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Neuroscientific evidence suggests that weight gain may be associated with changes in 
brain lobes' volume and function, as well as impulsive behaviour related to eating. 
However, it remains unclear whether impulsivity behaviour in overweight subjects is 
linked to abnormal activity in the resting state. To address this question, we propose a 
novel method to assess the relationship between different levels of body mass index 
(BMI) and neural activity of the prefrontal cortex (PFC) using electroencephalography 
(EEG) resting state data. EEG signals recorded during open-eye resting state from 36 
subjects were divided into two groups based on BMI: overweight and normal weight 
subjects. We applied wavelet transform technique to compute the power for 
decomposed EEG bands and extracted coherence maps to assess the functional 
connectivity of the PFC. The one-way analysis of variance (ANOVA) was employed to 
assess the difference in EEG variables between the study groups. The results show a 
significant increase in the power of the sub-Theta band (4.49-5.34) Hz in overweight 
subjects compared to normal weight subjects (p-value = 0.001), as well as dysfunctional 
connectivity between left-right prefrontal sites in the overweight group with 
decreasing coherence function. These outcomes suggest that the specific PFC-EEG 
signals observed in overweight individuals are consistent with EEG patterns seen in 
other impulsivity-related diseases. Therefore, our findings reveal a specific EEG pattern 
in overweight adults that could be potentially utilized in developing neurotherapy-
based treatment methods for overweight management.  
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1. Introduction 
 

BMI is a common parameter used in screening the individuals' weight categories such as normal 
weight, overweight, and obesity, based on mass and height of individuals (kg/m²). Recently, the 
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World Health Organization (WHO) has reported that more than 1.9 billion adults are overweight (BMI 
≥ 25 kg/m²), and more than 650 million are obese (BMI ≥ 30 kg/m²) worldwide [1]. The increase in 
BMI (more than 25 kg/m²) may lead to health problems such as diabetes and cardiovascular disease. 
The Global Burden of Disease in 2017 reported that 4 million people die each year because of being 
overweight or obese [2]. Thus, managing BMI in adolescence is warranted to reduce metabolic 
syndromes, such as diabetes and cardiovascular disease.  

The overweight and obesity individuals have an impulsive behaviour in eating or craving for 
overeating of high-calorie foods, which is considered the key to weight gain [3]. The impulsive eating 
behaviour might have independent or overlapping effects on neurocognitive health. Therefore, 
overweight reduction could in turn improve aspects of neurocognitive health. Recent evidence in 
neurosciences suggests that weight gain may be linked to adverse changes in brain lobes volume and 
function, as well as weakness in cognitive behaviour [5,7]. In contrast, the weakness in brain functions 
and cognitive disorders such as impulsivity behaviours could be the cause of weight gain. However, 
these suggestions remain a matter of speculation, but it is important to note their evidence for causal 
links between overweight and adverse changes in brain structure and function. 

 The prefrontal cortex (PFC) is essential for impulse control and decision-making [30], particularly 
in the context of eating behaviours and weight management. Obesity and overweight are associated 
with impaired decision-making and cognitive inflexibility, with opposing patterns of impulsive 
behaviour. Specific areas of the PFC show alterations in activation and extent of dysfunction in these 
conditions [20,29]. Modulating excitability in the dorsolateral prefrontal cortex (DLPFC) influences 
the liking but not the wanting of highly palatable foods, implying involvement in the hedonic 
experience of eating [21]. Accordingly, it is reasonable that overweight adolescence may accelerate 
the onset of other brain diseases such as Alzheimer's or depression in the long term. Therefore, 
neuroscientists have conducted research to understand how high-BMI affects brain health. 
Accordingly, it is reasonable that overweight adolescence may accelerate the onset of other brain 
diseases such as Alzheimer's or depression in the long term. Therefore, several neuroscience studies 
have aimed to investigate how high-BMI affects brain health.  

