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Due to environmental threats and weather uncertainty concerns, oil palm yield 
prediction is crucial for sustaining crop production. This can be achieved through 
machine learning and utilising remotely sensed data to predict crop yield. However, the 
comparative studies on remotely sensed data in adopting the machine learning models 
are still limited due to the data accessibility. Therefore, we compare and evaluate the 
prediction accuracy between different satellites, namely MODIS and Landsat-7, using 
machine learning algorithms and the topology of deep neural networks. Random forest 
and stacking outperformed linear regression, ridge regression, and lasso regression for 
both Landsat-7 NDVI (R2= 0.78–0.80; RMSE=1.00- 1.26 tonnes per hectare; MAE=0.77- 
0.79 tonnes per hectares; MAPE=0.03-0.04 tonnes per hectare) and MODIS NDVI (R2= 
0.60–0.65 tonnes per hectares; RMSE= 2.72–2.81 tonne per hectares; MAE= 1.42-1.55, 
MAPE= 1.01- 1.02 tonnes per hectares). The Landsat-7 NDVI revealed that neural 
networks with a deeper network topology (R2= 0.85; RMSE= 1.42 tonnes per hectare; 
MAE=0.57 tonnes per hectares; MAPE=0.06 tonnes per hectare) outperformed neural 
networks with a baseline and broader network topologies in terms of performance. In 
contrast, MODIS-NDVI revealed that the neural network with a wider network topology 
had the highest overall prediction accuracy and the lowest prediction error (R2= 0.75; 
RMSE= 2.81 tonnes per hectare; MAE=2.27 tonnes per tonnes; MAPE= 0.13). Because 
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Keywords: 

of its higher spatial resolution in comparison to MODIS, landsat-7 NDVI used in neural 
networks with a deep network topology provided the best model performance. 
Although the use of NDVI as a single input factor may cause uncertainty in some extents, 
it is an efficient and reliable method for improving yield estimation with the use of 
medium-resolution satellites, which has important implications for early warning 
towards the reduction in yield production. 

Landsat-7; MODIS; NDVI; machine 
learning; deep neural network 

 
1. Introduction 
 

Early estimation of oil palm yield is essential for responding quickly to plantation issues. A hectare 
of oil palm cultivation normally generates 3.3 tonnes of oil, which is much higher than the output of 
vegetable oils such as soybean, which yields about 0.4 t/ha [1]. Current practices include using ground 
survey as a yield record. This method was inconsistent and was prone to statistical error and bias [2]. 
Furthermore, numerous current studies have proved that the climate and agronomic aspects are the 
main elements in predicting oil palm yield [3-5]. Only a limited number of studies have focused on 
integrating remote sensing feature and machine learning [6,7]. Therefore, the estimation of oil palm 
yield with the integration of remote sensing feature and machine learning can be an alternative to 
solve the complexity of factors that affect the decline in oil palm yield. 

Over the last several decades, remote sensing such as satellite images has been used to assess 
crop growth and health [8]. The crop status can be used as a benchmark for early prediction in order 
to provide recent data prior to the crop harvesting period. The application of remote sensing for yield 
monitoring is formulated from its close connection to the canopy leaf area index (LAI) and the fraction 
of absorbed photosynthetically active radiation (fAPAR) [9]. The relation between net primary 
production and absorbed photosynthetically active radiation (APAR) is linearly proportional [10,11]. 
Hence, vegetation indices have the potential to be utilised as an indirect indicator of primary crop 
productivity [12]. Several past studies have shown that normalised difference vegetation index 
(NDVI) is a broadly used spectral transformation technique in visible and near-infrared (NIR) regions 
of the electromagnetic spectrum and is suitable for estimation of crop yield.  

