoche applies to applications that communicate through sockets. They adopt centralization at the 
SUT level, and their approach builds upon the work of Artho and Garoche while addressing some of 
its limitations. Specifically, they address the class version conflict issue, which arises when different 
processes use classes with the same name but different bytecode. Unlike other proposed methods, 
their approach doesn't require processes to use the same version of Java classes. Before 
implementing their centralization algorithm, they resolve class version conflicts between processes 
by renaming classes that have the same name but different bytecode. However, their approach does 
not resolve class version conflicts for Java system libraries, as it does not apply to native methods 
and code that utilize the reflection API. 

Ma et al., [15] approach provides a method to end processes by ending all their threads, which 
they accomplish by using the Java thread interruption mechanism. However, this requires adding 
code to the processes. Additionally, their approach does not handle starting shutdown hooks when 
a process terminates. 

Finally, SUT-level centralization has been proposed by Barlas and Bultan [16]. They are mainly 
focusing on environment generation by introducing a framework called Netstub. The Netstub API 
requires users to manually develop how the environment should be generated to accommodate the 
SUT during model checking. In addition, Netstub also allows model checking a process at a time. The 
Netstub environment can generate network events that are perceived by the SUT. 
 
2.2.2 OS level centralization 
 

In centralization at the OS level, the processes are running on a virtualization tool; therefore, this 
approach does not require transforming the SUT. This approach requires the extension of the model 
checker’s scope to capture the state of the virtualization tool. The major challenge for this technique 
is the state space explosion. Since the SUT processes are running on top of the virtualization tool and 
the model checker must cover all the processes including virtualization tool processes, this will lead 
to the exponential growth of states. 

Nakagawa et al., [17] develop a model-checking framework based on this approach. Their 
proposed framework can execute very close to the actual model-checking execution environment. 
They combine the user-mode Linux and the GNU debugger (GDB) to save and restore the entire Linux 
state. GBD can support several programming languages including Java. Processes are running on a 
virtualization tool and once non-determinism is detected within a process, the state of the OS and 
any possible execution paths are computed and explored by the tool. 
 
2.2.3 Model checker level centralization 
 

The major challenges with centralization at the model checker level are managing the state space 
within the model checker, modeling internal communication between local threads, and possible 
covering of language API and classes. 

A recent centralization approach has been implemented at the model checker level in the initial 
work by Shafiei and Mehlitz [7]. They develop multi-process JVM for JPF which allows model checking 
of distributed Java applications. To address the problems of class confliction, static functions, and 
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static fields, the new multi-process in JPF modifies the class loaders in JPF. The processes are mapped 
as a group of threads. During the initialization, each new thread is created by the SUT automatically. 
To capture scheduling points inside JPF, new communication models have been developed based on 
network API calls. This technique has been implemented into a JPF extension called jpf-nas. 

Shafiei and Mehiltz [7] proposed a centralization approach for model checking multiple 
communicating processes. This approach handles the challenge of separating data between 
processes by using a new class-loading model. The approach is implemented within the Java 
PathFinder (JPF) model checker, which allows for modeling inter-process communication (IPC) and 
exploring potential exceptional control flows caused by network failures. The state space of 
distributed applications is reduced using a partial order reduction (POR) algorithm, which is proven 
to preserve deadlocks. The approach also includes an automatic way to capture interactions between 
the system being verified and external resources. 
 
3. Methodology 
 

The centralization approach plays a crucial role in the model checker level and serves as the 
fundamental framework for JPF in model-checking distributed systems. However, for effective 
model-checking of these systems, it is necessary to have models that capture the communication 
between processes. Previous research has introduced a technique to capture communication data at 
a byte-by-byte level by utilizing two buffers for each connection [7]. These buffers store data that has 
been sent but not yet received by the other endpoint, employing a cyclic queue known as 
'gov.nasa.jpf.util.ArrayByteQueue' to store raw bytes. However, the write and read operations, 
responsible for adding and removing data from the queue, impose significant resource demands due 
to the need for backtracking through explored states during the model-checking process. As a result, 
this leads to a rapid expansion of the state space and computational limitations within existing IPC 
models. 

