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The use of finger veins as biometric authentication is becoming increasingly popular. 
However, low-quality finger vein images pose challenges, necessitating innovative 
approaches for accurate authentication. This research investigates the potential of 
deep learning techniques in addressing this issue, focusing on two prominent 
architectures: U-Net and the proposed Sequential Model. The study conducts a 
comparative analysis of the performance of these models in low-quality finger vein 
image authentication scenarios. U-Net, known for its image segmentation capabilities, 
is explored for feature extraction, while the Sequential Model, incorporating a modified 
VGG16 architecture, brings temporal context through LSTM layers. The research 
presents an in-depth evaluation of both models based on accuracy, recall, precision, 
and other relevant metrics. The findings shed light on the suitability of each approach 
for enhancing the reliability of finger vein authentication in challenging data quality 
contexts. 
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1. Introduction 
 

A finger vein authentication system uses patterns of veins beneath the skin to verify an 
individual's identity. A unique vein pattern on each finger makes it a secure biometric authentication 
method, even if they are identical twins. Since the veins are inherent to our bodies, they cannot be 
faked or stolen. In addition, the finger vein authentication system, being a contactless authentication 
system, reduces the spread of epidemic diseases compared to the widely used fingerprint system. It 
is not necessary to re-register finger vein patterns during the adult years because they remain 
relatively constant, and they are less affected by age or physical condition. Changes in the weather 
or an individual's physical condition have less effect on finger veins. 

Due to hygiene-related issues, contactless biometrics like finger veins have been predicted to 
serve best in the future.  Biometrics based on finger veins can be used in a variety of scenarios. The 
finger vein biometric authentication method allows access to various networks, web applications, 
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web portals etc. without the need to remember long passwords for each application. Furthermore, 
it can be used in the banking domain for credit card authentication, and online transactions to 
improve security and customer convenience. In addition to reducing the time it takes to log in, and 
eliminating the need to type usernames and passwords, it also reduces the financial burden of 
password resets. Physical access control can also be made possible by finger vein authentication 
including passenger verification at airports, attendance tracking, home security, school security, 
building access, automobile security, etc. This helps to avoid problems associated with lost, 
fraudulent, or stolen keys, cards, etc. [1]. 

The haemoglobin in veins changes colour when exposed to infrared light or visible light, which 
can be captured with an infrared scanner or a visible light camera. This can be utilised for acquiring 
finger vein images for enrolment and authentication [2]. 

In this study initially, a U-Net [3,4] architecture was employed for finger vein recognition. As 
authentication mechanisms are intended to grant access to legitimate individuals and prevent 
unauthorized imposters, achieving an accuracy close to 100% is crucial. To attain this goal a novel 
Sequential model is proposed in this study, which was able to achieve an accuracy close to 100. In 
the sequential model, a modified VGG16 architecture was used by removing the final fully connected 
layers and incorporating a time-distributed layer, an LSTM layer, and a dense layer instead. This 
innovative architecture significantly enhances the accuracy and reliability of the finger vein 
authentication system. This method works well with high-quality finger vein images as well since it 
was demonstrated with low-quality finger vein images.   

The paper's structure is outlined as follows: Section 2 presents a discussion of related literature. 
Section 3 details the finger vein authentication system. The configuration of experiments and deep 
learning architectures is explained in Section 4. Section 5 evaluates the outcomes of comparative 
tests, and the paper concludes with Section 6. 
 
2. Related Works 

 
Deep learning approaches have shown promise in enhancing the effectiveness of finger vein 

recognition. However, they have limitations and face several challenges. While some systems 
propose robustness against noise and deformation [5], others claim to handle misalignment and 
shading [6], and some aim to address image quality variations [7]. However, none of these solutions 
are universally robust, and the performance may suffer in real-world scenarios with multiple 
challenges simultaneously. 