Recently, machine learning applications can be used for predicting the crop yield when dealing 
with large data volume [13]. Nevertheless, the oil palm sector is still underutilising machine learning 
and deep learning applications that use analytics with high adoption algorithms, input data, features, 
and model evaluation criteria [14]. Aghighi et al., [15] analysed several machine learning techniques 
for predicting silage maize production using NDVI obtained from Landsat-8 satellite imageries. 
Boosted regression tree (BRT), random forest regression, support vector regression (SVR), and 
gaussian process regression (GPR) methodologies were used and evaluated. BRT outperformed the 
other methods in this study, with an R-value of more than 0.87, while random forest regression was 
the most stable method for predicting maize production. Phan et al., [16] conducted a study to 
predict tea yield with other variables such as MODIS-NDVI and mean temperature using three 
machine learning algorithms: established standard linear regression, support vector regression, and 
random forest regression. The result showed that random forest regression achieved highest 
prediction accuracy in estimating tea yield. In another study, Ang et al., [7] proposed a walk validation 
time-series technique based on advanced ML such as RF and modified AdaBoost algorithms to 
estimate oil palm yields. The result indicated that RF model surpassed AdaBoost model in estimating 
oil palm yield. Conceivably, multiple layers of computation in deep neural networks may be utilised 
in deep learning models to explore heterogeneous information (e.g., remote sensing data) in order 
to solve the complex and non-linear relationships with crop yields [17-19]. 

Spatial resolution is essential when considering the use of satellites for yield prediction [20].  As 
yet, there is lack of comparative study between the Landsat-NDVI and Modis-NDVI in evaluating the 
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accuracy of the yield prediction model in oil palm. Existing studies often experimented on the NDVI 
derived from single types of satellite images for predicting the yield. Evidence shows that the NDVI 
behaviours can be influenced by the spatial resolution of the satellite based on the different sensors 
applied [21]. Therefore, the main objectives of this study were to: 1. Investigate the NDVI derived 
from Landsat-7 and MODIS satellites in predicting the oil palm yields; 2. Evaluate different machine 
learning algorithms and topology of deep neural and compare its performance for the prediction of 
oil palm yields. 
 
2. Methodology  
2.1 Study Area 
 

Our study area comprises 40 blocks in a research plantation located in Pahang state in Malaysia, 
covering 17-kilometre square. Average yearly rainfall (2005–2018) ranges from 112.2 mm to 224.2 
mm. The present study area is fully planted with oil palm (Figure 1). 

 

 

Fig. 1. Location map of the study area 

 
2.2 Yield Data 
 

In this study, we used archive data such as yield information. The plantation administration 
provided annual yield records. The time span of the analysis was confirmed by the availability of 
satellite imagery and oil palm yield data. The present study used 40 blocks of yield data from 2005 to 
2018 (n= 13 years × 40 blocks = 520 data points) as historical ground information. Averagely, the age 
of oil palm across blocks ranges from 4 to 28 years. Pre-processing was performed to remove data 
points with inconsistent yield values, as some blocks are included in the trial plots and may exhibit 
large variations. The general information on oil palm blocks and basic statistical description of yield 
from 2005 to 2018 is shown in Table 1. 
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Table 1 
General information on oil palm blocks and basic statistical description of yield 
Information Values 
Rainfall 112.2 mm to 224.2 mm 
Block sizes in Hectares 1.23 – 145.87 
Ages  4 – 28 years old 
Count 520 
Mean  27.99 tonnes per hectares 
Standard deviation  5.21 tonnes per hectares 