Our work proposes a revised approach to the existing IPC models by incorporating the cache 
approach. Instead of handling communication data at a byte-by-byte level, the proposed method 
focuses on multi-byte input and output. The communication data is stored in a request and response 
tree, acting as a cache. During the backtracking process, the request and response pointers navigate 
through the data, allowing for more efficient exploration and analysis. 

This section discusses the results obtained from the surface pressure measurement study. The 
effects of angle of attack, Reynolds number, and leading edge bluntness are discussed in the next 
sub-section. 

Figure 3 shows the overall architecture of the proposed remodeling of IPC. The revised IPC model 
is an extension of JPF that can model-check distributed systems. It is a combination of the cache and 
centralization features. It uses the multi-process VM from the JPF core, the connection manager, the 
connection, and the distributed scheduler. However, from the preliminary experiments, the read and 
write operations of the communication data byte-by-byte are not suitable for model-checking 
distributed systems since the states of the programs can grow exponentially and it is a resource-
intensive operation during the backtracking process. The cache request and response tree is the most 
appropriate solution, as it only navigates request and response pointers during the backtracking 
process. 
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Fig. 3. Overall architecture of the proposed remodeling of IPC 

 
The following describes the proposed redesign of IPC which includes important components such 

as the NasVM, the connection manager, the connection, and the distributed scheduler. 
 
(i) NasVM 
 

This class serves as the primary starting point. It begins by extending the multi-process VM from 
the JPF core system and then launches the connection manager component. Next, it starts the server 
process first and then the client process, and finally sets the global scheduling point for both 
processes. 
 
(ii) Connection Manager 
 

This component is created only once by the NasVM during the entire lifespan of the model 
checker. It is responsible for managing the connections between processes. One connection is 
established through two active sockets, for example, between the server and the client. The server 
typically starts by specifying an address and port number and then waits for the client to connect. If 
the client connects to the server successfully, both processes can then send and receive data from 
each other. When multiple threads or processes create more connections, the connection manager 
must manage multiple connections. The two most important variables are the buffers 
(communication data). In the previous centralization approach, the buffers are part of the connection 
object. In this work, the two buffer variables are created only once during the entire lifespan of the 
model checker because the data acts as a cache in the connection object. During the backtracking 
process, instead of creating and deleting data, the request and response pointers are used to 
navigate the request and response tree. The connection manager creates two buffers, which are 
represented as a list type of the request and response tree (RRTree) shown in Figure 3. One buffer 
stores the data sent from the server to the client, and the other buffer stores the data sent from the 
client to the server. To keep track of the states of the connections and buffers, the connection 
manager has to implement a listener from the JPF core system. This is to listen to the JPF core system 
when it goes through bytecode executions. To achieve this, the connection manager has to 
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implement a state extension client listener from the JPF core, which consists of three main functions: 
getStateExtension(), restore(), and registerListener(). The getStateExtension() function listens to the 
JPF core when it finds a new state, restore() is used when the JPF restores a state, and 
registerListener() registers the connection manager component to the state extension client. 
 
(iii) Connection 
 

The server socket object consists of a passive socket, in which the server process creates the 
server object and waits for the client to connect, after the successful connection, the server creates 
an active socket. The same thing happens to the client process, after the successful connection, the 
client creates an active socket. The connection manager considers this as one connection; hence, 
multiple server/client pairs will create multiple connections. The proposed design includes a 
connection object that includes a server socket, a client socket, the connection state, and read and 
write operations. However, the connection object cannot store the two buffers of the communication 
data due to the significant computation and state space explosion that occurs during the backtracking 
process when using the data structure. Therefore, in this design, the two buffers are left out. Instead, 
the read and write operations will generate two RRTrees for storing and receiving data, and utilize 
the request and response pointers to navigate the data. This approach helps to avoid the 
computational and state space issues associated with including the buffers in the connection object. 
 