Many of the proposed systems rely on deep learning models, such as CNNs [5,8], FCNNs [9], and 
capsule models [10]. However, obtaining a diverse and extensive dataset with image-level 
annotations is challenging, leading to limited training samples, and potentially affecting the system's 
performance. The absence of pixel-level texture labels in public finger vein databases further hinders 
the development of accurate recognition models. The multistage transfer learning used to address 
the lack of labelled training samples introduces dependencies on pre-trained models, potentially 
limiting the system's adaptability to new environments [11]. By combining deep learning, specifically 
semantic segmentation CNNs, with automatic label generation, Jalilian et al., improved finger vein 
recognition performance compared to classical techniques. Their study demonstrates that certain 
FCN architectures, such as U-Net and RefineNet, outperform classical methods and highlight the 
significance of label quality [12]. 

The recognition issues caused by misalignment and illumination variations by introducing a 
biometric system. However, the integration of multiple sensors and the complexity of deep 
convolutional neural networks can increase the computational burden and raise practical 
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implementation challenges [13]. Tamilarasi et al., used convolutional and recurrent neural networks 
in capturing temporal information and has shown promising results. But the sensitivity to hand 
movements and variations in behaviour can still affect the system's identification accuracy [14]. 
While the capsule model proposed by Yagoub, et al., outperforms certain ANN models, its 
implementation is more complex and resource-intensive, making it less suitable for certain 
applications with limited computational resources [15]. 

Several proposed systems rely on preprocessing techniques, such as bias field correction, spatial 
attention mechanisms, and feature block fusion. These techniques may be sensitive to parameter 
tuning and might not be robust to unseen data [16]. The challenge of limited public finger vein 
datasets for training effective convolutional neural networks (CNNs) utilizing a pre-trained CNN 
model to extract vein features. Chiranjeevi, et al., proposed a light weight deep-learning framework 
for real-time sentiment analysis, addressing the computational and dataset limitations associated 
with neural networks. They also mention the need for improved preprocessing to address rotation 
and displacement issues, addressing the insufficient number of training samples, and refining the 
topological structure for a more complete end-to-end framework [17]. 

While deep learning approaches hold great promise for enhancing finger vein recognition 
systems, the existing solutions face challenges in robustness, data availability, and integration 
complexity, reliance on preprocessing techniques and transfer learning, as well as performance 
issues. Addressing these disadvantages is essential for developing efficient and reliable 
authentication systems based on finger vein recognition. Deep learning-based authentication is 
influenced by a variety of factors. These factors include the learning architecture, the training 
strategies, and the feature extraction methods. 
 
3. Architecture of Deep Learning-Based Finger Vein Recognition System 

 
A finger vein recognition system using a deep model includes two phases, model generation and 

recognition: 
 

i. Model Generation Phase: The steps involved in the model generation phase are data 
collection, preprocessing, data augmentation (if required), model training, and model 
evaluation. The first step is to collect a database containing finger vein images. Then pre-
process the dataset by normalizing the images, crop vein part of the image, and resizing 
the images to improve the quality of the input data. The dataset size can be increased by 
performing data augmentation techniques such as translation, rotation, flipping etc.  The 
augmented images are divided into training, validation, and testing sets. Design a deep 
learning model architecture suitable for finger vein recognition. Utilize an appropriate 
optimizer to optimize the model's weights based on the training data. Determine a loss 
function to train the model and monitor the training using metrics such as accuracy or 
loss. The performance of the model should be evaluated using a separate data set that 
was not used during the model's training or validation. Assess the accuracy of the model 
by examining metrics such as accuracy, precision, recall, and F1 score. Once the model has 
achieved satisfactory performance, deploy it in a production environment where it can be 
utilized for real-time finger vein recognition. 

ii. Recognition Phase: During the recognition phase, the trained finger vein model takes the 
image of a person's finger vein as an input and outputs a prediction of whether the image 
belongs to the individual whose finger vein is being authenticated or not. This involves the 
following steps. The input image is pre-processed to normalize, crop, and resize the image 
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to match the input size of the trained model. The pre-processed image is fed into the 
model that has been trained. Based on the possible classes, a probability distribution is 
computed. If the probability score is above the threshold, the user is accepted as 
authenticated, and if it falls below the threshold, the user is rejected. The threshold for 
the probability score in finger vein authentication is typically set by the system 
administrator or the developer of the system based on the desired level of security, rate 
of false acceptances and rejections. Figure 1 shows the architecture of the finger vein 
authentication system employing deep learning techniques. 