Max  44.46 tonnes per hectares 

Min  18.83 tonnes per hectares 

20%  23.26 tonnes per hectares 

40%  25.97 tonnes per hectares 

60% 28.64 tonnes per hectares 

80% 32.52 tonnes per hectares 

 
2.3 Remotely Sensed Data 

 
In order to conduct the analysis for the yield at block level, we used Google Earth Engine to extract 

an input set of time-series of satellite-based vegetation indices. In this study, a set of time series of 
Landsat-7 and MODIS imageries in the period of 2005–2018 was selected. Terra moderate resolution 
spectroradiometer (MODIS) vegetation indices (MOD13Q1 V6) were used every 16 days and 250-
meter spatial resolution that provides a vegetation index value at a per pixel basis and processing 
from atmospherically corrected bi-directional surface reflectance. We used Terra satellite data that 
is regarded as the continuity index to the existing National Oceanic and Atmospheric Administration-
Advanced Very High-Resolution Radiometer (NOAA-AVHRR) derived NDVI. Generated by remote 
sensing procedures, NDVI is a measure of biomass density on the earth's surface, which can be used 
to predict crop yields. This index is derived from NIR and red region as shown in the following formula 
[22]. 

 
NDVI = (NIR-RED)/(NIR+RED)       (1)  

 
where NIR = reflectance of Near-infrared; RED is the reflectance of red. 
 
To obtain the precise NDVI values, the pixels in the images were scaled by multiplying by 0.0001. 

Landsat-7 with a TOA reflectance of level 1 was utilised because the image contains radiometric and 
geometric corrections for each spectral band. The cloud masking and filling approach was used in 
pre-processing to remove clouds and fill the region with cloud-free images by employing numerous 
image combinations at different periods. The reducer mean function was used to calculate the mean 
NDVI. 

 
2.4 Sampling Strategy 

 
For each block, points were created using Delaunay triangulation, with at least three sampling 

points connected by neighbouring edge [23]. Given that the multiple possible triangles are defined 
over neighbouring population elements surrounding a sample point, it is necessary to develop an 
efficient field protocol that correctly identifies triangles that are part of the same overall triangulation 
required for the average of each block. Delaunay triangulation was used to determine the natural 
neighbours of given sampling blocks. Areas with large differences in concentration between natural 
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neighbours may then be targeted for additional sampling blocks, while areas with slight differences 
may require fewer sampling blocks. 

 
2.5 Machine Learning Workflow 

 
In order to train the model, we divided the data into 70% for training and 30% for validation from 

2005 to 2017. In this study, we used Scikit learn and Mixtend for implementing machine learning 
algorithms for the analysis. Scikit-learn is a library in Python that provides much-unsupervised 
learning and supervised learning algorithms that can be used for classification purposes. It is efficient 
to build machine learning models using this library. Mixtend is a Python library consisting of a stacking 
regressor, which is used to generate the stacking model from multiple based models [24]. One of the 
advantages is easy implementation with fewer codes. 

Traditional linear regression was used in this study as a comparative classifier. Ridge regression 
and lasso regression which belongs to shrinkage technique were also used [25,26]. Ridge and lasso 
regressions contain regularisation parameters (alpha), regulate, and penalise. Lasso regression 
regularisation (L1) uses the magnitude or the vector, that could direct to zero coefficient. Cross-
validation approaches and Scikit-learn grid search were used to determine the optimal regulation 
parameters (Table 2). 

Random forest is a bagging method that uses deep trees to fit on bootstrap samples and combine 
them to produce an output with lower variance. A random subset of the features was selected for 
weak learners by substituting N examples for each of the features. A weak learner, such as a decision 
tree, was then fitted for each of these random subspace features and obtained a prediction from 
each of them before voting to determine the best prediction. Random forest was applied with a few 
of the parameters. The parameters tunings were aided with randomised grid search. The tunings for 
random forest, ridge regression, and lasso regression are provided in Table 2. 