(iv) Distributed scheduler 
 

JPF has a scheduler that is designed to observe the various ways in which threads are scheduled 
within a process. During the search for the state space of the SUT, JPF employs this scheduler to 
analyze and explore different sequences of concurrent transitions. These transitions could lead to 
varying behaviors of the process if executed in different orders. The JPF scheduler operates at a local 
level, which means it only deals with operations that are specific to a single process and do not 
involve communication between multiple processes. This approach is commonly referred to as the 
JPF local scheduler. For processes to communicate with one another, they must have access to a 
communication channel. However, the behavior of a distributed system can vary depending on the 
order in which processes access these channels. To account for the different orderings of concurrent 
transitions that involve interprocess communications, a mechanism is required. The IPC model 
tackles this issue by incorporating a global scheduler, which allows for the modeling of different 
possible orderings of communication events between processes. 
 
3.1 The Caching Technique 
 

Instead of storing the communication data in the “ArrayByteQueue”, the proposed method uses 
the request and response tree. The communication data is not deleted during the backtracking 
process, and it uses the request and response pointer to navigate through the data. Initially, the 
request and response tree (RR tree) consists solely of the root node, and when the request and 
response pointers are first established, they also point to this root node. 

To illustrate the set of operations mentioned above, consider the following example. If the client 
sends “0”, the server replies “a”. After that the client sends “1”, and the server replies “b”. The first 
step is to create a new RR tree by invoking the main constructor and providing the socketID as a 
parameter. Since this is the first connection, the socketID equals zero. Then, to distinguish between 
a client or server connection, it is necessary to call setConnectionID(int endpoint). Assuming the client 
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end is 567 and the server end is 763. In the beginning, the tree only contains one node, which is the 
root node, and to ensure that the request and response pointers are set to the root node, the 
addPointers() function must be called. If the target application attempts to transmit the character 
"0", the client operates the addSendEvent("0"). This operation is also addReceiveEvent(“0”) to the 
server tree. After that, the server operates the addSendEvent(“a”). This operation will add the “a” as 
the request to the server tree, and the addReceiveEvent(“a”) method adds the response “a” to the 
client tree as shown in Figure 4. 
 

 
Fig. 4. RR tree illustration after the client sends “0” and the server replies “a” 

 
If another message in the target program tries to send another message "1" to the server, the 

addSendEvent("1") method is executed, and the addReceiveEvent("1") method adds the response 
message to the server tree. Once the transmission is complete, the RR tree for both the client and 
the server tree is displayed in Figure 5. 

The RR tree comprises a tree ID, connection ID, a collection of nodes, and two HashMaps for 
tracking send and receive pointers, which are represented by a HashMap<Integer, Integer>. To 
ensure that each connection has a unique tree, the tree ID is assigned by the socket ID. Furthermore, 
the connection ID is used to differentiate between a client and server connection. To ensure that the 
tree is not empty, a root node is created when the RR tree is first established. After that, it is essential 
to specify the connection ID, which is necessary for determining whether the tree is a client or a 
server tree. Finally, the send and receive pointers are generated and pointed to the root node. 
 

 
Fig. 5. RR tree illustration after the client sends “1” and the server replies “b” 
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4. Experiments and Results 
 
This section presents the results of experimenting with the IPC remodeling approach on various 

Java networked programs. The results are compared with a previous study which utilized 
centralization at the model checker level [7]. The same Java networked programs used in the study 
by Artho et al., [9] are used as the test subjects. Table 1 lists these programs and includes the name 
of the program, its size in terms of lines of code, and its architecture. The simplest program is Echo, 
which has single-threaded server and client processes, while the most complex program is Alphabet, 
which has multi-threaded server and client processes. 
 

Table 1 
Java networked applications used in the experiments 
Application Size (loc) Architecture 

Echo 63 Client/server 
Daytime 56 Client/server 
Chat 135 Client/server 
Alphabet 104 Client/server 

 
When it comes to verifying a complex application, it often involves multiple threads. The main 

focus is on two types of multi-threaded programs: those in which the primary thread generates all 
the worker threads and those in which the primary thread generates only the initial worker thread 
and then allows it to create additional worker threads. To manage both types of multi-threaded 
programs, the request and response tree can be utilized. 