Generally, functional magnetic resonance imaging (fMRI) is one of the neuroimaging modalities 
used to estimate neuronal activity based on indirect signals that reflect the fluctuation in brain blood 
flow and blood oxygenation levels, called blood-oxygen-level-dependent (BOLD) [4]. The BOLD 
signals produce images of brain structure that can be used for clinical analysis. In BMI studies, fMRI 
is widely used to assess the relationship between overweight and brain based on structural analysis. 
For instance, Kakoschke et al., [5] applied fMRI to scan the association between high-BMI and 
volumes in brain regions linked to obesity. Their results illustrated high-BMI related to larger 
cerebellar white matter, medial orbitofrontal cortex (OFC), and nucleus accumbent volume, and 
impulsive eating behaviour related to smaller amygdala and larger frontal pole volumes. Park et al., 
[6] used dynamic analysis method with fMRI data to improve the assessment outcomes between 
overweight and brain functional activity. The authors inferred that executive control brain network 
showed a strong correlation with impulsive eating behaviour and high-BMI. These studies applied 
fMRI under task experiment related to food-cue stimuli. In contrast, Li et al., [7] used the fMRI to test 
the relation between hippocampus and amygdala brain regions with a food-cue task and resting 
state. The authors showed that brain activity of these regions in resting state is higher in overweight 
than normal weight individuals. 

Electroencephalography (EEG) is another neuroimaging modality applied to determine brain 
activity based on direct electrical signals from surface electrodes placed on the scalp [8]. EEG signals 
include information about brain activity in several frequency bands, and these can be decomposed 
into frequency bands such as Delta, Theta, Alpha, and Beta. Apart from fMRI, EEG data has good 
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temporal resolution, an affordable price, and is easy to set up. However, there are only a few 
published studies on EEG-BMI data in the literature. More details on the recent studies that aimed 
to assess the relation between EEG and overweight subjects are provided in the following section. 

 
1.1 Related Work 

 
The EEG data provides a more objective assessment of impulsive eating behaviours. The EEG 

experiments based on event-related potential (ERP) are used to assess the association between EEG 
signals of selected regions and food-cue performance in overweight and obesity cases. Recent studies 
[9,10] have shown similar spike (P300) amplitudes for high- and low-calorie food and the strongest 
food-cue related EEG-alpha band desynchronization for low-calorie stimuli. Bauer et al., [11] have 
analysed the EEG power in female adolescents with obesity under a working memory task and 
revealed that frontal beta increased in obesity compared to control. Dubbelink et al., [12], on the 
other hand, have used magnetoencephalographic (MEG) data and demonstrated that functional 
connectivity in the delta and beta bands increased in overweight during close-eyes resting state. The 
studies mentioned above acquired EEG signals from specific scalp sites under a task experiment 
related to food-cue stimuli. However, it remains unclear whether impulsive behaviour in overweight 
subjects might relate to their abnormal activity in the resting state. Resting-state data would be 
valuable to figure out the neural mechanisms behind impulsive eating behaviours, which is a critical 
marker of weight gain. The brain activities of specific regions as measured by resting-state EEG are 
mostly stable over time. Therefore, the EEG-resting state may be a good index of cognitive activation 
analysis and mental disorders diagnosis [13,14]. 

To date, the relation between overweight and neural activity based on EEG-resting state is poorly 
understood. Only three studies reported in the literature have employed the EEG resting state to 
assess the relationship between neural activities and overweight or obesity in specific terms. Babiloni 
et al., [15] have analysed the EEG power in overweight adults. Their analysis revealed that the alpha 
band of the parieto-occipital site decreased compared with normal weight as control during eyes-
closed resting state and alpha band of the posterior site had abnormal fluctuations during eyes-open 
resting state [16]. Schmidt et al., [17] examined the EEG spectral power in 12 overweight children 
and compared that with 22 normal weight children as control. Their results showed significantly 
increased delta and decreased alpha band power in overweight children compared to control during 
eye-close resting state. As mentioned, recently cited studies have focused on examining the relation 
between neural activities at resting state and children's weight status. As EEG signals differ depending 
on age, their results would not be adopted for adults older than 15 years [18]. However, the 
neurophysiological indicators in general and their association with adults' weight status are still fuzzy 
and have not yet been investigated. 