 
Table 2 
Model hyperparameters and tested values  
Information Values 
Ridge regression Regularisation parameters alpha ranging from 1e-08 to 1e+08 
Lasso regression Regularisation parameters alpha 1e-08 to 1e+08 
Random forest Maximum depth of tree: [10,20,30,40,50,60,70,80,90,100,110] 

Minimum number of sample leaf required to be at a leaf node: [1,2,4] 
Minimum number of samples required to split an internal node: [2,5,10] 
Number of trees in the forest: [200,400,600,800,1000,1200,1400,1600,1800,2000] 

 
Stacking generalisation was applied with fewer based models and combined multiple learning 

algorithms via meta-learning [27]. Two successive stages of levels needed to be passed through, 
which are level-0 and level-1. After a series of trial-and-error with multiple selected models, the 
extreme gradient boosting, linear regression, and lasso regression models with the highest accuracy 
were chosen as base models in level-0. In level-0, base learners on training data were independently 
trained and make predictions. In level-1, ridge regression was selected as the meta-learning 
algorithm that was used to combine the predictions of each base algorithm to produce the best final 
predictions. A cross validation of these base models was conducted, and then the out-of-fold 
predictions and the outputs of the base models were used by the meta-regressor to generate a final 
model for final predictions. 
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2.6 Topology of Deep Neural Networks  
 
In this study, various topologies of the deep neural networks were investigated to enhance the 

prediction accuracy, which increases the models’ robustness.  
First, X_(b,y)^NDVI  denotes the NDVI variable NDVI at block b in year y for all NDVI ɛ {0.3,…,0.7}, 

b ɛ {1,…,439}, and y ɛ {2005,…,2018}. It is important to note that the weight determines the 
effectiveness of the NDVI based on the years in which the weight is directly proportional to the impact 
on the network as a whole.  The formula is as shown below 

 
f(x)= ∑𝑋𝑏,𝑦

𝑁𝐷𝑉𝐼Wi            (2) 

 
To predict the oil palm yield in 2018, we used historical data from 2005 to 2017 as NDVI variables 

and we trained three topologies of neural networks, which were used across all blocks. Baseline 
neural network is a benchmark for this study with one input layers, two hidden layers, and one output 
layer. In the hidden layers, thirteen and six neurons were used. Activation function transforms the 
summed weighted input into a smaller value for tiny inputs and applies a threshold to the activation 
of that output node. 

In this study, the rectified linear activation function (RELU) was selected as the default activation 
function as it has been proven to be effective and easier to train for achieving better accuracy. This 
function performs mathematical calculations in which neurons are activated based on their output; 
if the output value declines below zero, the neurons are deactivated from the network. One 
advantage is that it improves computation efficiency for each parameters update [28,29]. The 
function of activation function is as shown below 

 

f(x)=  {
𝑥 𝑖𝑓 𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (3) 

 
Neural network with a wider network topology was developed with the number of neurons in the 

one hidden layer was doubled to thirty. For neural network with a deeper network topology, one 
input layer, three hidden layers, and one output layer were added to the network. The number of 
neurons in the hidden layers was set to thirty, thirteen, and six. The learning rate of neural networks 
was set to 0.01. For Landsat-7 and MODIS satellite imageries, the batch size and epochs were 
accordingly adjusted in order to optimise the accuracy of the model. The neural network topology is 
shown in Figure 2. 
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(a) Wider neural network (b) Baseline neural network 

 
(c) Deeper neural network 

Fig. 2. The topology of neural networks used in this study (a) Neural network (wider network topology) with 
one input layer, one hidden layer with thirty neurons, and one output layer (b) A neural network (baseline 
network topology) consisting of one input layer, two hidden layers consisting of thirteen and sixteen neurons, 
and one output layer (c) Neural network (deeper network topology) with one input layer, three hidden layers 
of thirty, thirteen, and six neurons, and one output layer 

 
2.7 Evaluation of Machine Learning Models 

 
To assess the model performance, we evaluated and predicted the yield for 2018. Four evaluation 

metrics were computed and assessed from the comparison of predicted and observed yields: R-



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 45, Issue 1 (2025) 90-107 

97 
 

squared value (R2), the root mean square error (RMSE), mean absolute percentage error (MAPE), and 
mean absolute error (MAE). The errors metrics were computed on yield forecast at block levels. The 
formulae of the R2, RMSE, MAPE, and MAE are as follows [30-32]: 

 

R2=1-1-〖SS〗_regression/〖SS〗_total          (4) 
 

where〖SS〗_regression is known as the sum squared regression error, and〖SS〗_total is the 
sum squared total error. 