For each experiment, we compare the total number of states explored by the model checker, 
representing the state space size, the total number of bytecode instructions executed by the JPF’s 
JVM throughout the entire model-checking process, the maximum depth of the JPF search tree in 
terms of the number of transitions explored by the model checker, the elapsed time which represents 
the total time spent, and maximum memory which shows the maximum Java heap size. 

All the experiments are implemented using the computer with the configuration described as 
follows: 

(a) Operating System: Windows 10 Pro 64-bit (10.0, Build 19044) 
(b) Processor: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz (16 CPUs), ~2.2GHz  
(c) Memory: 16GB 
(d) Java Development Kit: 1.8.0_333 
(e) Java PathFinder Core System: 8.0 
(f) Eclipse IDE: 4.14.0 

 
4.1 Experimental Settings 
 

To differentiate between the proposed remodeling of IPC and the existing IPC, we use JPF-Nas-
Hybrid (JNH) and JPF-Nas which represent the remodification and the original IPC, respectively. Both 
model checkers are an extension of JPF and are configured to run in multi-process mode, employing 
a multiprocess virtual machine and a distributed scheduler. The distributed Java applications' original 
code is used as input to the model checker. The applications under the centralization model checker 
require the server process to begin first; otherwise, an “IOException” arises. To guarantee that 
executions start with a specific process, the "vm.nas.initiating_target" property is set to the server 
process. Also, the "vm.process_finalizers" property is set to true to allow for finalizers, which are 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 45, Issue 2 (2025) 152-167 

163 
 

necessary to capture certainly distributed application executions and clean up the communication 
channels. These two properties are used throughout the experiment. 

To collect data on the decisions made during the model-checking process, we utilize a listener 
named “gov.nasa.jpf.listener.StateSpaceAnalyzer”. This data is used to identify the primary factors 
that impact the size of the state space in both approaches. Additionally, we compare the scalability 
of the approach to the other approach based on variables such as the number of processes and the 
number of messages sent between processes. Finally, we provide details on the memory usage of 
each approach by reporting the maximum heap memory, in megabytes, that was consumed during 
the entire model-checking process. 

Finally, for all the experiments, we only consider 20 minutes for each run, if any of the runs exceed 
more than 20 minutes, we report it as a state space explosion. Additionally, the existing approach 
can easily hit the CPU performance to 100 percent. In this case, we also report that the run reaches 
a state space explosion, and we will terminate the process execution. 
 
4.2 Echo Application 
 

The first experiment uses an application called Echo which includes a single server process and a 
single client process. Both processes are designed to operate using a single thread and rely on TCP 
sockets for communication. Once the two processes are connected, the client transmits a series of 
messages to the server, and the server responds by sending the same messages back to the client in 
the same sequence. 

In this experiment, we model checks the Echo application by changing the number of threads on 
both the server and client. In each run, the variables “numClients” on the server code and 
“numThreads” on the client code are increased one by one until we reach the state space explosion. 

Table 2 shows the experimental results for model checking Echo application. It shows that this 
approach is more effective as it leads to smaller state spaces, fewer bytecode instructions, and less 
complex search trees in all scenarios. The difference in state space size becomes more noticeable 
when there are more network interactions. This is largely due to the way we model communication 
channels our approach places communication buffers as the request and the response tree and keeps 
them in the connection manager and it does not involve read and write operations, unlike the array 
byte queue from the existing method. 
 

Table 2 
Execution results obtained from model checking Echo application 
Thread  JPF-NAS-

HYBRID 
  JPF-NAS   

Client Server Time (s) States Max Memory (MB) Time (s) States Max Memory (MB) 

1 1 0 60 243 0 66 243 
2 2 0 741 243 0 1397 243 
3 3 2 8767 432 8 27288 688 
4 4 28 98544 432 158 483298 2416 
5 5 411 1075796 782 N/A N/A N/A 

 
4.3 Daytime Application 
 

In our second experiment, we utilized the Daytime application, which consists of a server and one 
or more clients that communicate with each other. Both the server and client processes are single-
threaded and utilize TCP sockets for communication. When a connection is established between the 
server and a client, the server generates a "java.util.Date" object that captures the current time and 
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sends its string representation to the client at that time. While a client is being served, any remaining 
clients are blocked until a connection with the server can be established. 