Despite the evidence of the studies mentioned earlier, EEG studies in overweight have not 
explicitly considered EEG analysis methods. The above-cited studies [15-17] have employed the 
frequency domain technique to extract the spectral power of EEG signals, leaving the question of 
whether the time-frequency domain in EEG analysis is effective to extract important information for 
the proper examination of neural activities among overweight subjects. Immense amounts of EEG 
data have been acquired experimentally, and it is not possible to analyse EEG data visually [19]. 
Therefore, there is a solid demand to extract relevant information from EEG signals accurately. 
Several methods have been described for EEG informative features extraction, which involve the 
frequency domain, such as relative spectral power in different frequency bands [15-17], and recently 
the time-frequency domain, including wavelet transformation coefficients [23,24]. From the studies, 
effective EEG features to examine the neural activities' association with high-BMI are required. 
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In this work, the relation between the difference in BMIs (normal and overweight) and EEG 
activity based on a time-frequency processing scheme is investigated. First, the EEG signals are 
recorded from scalp sites according to the 10/20 international system in a bio-polar montage. Then, 
the EEG signals are inspected visually to remove the noise and artifacts. After that, continuous 
wavelet transform (CWT) is applied to visualize and compute the power of EEG signals in several 
frequency bands. Finally, one-way analysis of variance (ANOVA) with a probability (p-value) < 0.05 is 
used to compare between study groups and find significant variance in EEG bands between normal 
and overweight subjects. The research assesses the relation between EEG-resting-state data and 
high-BMI subjects based on the time-frequency domain. 

The rest of the paper is structured as follows. Section 2 describes the proposed data collection 
and data analysis methods, including participant recruitment, EEG data acquisition, pre-processing, 
EEG features extraction, and statistical analysis. Section 3 presents the results and analysis. Finally, 
section 4 presents the discussion and conclusion.  

 
2. Methodology  

 
The objective of this study is to assess the relationship between high BMI and EEG-PFC features 

using time-frequency analysis. The statistical analysis is implemented through ANOVA testing with a 
(p-value) < 0.05. The main steps of this study are illustrated in Figure 1. Additionally, Algorithm 1, 
presented herein, assumes a central role within this process, facilitating the effective discrimination 
and assessment of EEG-PFC features among individuals with distinct BMI classifications.  

 

 
Fig. 1. Methods to find correlation between difference in BMIs (normal and overweight) based 
on statistical analysis of EEG components.  

 
2.1 Participants Recruitment 

 
The study was performed at the Clinical Neurophysiology Clinic at Medical Lab-Faculty of 

Medicine and Health Sciences, Universiti Putra Malaysia (UPM). Participants were recruited from 
UPM through advertisements in student social media groups, library boards, and the main entrance 
of the faculties. The potential participants are from different ethnic groups, including local and 
international students, who were asked to undergo a screening test to assess their eligibility 
according to inclusion and exclusion criteria. Participants must have a body mass index more than or 
equal to 18 kg/m²; participants must be within the defined age limit (18 – 45) years, participants must 
not have any head injury or brain disorders. While the exclusion criteria include those currently 
undergoing treatment with drugs evoking weight variation, currently pregnant, currently smoking, 
and left-handed. The enrolment process took one month (between May-June 2018). 

Thirty-six respondents managed to fulfil the inclusion criteria and after receiving information 
about the aims of the study, each participant provided a written consent form to participate in the 
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study. Then, all participants were divided into two main groups; eighteen participants with BMI less 
than or equal to 18 kg/m² as the normal weight group, and eighteen participants with BMI more than 
25 kg/m² as the overweight group, their characteristics are summarized in Table 1. 