 

 
Fig. 1. Finger vein authentication system 

 
4. Experimental Setup 
4.1 Database 

 
This study uses the SDUMLA-HMT finger vein database captured by Shandong University which 

contains finger vein images of 106 persons. The ring, middle and index fingers of the right and left 
hand of all these persons are captured repeatedly 6 times which adds up to 3816 images. The images 
are of size 320*240 and are available in bmp format. The images are captured without using any 
guide bar. Since the images are prone to misalignments and shading, we can consider this to be a 
low-quality finger vein database. 

 
4.2 Pre-Processing  

 
The vein region is extracted from the captured image using a set of pre-processing operations. 

First the contrast of the original image was enhanced through histogram equalization. Then, the 
intensity values are blurred using bilateral filtering, which maintains sharp intensity changes while 
blurring the intensity values similar to the central pixel. Then, the image is divided horizontally, and 
separate masks are created for each half. The “canny edge detection method” is used to separate 
the region of interest (ROI), which contains the actual finger veins. Then dilation and erosion 
operations are applied to ROI to refine it [20]. ROI is transformed into an image with dimensions of 
200x200. The original images from the “SDUMLA-HMT” database and the pre-processed and ROI 
extracted images are shown in Figure 2. 
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(a) 

 
(b) 

Fig. 2. (a) Original images from the “SDUMLA-HMT” 
finger vein database (b) Images after preprocessing 
and ROI extraction 

 
4.3 Data Augmentation 

 
In image augmentation, different transformations are applied to original images, resulting in 

multiple transformed copies. It helps in increasing the diversity of the dataset and can lead to better 
generalization and improved performance of machine learning models [18,19]. Depending on the 
augmentation technique, each copy differs in certain aspects. The dataset comprises only four images 
for each individual, which is insufficient for training a deep-learning model. To address this limitation, 
we employ various transformations such as shifting, rotation, brightness adjustments, and zooming 
[20].  

 

 
Fig. 3. Architecture of U-Net 

 
These augmentation techniques can be mathematically denoted as follows: 

 
Shifting or Translation: x=x+dx                  (1) 
 
y’ = y+dy                     (2)
  

In Eq. (1), x, x' are the original and shifted horizontal pixel coordinates, respectively. In Eq. (2) y, 
y' are the original and shifted vertical pixel coordinates, respectively. dx, dy represents the shift in x, 
y directions, respectively. The value of dx and dy may range from [-10,10] pixels. 
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Rotation: x' = x*cos(θ) - y*sin(θ)                   (3) 
 
y= x*sin(θ)+ y*cos(θ)                                             (4) 

 
In Eq. (3), ‘x’, ‘x'’ corresponds to the original and rotated horizontal pixel coordinates, 

respectively. Similarly in Eq. (4) ‘y’, ‘y'’ refer to the original and rotated vertical pixel coordinates, 
respectively. θ represents the angle of rotation. The value of θ may range from [-15, 15]. 

 
Brightness adjustment: np=op+bf                       (5) 

 
In Eq. (5) np is the new pixel value, op is the old pixel value and bf is the brightness factor which 

may vary between [-0.2, 0.2]. 
 

Zooming or Scaling: x' = x * sf                                   (6) 
 
y' = y * sf                       (7) 

 
In Eq. (6), x, x' are the old and new horizontal pixel coordinates respectively. In Eq. (7) y, y' are 

the old and new vertical pixel coordinates respectively, and sf is the scaling factor which lies between 
[0.8,1.2]. 