In this experiment, we used our proposed model checker and JPF-Nas to perform a model check 
of the Daytime application. The complete source code for both the server and client can be located 
in Appendix A. The number of threads is incremented one by one in this scenario. If the execution 
time surpasses 20 minutes, we will terminate the execution. 

The results of testing the Daytime application using JNH and JPF-Nas model checkers are 
displayed in Table 3. The table has three columns: the first one indicates the number of threads for 
the client and server, while the second and third columns present the time in seconds, the number 
of states, and the maximum memory used by the JNH and JPF-Nas model checkers, respectively. In 
every case, our proposed method results in a smaller state space, fewer bytecode instructions, and 
a shallower search graph. However, we can model check Daytime application up to 2 threads only 
due to the complexities of the application. If we set the number of client threads and the server 
threads to 3, the execution time will be longer than 20 minutes. 
 

Table 3 
Execution results obtained from model checking Daytime application 
Thread  JPF-NAS-

HYBRID 
  JPF-NAS   

Client Server Time (s) States Max Memory (MB) Time (s) States Max Memory (MB) 

1 1 0 62 243 0 100 243 
2 2 7 9145 688 23 92598 991 

 
4.4 Chat Application 
 

Our next experiment involves the Chat application, which consists of a server that communicates 
with one or more clients using TCP sockets. The server is designed to handle multiple threads, while 
the clients only use a single thread. Client interactions are managed through a worker thread 
dedicated to handling each interaction. When a client connects to the server, the main server thread 
creates a worker thread to manage its communication. This allows multiple clients to be served 
simultaneously. Whenever a worker thread receives a message from a client, it sends it to all the 
other clients in the system using a shared array that stores references to all the worker threads. The 
worker thread then uses these references to obtain the sockets connecting the chat server to each 
client. 

One of the input variables for Chat is the size of the array that stores references to the worker 
threads. The maximum number of workers that can serve clients at the same time is equal to the size 
of the array. To test Chat, we conducted experiments with varying numbers of client and server 
threads. Table 4 displays the execution times in seconds, the number of states, and the memory 
consumption obtained from applying both approaches. 
 

Table 4 
Execution results obtained from model checking Chat application 
Thread  JPF-NAS-

HYBRID 
  JPF-NAS   

Client Server Time (s) States Max Memory (MB) Time (s) States Max Memory (MB) 

1 1 0 497 243 0 251 243 
2 2 61 330098 687 35 200148 1095 
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In this experiment, we discover that our approach leads to a larger state space and longer time. 
However, our proposed method still consumes less memory. If we look at the source code shown in 
Appendix A, each client sends the letter “H” to the server, and the server forwards the letter to all 
clients. Since the existing centralization processes data byte by byte in the array byte queue, the 
results lead to a smaller state space and lesser computation time compared to ours. 
 
4.5 Alphabet Application 
 

We conducted our last experiment using the Alphabet application, which involves a single server 
connected to one or more clients. Both the server and clients have multiple threads, and they use 
TCP sockets to communicate. Each client is assigned a string of digits, and their task is to get the 
server to convert the string into a string of letters. For example, the string "123" would become 
"ABC". To achieve this, each client creates multiple pairs of producer and consumer threads, with 
each pair responsible for transforming a portion of the client's string. The client determines the 
number of pairs and the size of the substrings to be transformed. Each producer and consumer pair 
connects independently to the server, and the server creates a worker thread to handle each 
connection. For each digit in the substring, the producer thread sends a byte representing the digit 
to the server, which then converts it to a letter and sends it to the consumer thread. The client and 
server can handle multiple connections simultaneously, and multiple communication channels can 
exist between them. 

The results of experimenting with the Alphabet application using JNH and JPF-Nas model checkers 
are displayed in Table 5. The table has three columns: the first one indicates the number of threads 
for the client and server, while the second and third columns present the time in seconds, the number 
of states, and the maximum memory used by the JNH and JPF-Nas model checkers, respectively. In 
every case, the proposed method results in a smaller state space, fewer bytecode instructions, and a 
shallower search graph. 
 