 
Table 1 
Participants characteristics based on BMI groups and EEG 
parameters 

 
 
 
 
 
 
 
 

Algorithm 1: Extracting time-frequency components of EEG-PFC signals in discriminating normal 
and overweight groups using mean value of power for each EEG frequency bands 

 
i. Input filtered EEG signals = matrix (𝑚 ×  𝑛) 

m = 18 (number of subjects), n = 2 (number of groups) 
ii. Fpi signals = i× 𝑡 

 i = scalp site number (1,2) , t = timepoints (15360) 
iii. [CWTi, Frq] = estimate CWT coefficients for each EEG-PFC signal 

 i = Fp scalp site number (1,2) , Frq = frequency bands ranged (1-16) Hz 
iv. PDn =  the sum of the absolute squares of wavelet coefficients divided by the signal 

length based on decomposition levels  (Dn=  decomposition levels) 
v. Gj = cluster the outcome of (4) into matrix (𝑚 ×  𝑛) 

vi. p-value = run ANOVA test for each cluster (Gj) 
 While j ≤ 2 repeat step (6) 
 If p-value ≤ 0.05  
 Save p-value at T 

else T = empty 
vii. F = find the most significant EEG bands based on T-index 

 
2.2 EEG Data Acquisition 

 
The Prefrontal Cortex (PFC) plays a main role in controlling the executive brain networks, 

especially in restraint the impulsive behaviours such as craving for overeating in overweight and 
obesity cases [20,21]. The EEG signals of PFC have been applied in several mental health analyses 
such as depressive symptoms [22], and neuropsychological performance in healthy [8]. In the current 
study, EEG signals are acquired from prefrontal Fp1, Fp2 by placing two surface gold electrodes to 
measure the brain signal on the scalp sites with ear-clip electrodes measuring the reference signals 
according to the 10-20 system, EEG parameters are illustrated in Table 1, and the head-size of the 
participant was measured to identify these positions. 

The positioning steps of electrodes are illustrated in Figure 2 (a). The bipolar montage was used, 
the active electrodes were placed on the left and right prefrontal positions (Fp1-Fp2); the reference 
electrodes were placed on the left and right (A1-A2) earlobe as shown in Figure 2 (b). For EEG-resting 
state data, the participant is seated on a comfortable chair facing the digital screen, showing different 

Details Normal weight Group Overweight Group 

Subject umber 18 18 
BMI average ±std (Kg/m2) 22.9 ± 1.5 30.7 ± 3.5 

Age average ±std (Years) 28.7 ± 3.8 27.5 ± 7.5 

Gender (Male, Female) (12, 6) (11, 7) 

Number of EEG channels 2 electrodes (Fp1, Fp2) 

Sampling frequency 256 (Hz) 
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color bands, helping the participant to relax. Then, electrodes are placed on their forehead and 
earlobes after skin preparation. Then, EEG recording played for 5 minutes, the participant asked to 
be relaxed and should keep eyes open during the recording session. 

 
2.2.1 Pre-processing EEG data 

 
The resting-state EEG data is collected from 36 subjects as mentioned above with sampling rate 

256 Hz. Inspecting EEG signals by eye is deemed necessary here to remove artifacts such as eye-
blinking, body motion, itching or other artifacts sourced from an EEG equipment or the electrodes. 
After that, only the first 60 seconds for each signal are extracted to avoid any unstable timepoints 
that may affect the signal quality, so the dimension of EEG signals for each individual, is 2-number of 
electrodes × 15360-timepoints. Then, each signal is treated by band-pass filter with range 1-42 Hz to 
remove artifact caused by electrical power supply (60-50 Hz) and smoothed by using Gaussian filter 
before CWT implementation. 

 
2.2.2 EEG feature extraction 

 
The PFC activity is analysed based on the power of sub-EEG frequency bands. In general, the EEG 

power bands computed in previous studies [15,17] are based on power spectral density (PSD). 
Technically, PSD requires the selection of a fixed sliding-window size for coefficient measurements 
and only frequency domain information is extracted with good resolution.  