By using the above augmentation techniques 40 augmented images per finger per person are 
generated. Hence a total of 240 images were available for each person and this can be used as the 
sequence of images which are to be input to the model. The augmented images are shown in Figure 
4. 

 

 
Fig. 4. Images after applying augmentation techniques 

 
4.4 U-Net 

 
U-Net can be used for computer vision applications, including biometric recognition. Feature 

extraction and matching can be performed with U-Net. The network's ability to learn to identify and 
extract unique patterns and features present in finger vein images can be used for matching and 
authentication [21]. 

U-Net architecture consists of two paths: a contracting one and an expanding one. Information 
from the input image is obtained through the contracting path, which involves extracting both 
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context and features, while the expanding path up samples the features and produces a 
segmentation mask. In finger vein recognition, the segmentation mask can be used to identify and 
extract vein patterns and features. 

The structure of the model is described below. Several layers undergo encoding and decoding via 
a pair of convolutional layers, each accompanied by Batch Normalization and activated by ReLU. After 
a convolutional block, a max-pooling block follows within the encoder segment. Through max 
pooling, the spatial dimensions can be reduced, and while augmenting the count of feature channels. 
The decoder block performs up-sampling using Conv2DTranspose to increase the spatial dimensions 
and concatenates it with the corresponding skip features from the encoder block. The concatenated 
features are then processed by a convolution block. The encoder blocks capture hierarchical features 
at different scales, while the decoder blocks use skip connections to help recover spatial information 
lost during max pooling. 

The optimizer used is Adam optimizer which uses regularization technique to prevent overfitting. 
The employed loss function is “binary cross entropy” which can be defined as follows. 
 
Binary Cross Entropy = − !

"
∑ (Y ∗ log(p(y)) 	+ 1 − Y ∗ log(1 − p(y)))	"
#$!        (8)   

 
In Eq. (8), N corresponds to total count of instances (persons), Y represents class 1, P(Y) stands 

for the probability associated with class 1, while 1-Y refers to class 0, 1-P(Y) signifies the probability 
for class 0. Figure 4 shows the details of U-Net architecture. The implementation details of different 
layers of the U-Net model with the number of parameters are shown in Figure 5. 

It is necessary to train the U-Net to learn to extract unique vein patterns and features, to use it 
for finger vein recognition. During testing, an input finger vein image can be passed through the 
trained U-Net, which would extract the vein patterns and features and produce a segmentation mask. 
This mask can then be used for matching and identification [22]. 
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Fig. 5. Details of different layers of U-Net Model 

 
4.5 The Proposed -Sequential Model 

 
The proposed sequential model uses VGG16 as a feature extractor, followed by a Time Distributed 

layer, LSTM layer, and dense layer for classification. The images in the finger vein dataset are 
organized into sequences, where each sequence contains a series of finger vein images for an 
individual. 

 VGG16 architecture is used due to its strong feature extraction capabilities and the ability to 
learn intricate patterns from images. With VGG16 architecture, the finger veins can be extracted 
more effectively for proper finger vein biometric authentication because of its strong feature 
extraction capabilities. In this architecture, 13 convolutional layers are followed by ReLU activation 
for each of them, using 3x3 filters and stride 1 with zero padding. Max pooling layers with a 2x2 
window and stride 2 are applied after every two convolutional layers, reducing spatial dimensions 
while preserving key features. The fully connected layers from VGG16 architecture are removed. For 
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each input image, a fixed-size feature vector is generated using the convolutional layers of VGG16 
[23]. 

A Time Distributed layer with a flatten layer inside it is used to treat each frame of the finger vein 
sequence separately, while the flatten layer reshapes the data for the subsequent LSTM layer. This 
layer will create a sequence of feature vectors that represents the temporal information for the LSTM 
[24]. Figure 6 illustrates the structure of the sequential model put forth in this study. 
 