Table 5 
Execution results obtained from model checking Alphabet application 
Thread  JPF-NAS-

HYBRID 
  JPF-NAS   

Client Server Time (s) States Max Memory (MB) Time (s) States Max Memory (MB) 

1 1 0 549 243 0 100 243 
2 2 61 227387 687 82 301409 1691 

 
To summarize, our experiments demonstrated the effectiveness of the proposed approach in 

model-checking networked applications with varying degrees of complexity. The networked 
programs and several matrices are compared similarly to the existing work [7,18]. Our proposed 
approach is found to be more efficient and better performance than JPF-NAS in terms of state space 
size, bytecode instructions, search tree, time, and memory complexity in most cases. 
 
5. Conclusions and Future Work 
 

Addressing the non-deterministic execution of threads, processes, and communication channels 
presents substantial hurdles in the development of dependable distributed systems. Our proposed 
approach introduces the request and response tree as a reliable storage mechanism for 
communication data. Additionally, our work processes data in multi-byte chunks, enabling efficient 
transmission between the client and server. We have also enhanced the RR tree to support multiple 
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connections, making our method scalable as the number of RR trees aligns with the number of 
sockets created by the server/client, with automatic incrementation. In our approach, the nodes in 
the tree represent the sent or received data, and during the backtracking process, we utilize request 
and response pointers to traverse the tree, replacing the need for traditional write and read 
operations. The results show the effectiveness of our work in providing a more accurate IPC model 
for capturing interactions between processes. Notably, our approach successfully detected a bug that 
went unnoticed when employing recent centralization techniques at the model checker level. 
Moreover, the comprehensive evaluation demonstrated that our implementation choices 
significantly improved the overall performance. 

Future work in this area holds promising avenues for further enhancement. One potential 
direction is to explore the integration of advanced optimization techniques to mitigate the state 
space explosion and computational limitations associated with backtracking in existing IPC models. 
By addressing this avenue, we can pave the way for even more robust and efficient model-checking 
techniques for distributed systems, enabling the development of highly reliable and secure software 
systems. 
 
Acknowledgment 
The authors would like to thank the Prototype Development Research Grant Scheme (PRGS) 
(203.PKOMP.6740069) by the Ministry of Higher Education (MOHE) for funding the research project. 
 
References 
[1] Vitillo, Roberto. Understanding Distributed Systems: What every developer should know about large distributed 

applications. Roberto Vitillo, 2022. 
[2] Chan, Charisma, and Beth Cooper. "Debugging Incidents in Google's Distributed Systems: How experts debug 

production issues in complex distributed systems." Queue 18, no. 2 (2020): 47-66. 
https://doi.org/10.1145/3400899.3404974  

[3] Muscholl, Anca. "Automated Synthesis: a Distributed Viewpoint." In 37th IARCS Annual Conference on Foundations 
of Software Technology and Theoretical Computer Science (FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer 
Informatik, 2018. 

[4] Clarke, Edmund M., Thomas A. Henzinger, and Helmut Veith. "Introduction to model checking." Handbook of Model 
Checking (2018): 1-26. https://doi.org/10.1007/978-3-319-10575-8_1  

[5] Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008. 
[6] Beyer, Dirk, and Andreas Podelski. "Software model checking: 20 years and beyond." In Principles of Systems 

Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, pp. 554-582. Cham: Springer 
Nature Switzerland, 2022. https://doi.org/10.1007/978-3-031-22337-2_27  

[7] Shafiei, Nastaran, and Peter Mehlitz. "Extending JPF to verify distributed systems." ACM SIGSOFT Software 
Engineering Notes 39, no. 1 (2014): 1-5. https://doi.org/10.1145/2557833.2560577  

[8] Sherman, Elena, Yannic Noller, Cyrille Artho, Franck van Breugel, Anto Nanah Ji, John Kellerman, Parssa Khazra et 
al. "The Java Pathfinder Workshop 2022." ACM SIGSOFT Software Engineering Notes 48, no. 1 (2023): 19-21. 
https://doi.org/10.1145/3573074.3573080  