In contrast, implementing a time-frequency technique with continuous wavelet transform (CWT), 
provides a multi-resolution image of sub-EEG frequency bands called scalogram. Scalogram is a 2D 
matrix plotted as a function of time and frequency bands of the signal. Scalogram is advocated to use 
for better time visualization for a short-time period and high frequency or slow-frequency 
visualization for a longer period. Therefore, CWT is a more powerful method than the conventional 
cosine and Fourier transforms, as a time-frequency transform. 

CWT has been implemented widely in signal processing [24,31] for time-frequency component 
extraction. Therefore, CWT is proposed as a good approach in this work to extract the time-frequency 
components of EEG-PFC signals. The CWT coefficient is defined as the convolution of the EEG signal 
𝑥(𝑡) with the scaled and translated version of the mother wavelet 𝜑 as: 

 

𝐶𝑊𝑇(𝑎, 𝑏) =  
1

√𝑎
 ∫ 𝑥(𝑡). 𝜑∗∞

−∞
 (

𝑡−𝑏

𝑎
) 𝑑𝑡                                                                                                        (1) 

 
where a denotes wavelet scale, b denotes positions and * denotes the complex conjugate. The 
filtered EEG-signal for each PFC site is decomposed into Dn×15360 by using CWT based on Morse 
wavelet, where Dn is number of decomposition levels of the wavelet coefficients. Depending on the 
principal frequency components of filtered EEG signals, 49 is the maximum number of 
decompositions as listed in Table 2. As noted, the filtered EEG signal is decomposed into specific 
wavelet coefficients for each level in a particular frequency range. For example, third level of Theta 
band is decomposed into 11 wavelet coefficients with frequency range 4.00-7.55 Hz. According to 
the decomposition levels, the power of sub-band relative frequency range is calculated.  

The power is then calculated for each EEG-band by summing all values for each level. The average 
of the power for each decomposition level is estimated and applied with ANOVA to test the 
hypothesis and realize the most significant EEG-bands in comparison to normal and overweight. 

In the subsequent step, the brain connectivity between the left-right hemisphere could assist in 
understanding dysfunctional neuroscientific causes. Therefore, the wavelet coherence method is 
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applied to determine the similarity of neural activity between Fp1-Fp2 based on time-frequency 
contents of the EEG signals. 
 

Table 2 
Participants characteristics based on BMI groups and EEG 
parameters 

EEG band Levels  Wavelet coefficients  Frequency range  
Beta 1 D1-4 13.45 – 16.00 Hz 
Alpha 2 D5-13 8.00 – 12.69 Hz 
Theta 3 D14-25 4.00-7.55 Hz 
Delta 4 D26-49 1.00 – 3.55 Hz 

 
The common power 𝐶𝐹𝑝1−𝐹𝑝2 between the pairwise 𝐶𝐹𝑝1, 𝐶𝐹𝑝2 is measured at various scales a 

and time b using  
 
𝐶𝐹𝑝1−𝐹𝑝2(𝑎, 𝑏) =  𝑆(𝐶𝐹𝑝1

∗ (𝑎, 𝑏)𝐶𝐹𝑝2(𝑎, 𝑏))                                              (2) 

 
Then, the coherence map 𝐶𝑜ℎ𝐹𝑝1−𝐹𝑝2 between two-sites is calculated using:  

 

𝐶𝑜ℎ𝐹𝑝1−𝐹𝑝2 =  
|𝐶𝐹𝑝1−𝐹𝑝2(𝑎,𝑏)|

2

(𝑆|𝐶𝐹𝑝1 (𝑎,𝑏)|
2

).(𝑆|𝐶𝐹𝑝2 (𝑎,𝑏)|
2

) 
                                                                       (3) 

 
The coherence map dimension (49 ×15360) is factored using singular value decomposition (SVD). 