 
RMSE √((∑_(i=1)^n▒(X_(i-) y_i )^2 )/n)         (5) 
 

MAPE= 1/N ∑_t^n▒〖|(A_t-P_t)/A_t 〗|         (6) 
 
MAE=    (∑_(i=1)^n |y_i-ϰ_i |)/n            (7) 

 
We determined the optimal model configuration by comparing the predicted and actual yield 

values. We used hypothesis testing (a two-sample Z-test with significance level of 5%) to establish 
the relationship between actual and predicted yield values in machine learning algorithms and deep 
neural networks for the comparison. Assuming that actual and predicted yield are two distinct data 
sets for each machine learning algorithm and the topology of deep neural networks, the null 
hypothesis is that the two data sets are equal in mean. 

 
3. Results  
3.1 The Trend of NDVI for Oil Palm 

 
As determined by kernel density estimation, the MODIS NDVI is not normally distributed, whereas 

the Landsat-7 is normally distributed. The smoothness of the kernel density estimate demonstrates 
how it estimates for continuous random variables converge more quickly to the actual underlying 
density. Figure 3 depicts NDVI means, and standard deviation calculated based on NDVI for all blocks 
(n=38) from 2005 to 2018 using Landsat. The average NDVI value was 0.47. The maximum NDVI value 
in 2009 was 0.65, while the minimum NDVI value in 2005 was 0.36. 

 

 
Fig. 3. Time series Landsat-7 NDVI 
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Figure 4 depicts NDVI means, and standard deviation calculated based on NDVI for all blocks 
(n=38) from 2005 to 2018 using MODIS. The NDVI value was 0.47 on average. The maximum NDVI 
value for 2009 was 0.67, while the minimum NDVI value for 2017 was 0.31. 

 

 
Fig. 4. Time-series MODIS NDVI 

 

3.2 Evaluation of the Machine Learning Algorithms and Neural Network Topology 
 

Table 3 depicts the performance of machine learning models using Landsat data. Machine 
learning algorithms (linear regression, ridge regression, lasso regression, random forest, and 
stacking) guarantee promising yield prediction models for oil palm based on highest prediction 
accuracy. The stacking had the highest overall prediction accuracy with the lowest prediction error, 
followed by random forest, ridge, and lasso regressions. 
 
Table 3 
Performance of the machine learning models using Landsat data 

Models Testing 

R2 RMSE (tonnes per hectares) MAE (tonnes per hectares) MAPE (tonnes per hectares) 

Linear regression 0.50 1.14 0.83 0.03 
Ridge regression 0.72 1.07 0.77 0.03 
Lasso regression 0.75 1.14 0.83 0.03 
Random forest 0.78 1.00 0.79 0.03 
Stacking 0.80 1.00 0.77 0.03 

 
In general, machine learning algorithms (Figure 5) produced the highest R-squared values with 

more than 0.70. This means that the selected machine learning model configuration implied more 
than 70% of spatial variability for yield prediction in oil palm. Stacking recorded highest R-squared 
value (R2= 0.80) and the least prediction errors based on the testing (RMSE=1.00; MAE=0.77 & 
MAPE=0.03). 
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Fig. 5. The machine learning algorithms for developing yield prediction model using Landsat-7 data (a) linear 
regression (b) lasso regression (c) ridge regression (d) random forest (e) stacking (f) neural network (deeper 
network topology) 

 
Table 4 depicts the prediction accuracy of machine learning models using MODIS data. Stacking 

and random forest algorithms achieved the highest R-squared values with around 0.60–0.65, 
implying that these models had about 60–65% of spatial variability for yield prediction in oil palm. 
Stacking had the least prediction errors based on the testing (RMSE=2.72; MAE=1.42 & MAPE=0.13). 
Linear, ridge, and lasso regressions had the highest prediction errors in testing. Stacking algorithms 
(Figure 6) generated the highest overall prediction accuracy with the lowest prediction error. Random 
forest achieved the second highest overall prediction accuracy, followed by the ridge, lasso, and 
linear regressions. 