[9] Artho, Cyrille, and Willem Visser. "Java Pathfinder at SV-COMP 2019 (competition contribution)." In Tools and 
Algorithms for the Construction and Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III 25, pp. 224-228. Springer International 
Publishing, 2019. https://doi.org/10.1007/978-3-030-17502-3_18  

[10] Artho, Cyrille, Watcharin Leungwattanakit, Masami Hagiya, and Yoshinori Tanabe. "Efficient model checking of 
networked applications." In Objects, Components, Models and Patterns: 46th International Conference, TOOLS 
EUROPE 2008, Zurich, Switzerland, June 30-July 4, 2008. Proceedings 46, pp. 22-40. Springer Berlin Heidelberg, 
2008. https://doi.org/10.1007/978-3-540-69824-1_3  

[11] Artho, Cyrille, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tanabe, and Mitsuharu Yamamoto. "Cache-
based model checking of networked applications: From linear to branching time." In 2009 IEEE/ACM International 
Conference on Automated Software Engineering, pp. 447-458. IEEE, 2009. https://doi.org/10.1109/ASE.2009.43  

https://doi.org/10.1145/3400899.3404974
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1145/2557833.2560577
https://doi.org/10.1145/3573074.3573080
https://doi.org/10.1007/978-3-030-17502-3_18
https://doi.org/10.1007/978-3-540-69824-1_3
https://doi.org/10.1109/ASE.2009.43


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 45, Issue 2 (2025) 152-167 

167 
 

[12] Leungwattanakit, Watcharin, Cyrille Artho, Masami Hagiya, Yoshinori Tanabe, and Mitsuharu Yamamoto. "Model 
checking distributed systems by combining caching and process checkpointing." In 2011 26th IEEE/ACM 
International Conference on Automated Software Engineering (ASE 2011), pp. 103-112. IEEE, 2011. 
https://doi.org/10.1109/ASE.2011.6100043  

[13] Stoller, Scott D., and Yanhong A. Liu. "Transformations for model checking distributed Java programs." In 
International SPIN Workshop on Model Checking of Software, pp. 192-199. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2001. https://doi.org/10.1007/3-540-45139-0_12  

[14] Artho, Cyrille, and Pierre-Loic Garoche. "Accurate centralization for applying model checking on networked 
applications." In 21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06), pp. 177-
188. IEEE, 2006. https://doi.org/10.1109/ASE.2006.10  

[15] Ma, Lei, Cyrille Artho, and Hiroyuki Sato. "Analyzing distributed Java applications by automatic centralization." In 
2013 IEEE 37th Annual Computer Software and Applications Conference Workshops, pp. 691-696. IEEE, 2013. 
https://doi.org/10.1109/COMPSACW.2013.137  

[16] Barlas, Elliot, and Tevfik Bultan. "NetStub: A framework for verification of distributed Java applications." In 
Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering, pp. 24-33. 2007. 
https://doi.org/10.1145/1321631.1321638  

[17] Nakagawa, Yoshihito, Richard Potter, Mitsuharu Yamamoto, Masami Hagiya, and Kazuhiko Kato. "Model checking 
of multi-process applications using SBUML and GDB." In Proc. Workshop on Dependable Software: Tools and 
Methods, pp. 215-220. 2005. 

[18] Leungwattanakit, Watcharin, Cyrille Artho, Masami Hagiya, Yoshinori Tanabe, Mitsuharu Yamamoto, and Koichi 
Takahashi. "Modular software model checking for distributed systems." IEEE Transactions on Software Engineering 
40, no. 5 (2013): 483-501. https://doi.org/10.1109/TSE.2013.49  

 
 
 

https://doi.org/10.1109/ASE.2011.6100043
https://doi.org/10.1007/3-540-45139-0_12
https://doi.org/10.1109/ASE.2006.10
https://doi.org/10.1109/COMPSACW.2013.137
https://doi.org/10.1145/1321631.1321638
https://doi.org/10.1109/TSE.2013.49