SVD is one of the factorization methods used to extract the top decomposition value of rectangular 
matrices such as the coherence map [27]. The SVD of the coherence map 𝐶𝐹𝑝1−𝐹𝑝2 is expressed as: 

 
𝑆𝑉𝐷 (𝐶𝑜ℎ𝐹𝑝1−𝐹𝑝2) =  Ս. 𝛴. 𝑉𝑇                                                                        (4) 

 
Where 𝑉 (15360×15360) and Ս (49×49) are orthonormal matrices, and 𝛴 (49×15360) is a diagonal 

matrix of singular values. The first element in 𝛴 (1,1) matrix is the Top-SVD value and carries more 
fundamental information of the original matrix [28]. In this study, the Top-SVD represents the 
important part of the coherence map and is used with ANOVA test to assess the difference in 
functional connectivity between study groups. 

The EEG data is collected based on two-independent groups; Group-1 comprises normal weight 
subjects with BMI ≥ 18 kg/m2, and Group-2 comprises overweight subjects with BMI ≥ 25 kg/m2. 
Based on the EEG features, the hypothesis is µ1≠ µ2, where µ1 is the mean of sub-EEG frequency 
bands power in Group-1 and µ2 is the mean of sub-EEG frequency bands power in Group-2. The null 
hypothesis is µ1= µ2. The analysis of variance (ANOVA) is applied to test the hypothesis that is 
appropriate to compare between two groups with significant variance based on p-value < 0.05. 

 
3. Results  

 
In this section, we evaluate the relationship between different BMI classifications and EEG-PFC 

activities using Continuous Wavelet Transform (CWT). Mean values for each group are calculated, 
and the variance between the two groups is assessed through ANOVA test parameters, including F-
values and p-values. The F-value provides insight into the effect size of different BMIs on EEG feature 
variations. Higher effect size values suggest an increase in F-values and a decrease with a more 
modest effect size. The p-value evaluates the significance level of the effect size. This study explores 
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three frameworks: correlations between different BMIs and EEG-Fp1 features, EEG-Fp2 features, and 
asymmetric values between Fp1-Fp2. 
 

 
Fig. 2. (a) Determination of the position of Fp1, Fp2 scalp site based on 10/20 international system, 
(b) placement of the EEG-electrode on Fp1 and Fp2 as active electrodes and A1, A2 as reference for 
bipolar EEG montage 

 
3.1 Correlations Between Different BMIs and EEG-Fp1 Components 

 
The mean wavelet energy of the four frequency bands of EEG-Fp1 was calculated for both normal 

and overweight groups. The results are presented in Figure 3. Notably, the power values are highest 
for the overweight group (Group 1) across the four frequency bands, while the lowest values are 
observed for the normal weight group (Group 2).  
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Fig. 3. Average power (µV²/Hz) for EEG frequency bands of 
Fp1 site for overweight group (Group 1) and normal 
weight group (Group 2) 

 
The variance results between the two groups and the ANOVA test parameters are tabulated in 

Table 3. The F and p-values suggest that the wavelet energy of the Theta band holds the most 
significant correlation between different BMIs and Fp1 activities. 

 
Table 3 
ANOVA test parameters of average power (µV²/Hz) for 
EEG frequency bands of Fp1 site for overweight group 
(G1) and normal weight group (G2) 
EEG bands G1 G 2 Variance (G1-G2) F p-value 
Delta 4.57 3.09 1.48 6.93 0.01 
Theta 4.05 1.86 2.19 11.83 0.001 
Alpha 3.54 1.42 2.12 9.63 0.003 
Beta 3.34 1.09 2.25 9.94 0.003 

 

Further analysis of the wavelet coefficients for EEG frequency bands (1-16) Hz, averaged across 
group subjects, is shown as a scalogram for both normal and overweight groups in Figure 4. There is 
notably high power in the sub-theta bands (4-5) Hz of the EEG-Fp1 signal for the overweight group 
compared to the normal weight subjects, indicating significant variance in power (2.19) with a p-
value < 0.005.  
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Fig. 4. Scalograms of EEG-Fp1 time-frequency components 
for overweight (top) and normal weight groups(bottom) 

 
For a more detailed representation, the power of sub-Theta bands for each group, along with 

ANOVA test parameters, is tabulated in Table 4. Based on F and P-values, the Theta bands in the 
range of 5.34 to 4.49 Hz show the most significant variance in values between the two groups, with 
a p-value of 0.001. 
 