 

(a) R2= 0.50 (b) R2= 0.72 

(c) R2= 0.75 (d) R2= 0.78 

(e) R2= 0.80 (f) R2= 0.85 
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Table 4 
Performance of the machine learning models using MODIS data 

Models Testing 

R2 RMSE (tonnes per hectares) MAE (tonnes per hectares) MAPE (tonnes per hectares) 

Linear regression 0.20 4.11 3.32 0.13 

Ridge regression 0.32 4.12 3.33 0.13 

Lasso regression 0.34 4.11 3.32 0.13 

Random forest 0.60 2.81 1.55 0.13 
Stacking 0.65 2.72 1.42 0.13 

 

  

  

  
Fig. 6. The machine learning algorithms for developing yield prediction model using MODIS data (a) linear 
regression (b) lasso regression (c) ridge regression (d) random forest (e) stacking (f) neural network (wider 
network topology) 

(a) R2= 0.20 (b) R2= 0.34 

(c) R2= 0.32 (d) R2= 0.60 

(e) R2= 0.65 (f) R2= 0.75 
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Table 5 depicts the evaluation of the deep neural network using Landsat-7 data. It was found that 
deeper neural networks produced the highest overall prediction accuracy with the lowest error, 
followed by baseline neural networks and wider neural networks. Neural network with a wider, 
baseline and deeper network topologies achieved the highest R-squared values with around 0.77-
0.85, denoting that these models implied approximately 77-85% of spatial variability for oil palm yield 
prediction. Neural network with a deeper network topology (Figure 5(f)) yielded best overall 
prediction accuracy and the lowest prediction errors in testing (RMSE=1.42; MAE=0.57; MAPE=0.06).  

 
Table 5 
Performance of the deep neural networks using Landsat-7 data 

Types Number of 
neurons 

Number of 
hidden layers 

Testing 

R2 RMSE (tonnes 
per hectares) 

MAE (tonnes per 
hectares) 

MAPE (tonnes 
per hectares) 

Wider neural 
network 

30 1 0.79 1.80 1.52 0.06 

Baseline neural 
network 

13, 6 2 0.77 1.56 4.82 0.19 

Deeper neural 
network 

30, 13, 6 4 0.85 1.42 0.57 0.06 

 
Table 6 shows the evaluation of the neural network using MODIS data. Neural network with a 

wider network topology had the highest overall prediction accuracy with the lowest error, followed 
by neural network with baseline and deeper network topologies. Neural networks with a baseline 
and wider network topologies had 73% and 75% spatial variability for yield prediction in oil palm, 
deduced from their high R-squared values of 0.73 and 0.75, respectively. Neural network with a wider 
network (Figure 6(f)) generated the best overall prediction accuracy and lowest prediction errors in 
testing (RMSE=2.81; MAE=2.27; MAPE=0.13). Whereas Neural network with a deeper network 
topology achieved the lowest R-squared value of 0.52, implying about 52% of spatial variability for 
yield prediction in oil palm. 