 
Fig. 6. The proposed Sequential model for finger vein authentication 

 
The LSTM model will take in this sequence of feature vectors as input and learn to capture 

temporal dependencies between vectors. An LSTM layer with the 32 hidden unit neurons and a 
flatten layer is then added. A Dense layer with 106 neurons representing the 106 classes (person) 
and a SoftMax activation function is added for classification. The model is trained for 25 epochs, and 
it could produce an accuracy of 99.76%. Figure 7 displays distinct layers within the Sequential model 
along with their corresponding parameter counts. 
 

 
Fig. 7. Details of different layers of Sequential Model 

 
5. Results and Discussion 

 
Table 1 presents a comparison of various parameters utilized in both models. The loss function 

used in both cases is binary cross entropy. The optimizer used in U-Net is Adam with an initial learning 
rate set as 0.001 and the Sequential model utilizes the optimizer RMS prop with the initial learning 
rate set as 0.0001. Adam combines the features of both RMSprop and momentum-based approaches 
whereas RMS prop uses second order momentum only for adjusting the learning rates. RMSprop has 
fewer hyperparameters which makes it easier to tune and use.  

Layer Output Shape Param# 

VGG16 (Functional) (None, 7, 7, 512) 14714688 

Time Distributed (None, 7, 7, 512) 0 

LSTM (None, 7, 100) 245200 

Flatten (None,700) 0 

Dense (None,106) 74206 
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It is important to note that the U-Net model underwent a lengthy training period of 40 epochs, 
during which time it consistently achieved an accuracy of 95.7% from the 20th epoch to the 40th 
epoch. The sequential model, in contrast, provided a significantly higher level of performance by 
achieving an accuracy of 99.76% across 25 epochs, outperforming the U-Net model by a considerable 
margin by training through 25 epochs. Being a biometric finger vein authentication technique, it is 
crucial to achieve this high level of accuracy to authenticate genuine and imposter in the real time 
scenarios. 

 
Table 1 
Comparison of parameters in U-Net and Sequential 
Model  

U-Net Sequential 
Model 

Loss function “Binary Cross 
Entropy” 

“Binary Cross 
Entropy” 

Optimizer “Adam 
Optimizer” 

“RMSprop 
optimizer” 

Initial Learning Rate 1e-3 1e-4 
No of Epochs Trained 40 25 
Evaluation Metric Accuracy 

95.7% 
Accuracy 99.7% 

 
A comparison of the count of parameters in both models are displayed in Table 2. Total 

Parameters refer to both trainable and non-trainable parameters, including weights and biases. 
Trainable Parameters are a subset of total parameters that undergo learning and updates during the 
training process to optimize the model. Non-trainable parameters encompass the remaining 
parameters that remain unaltered during the training process. 

The U-Net model has a relatively large number of total parameters, indicating that it is a complex 
model with a significant number of learnable weights and biases. Around 31,793,480 of these 
parameters are trainable, which means they can be updated during training to enhance the model’s 
efficiency. The remaining 5,440 parameters are not trainable, whose values are fixed throughout 
training. 

The Sequential model has a total parameter count of 15,034,094, which is smaller than the U-Net 
model. The trainable parameters amount to 319,406, while the non-trainable parameters are much 
larger, at 14,714,688. 

 
Table 2 
Comparison of parameters in U-Net and Sequential model 
 Total Parameters Trainable Parameters Non-Trainable Parameters 
U-Net 31,798,920 31,793,480 5,440 
Sequential Model 15,034,094 319,406 14,714,688 

 
The large count of parameters to be trained in the U-Net model indicates a more complex model. 

The smaller count of non-trainable parameters in the Sequential model suggests faster training and 
resource efficient operation. 

Figure 8 shows the accuracy and loss graph for the U-Net model. The plot indicates that the model 
has been converged with a validation accuracy of 95.7% as the accuracy remains stable from 18th 
epoch to 40th epoch which indicates that further optimization may not lead to significant 
improvement in the accuracy. 
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(a)  (b) 

Fig. 8. U-Net Model: (a) Accuracy Vs Number of Epochs plot (b) Loss Vs Number of Epochs plot 
 
The accuracy and loss graph for the Sequential model is plotted in Figure 9. The plot indicates 

that the model has been converged with a validation accuracy of 99.7%. 
An authentication system's effectiveness and reliability can be evaluated by considering the 

evaluations metrics like accuracy, Precision, Recall, F1-Score, Kappa Score and Matthews Correlation 
Coefficient as defined below. 