 
Table 6 
Performance of the deep neural networks using MODIS data 

Types Number of 
neurons 

Number of 
hidden layers 

Testing 

R2 RMSE (tonnes 
per hectares) 

MAE (tonnes per 
hectares) 

MAPE (tonnes 
per hectares) 

Wider neural 
network 

30 1 0.75 2.81 2.27 0.13 

Baseline neural 
network 

13,6 2 0.73 3.87 3.05 0.13 

Deeper neural 
network 

30,13,6 4 0.52 6.80 5.51 0.14 

 
Although the most effective machine learning algorithms produce the most accurate forecasts in 

estimating oil palm yields, differences between other algorithms are not always statistically 
significant. For Landsat-NDVI, results showed that random forest and stacking regressions are the 
best machine learning algorithms. The null hypothesis was accepted, showing no difference since it 
did not reach the significance level of 5%. In contrast, neural networks with wider and deeper 
network topologies are acceptable with the least prediction accuracy errors with no difference as it 
did not reach significance level of 5%. The neural network with the baseline network topology 
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showed a significant difference with a significance level of 5%, so it is not appropriate to use it for oil 
palm yield prediction. 

Random forest and stacking algorithms did not show any significant differences for MODIS NDVI 
since it did not reach 5% significance levels, which indicates that these models are appropriate for 
this study. It was found that a neural network with a wider topology showed no differences since the 
5% level of significance was not reached. 

 
4. Discussion 

 
Stacking and the random forest algorithms had the best overall prediction accuracy and the 

lowest prediction error in our study. Previous studies have shown that ensemble learning algorithms 
were beneficial for crop yield prediction [33,34]. In agreement with Shahhosseini et al., [35], we 
observed that stacking regression achieved higher accuracy than random forest. In a similar study, 
Nishant et al., [36] proved that stacking regression achieved the highest prediction accuracy in 
predicting all kinds of crops that are planted in India. One of the reasons is that combining and 
averaging multiple base models to produce the final prediction improves accuracy compared to single 
model alone [37]. Our findings are in line with other studies conducted by Chandra et al., [38] and 
Wen et al., [39], which show that random forest can be used to predict the yield. Phan et al., [40] 
reported that a random forest model was better than a support vector machine model at predicting 
tea yield using MODIS-NDVI with R-squared between 0.67–0.71.  

Overall, a deep neural network provides reliable accuracy for predicting yield in oil palm. As we 
continued the work studied by Khaki and Wang [41], we investigated the topology of the neural 
network. Hara et al., [32] reported that one hidden layer and four neurons were the best 
configuration to predict seed yield accurately. Our work extended the studies of Haque et al., [42], 
which used only three hidden layers for predicting the crop yield. We found that neural networks 
with wider and deeper network topologies can improve performance depending on the configuration 
settings, such as the number of neurons and hidden layers. The number of hidden layers and hidden 
units in a deeper neural network can be affected by the total number of inputs, the complexity of the 
deep neural network structure, the number of samples used in training, the amount of noise in the 
sample set, the output units, and the training algorithm [43-45]. For example, the Landsat-7 NDVI 
showed that neural networks with deeper network topologies outperformed those with wider and 
baseline network topologies, whereas the MODIS-NDVI showed that neural networks with wider 
network topologies outperformed those with deeper and baseline topologies. This indicated that 
increasing the number of layers did not enhance accuracy, but rather greatly increased the training 
complexity. Deep neural networks, as opposed to standard linear regression, can predict NDVI 
behaviour changes in relation to yield since MODIS-NDVI contains generalisation issue due to lower 
spatial resolution for the prediction of yield at block level, which has caused the results more 
complicated. Upon investigating the influence of the neural network topology on prediction accuracy 
in improving the model, Naitzat et al., [46] suggested that the increase or decrease in the width and 
depth, respectively, on topology change will increase the training patterns and thus affect the 
accuracy. Our result was in agreement with Aghighi et al., [15], who demonstrated that the ML 
approaches outperformed traditional regression methods. One of the reasons is that ML approaches 
outperformed traditional regression methods owing to their capacity to cope with high-dimensional 
data of complicated distributions as well as the inconsistency of NDVI time series. 

 In this study, we identified Landsat-7 was contributing a higher accuracy with minimal 
prediction error in yield prediction compared to the MODIS. This is due to the higher resolution pixels 
which contained a more significant fraction of the agricultural target [47]. This study revealed that a 
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greater spatial resolution at the block level, rather than a higher revisit frequency, accredits more 
accurate yield prediction. Although many studies have shown promising results for yield prediction 
using MODIS [48,49] at regional and country levels, it is not feasible to predict the yields at the block 
level. Our study was in agreement with Jurečka et al., [50]. In that comparative study on spatial yield 
variability with MODIS and Landsat product, it was shown that the correlation of MODIS-NDVI and 
yield is lower with r=0.1 and inconsistent in the prediction, as compared to Landsat-NDVI with the r> 
0.751 [50]. 

Furthermore, Van et al., [51] proved that MODIS-NDVI data were influenced by atmospheric 
water vapour, and the impact was significant. The result of our study nearly agrees with other studies 
that compared the accuracy of the spatial resolutions of satellites. This could be due to noises such 
as atmospheric effects and may not accurately reflect the actual scenario for yield prediction at the 
block-scale. Durgun et al., [52] studied spatial resolution on wheat yield prediction using PROBA-V 
satellite with 100m, 300m, and 1 km resolutions. The results revealed that PROBA-V satellite with 
100m pixel resolution provided more accurate estimates of wheat yield estimation with adjusted 
R²=0.74, RMSE=0.6 t/ha, and MAE=0.46 t/ha. The particularity of this present study compared to the 
aforementioned studies is that this study investigated the prediction accuracy of the Landsat-7 
dataset and MODIS datasets using adopted machine learning algorithms. The reason for poor 
performance using MODIS data is generalisation due to lower spatial resolution than Landsat data.  

Our methodology was limited to one variable, which is NDVI. Added relevant variables are more 
likely to increase prediction accuracy. For instance, weather variables such as temperature, solar 
radiation, rainfall, and precipitation can increase the prediction accuracy when these variables are 
combined with NDVI [16,53,54]. Other vegetation indices help to minimise soil and atmospheric 
disturbances and avoid NDVI saturation at dense canopy cover [55]. Therefore, a variety of 
vegetation indices will be considered in future studies. Future research may focus on investigating 
these issues using higher resolution satellite images. It is most likely that the inaccuracies of the 
model are due to a significant noise signal on NDVI signals generated by cloud cover. 

Increasing temporal resolution may also improve crop growth and the accuracy in yield 
estimation [56]. However, some open-source data have a 10-year archive limit, but access to 
historical observations is essential for constructing a sufficiently large training set for yield 
estimation. In this study, thirteen years of collected data resulted in 439 data points based on block 
management that meet machine learning standards. In future studies, deep learning algorithms will 
be adopted when handling more data points to ensure the data veracity when maintaining the model 
accuracy.  

 
5. Conclusion 

 
Using MODIS and Landsat-7 satellites, we developed an effective machine learning framework 

for forecasting oil palm yields. Our research may be further automated to select the optimum model 
for predicting oil palm yields. A rigorous testing procedure is utilised to provide blocks that are 
suitable for sustained production of oil palm. Overall, NDVI derived from Landsat-7 can be used for 
oil palm yield prediction in the block level using machine learning algorithms and deep neural 
network topology. The best model performance was obtained by using landsat-7 NDVI with a deeper 
network topology as it has a higher spatial resolution than MODIS. However, MODIS-NDVI is not 
recommended for the block level due to the highest prediction errors and the lesser spatial 
resolution. Therefore, the selection of the satellites should be considered based on the spatial and 
temporal resolutions, which can accurately predict the yields over the size of the study area. Due to 
the inconsistency of NDVI time series by satellites, there is a shift toward advanced machine learning, 
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including deep learning. Our result also proved that different neural network topology may affect 
prediction accuracy. For future studies, it is necessary to collect and incorporate additional yield data 
and important factors spanning more than 18 years to make more precise predictions. 
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