Accuracy is computed by dividing the count of accurate predictions by the total number of 
predictions made. 

 
Accuracy = %&'(	*+,#-#.(,	/%&'(	"(01-#.(,

%+-12	*&(3#4-#+5,
              (9) 

 

 

 

 
(a)  (b) 

Fig. 9. U-Net Model: (a) Accuracy Vs Number of Epochs plot (b) Loss Vs Number of Epochs plot 
 

Precision measures the correctly predicted true positives to the total positive predictions. 
 

Precision = %&'(	*+,#-#.(,
%+-12	*+,#-#.(		*&(3#4-#+5,

                    (10) 
 
The proportion of correctly predicted positive instances relative to the total number of actual 

positive instances is referred to as recall, sensitivity, or true positive rate. 
 

Recall = %&'(	*+,#-#.(,
%&'(	*+,#-#.(,	/	612,(	"(01-#.(,

                     (11) 
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In the F1-Score, precision and recall are combined to form a harmonic mean. 
 

F1-Score =7(*&(4#,#+5∗:(4122)
*&(4#,#+5	/:(4122

                       (12) 
 
The Kappa Score, also referred to as Cohen's Kappa Coefficient, quantifies the agreement 

between predicted and actual labels, considering the potential for random agreement. It provides 
insight into the quality and reliability of the model. 

 
Kappa=		(*+	$	*()

(!	$	*()
                        (13) 

 
“Po” denotes the fraction of observed agreement and “Pe” denotes the fraction of expected 

agreement by chance. 
The Matthews Correlation Coefficient evaluates the effectiveness of binary classifications, 

considering true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 
 

MCC=			 (%*	∗	%"	$	6*	∗	6")
<(	(%"	/	6")(%*	/	6*)(%*	/	6")	(%"	/	6*))

                             (14) 

 
Table 3 shows various metric values for the different deep learning models. The sequential model 

exhibits better performance compared to other models, suggesting its suitability for finger vein 
authentication.  

 
Table 3 
Comparison of evaluation metrics for U-Net and Sequential Model 

 

Ac
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ll  

F1
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M
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s 
Co

rr
co

ef
 

AlexNet [25] 0.7020 0.7010 0.9030 - - - 

ResNet18 [24] 0.9713 0.9837 0.9587 - - - 

VGGNet16 [24] 0.9710 0.9861 0.9554 - - - 

VGG19 
[25] 

0.8757 0.88 0.78 - - - 

U-Net 0.9571 0.9702 0.9750 0.973 0.664 0 . 9 7 3 

Sequential 0.9976 0.9742 0.9976 0.986 0 . 9 8 9 0.990 

 
The graphical representation of the basic evaluation metrics has been provided in Figure 10 for 

better comparison. 
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Fig. 10. Comparison of evaluation metric for different models 

 
5. Conclusion 

 
As the finger vein biometric authentication gains more importance in the scenario of contactless 

authentication system, the significance for accurate and reliable authentication is evident. This study 
addresses the challenges posed by low quality finger vein images through a comparative analysis of 
two deep learning architectures: U-Net and the proposed sequential model. The investigation brings 
out the capability of deep learning models to overcome the limitations of low-quality images. U-Net 
demonstrated its capacity to extract relevant features from noisy inputs, whereas the sequential 
model with modified VGG16 architecture and integration of LSTM layers introduced temporal 
context further enhancing accuracy and reliability. This research sheds light on the effectiveness of 
finger vein authentication using low quality images. The primary challenge faced in this work is the 
training time required to find an optimal architecture for achieving this accuracy, which could be 
improved by future researchers. 
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