Table 4 
ANOVA Test Parameters of Sub-Theta Bands Power 
(µV²/Hz) for Overweight Group (Group 1) and 
Normal Weight Group (Group 2) of Fp1 Site 
Theta Bands (Hz) Group 1 Group 2 F p-value 

5.34 3.98 1.76 11.85 0.001 
5.04 4.07 1.82 12.01 0.001 
4.76 4.17 1.91 12.04 0.001 
4.49 4.26 2.01 12.15 0.001 

 

3.2 Correlations Between Different BMIs and EEG-Fp2 Components 
 
The average power for the four decomposition levels of EEG-Fp2 was determined for both normal 

and overweight groups, and the results are presented in Figure 5.  
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Fig. 5. Average power (µV²/Hz) for EEG frequency bands of 
Fp2 site for overweight group (Group 1) and normal 
weight group (Group 2) 

 
Similar to the previous analysis, the power is highest in the overweight group across the four 

frequency bands, and lowest in the normal weight group. The variance results and ANOVA test 
parameters are displayed in Table 5. Based on the F and p-values, it can be inferred that power in the 
Theta band holds the most significant correlation between different BMIs and EEG-Fp2 activities. 

 
Table 5 
ANOVA test parameters of average power (µV²/Hz) for 
EEG frequency bands of Fp2 site for overweight group 
(G1) and normal weight group (G2) 
EEG bands G1 G 2 Variance (G1-G2) F p-value 

Delta 5.57 3.23 2.34 14.20 0.001 
Theta 5.09 1.98 3.11 18.92 0.001 
Alpha 4.62 1.57 3.05 17.48 0.001 
Beta 4.31 1.16 3.15 18.36 0.001 

 
Further analysis of the Wavelet Transform of the EEG-Fp2 signal, averaged across group subjects, 

is shown in Figure 6. This analysis identifies specific frequency bands that exhibit significant changes 
between normal and overweight subjects.  
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 45, Issue 1 (2025) 137-153 

148 
 

 
Fig. 6. Scalograms of EEG-Fp2 time-frequency components 
for overweight (top) and normal weight groups(bottom) 

 
The results, as presented in Table 6, indicate that sub-theta bands 5.34 to 4.49 Hz show significant 

differences between the two study groups, with a p-value of 0.004. These findings emphasize the 
significant correlation between different BMIs and theta bands of EEG-PFC, suggesting that BMI 
classifications impact the functional connectivity between the left and right prefrontal cortex. 

 
Table 6 
ANOVA Test Parameters of Sub-Theta Bands Power 
(µV²/Hz) for Overweight Group (Group 1) and 
Normal Weight Group (Group 2) of Fp2 Site 
Theta Bands (Hz) Group 1 Group 2 F p-value 

5.34 17.35 11.09 7.89 0.008 
5.04 17.92 11.15 8.76 0.005 
4.76 18.4 11.32 9.25 0.004 
4.49 18.66 11.60 9.28 0.004 

 
3.3 Correlations Between Different BMIs and Fp1-Fp2 Coherence 

 
High coherence values indicate similarity in neural activity between Fp1 and Fp2, reflecting the 

integrity of functional connectivity in the prefrontal area. Figure 7 represents the average wavelet 
coherence between Fp1 and Fp2 for the overweight and normal weight groups. The x-axis represents 
time, and the y-axis indicates EEG sub-frequency bands (1-16) Hz. The color-coded areas in the figure 
denote coherence status. The red colour signifies strong coherence (in-phase), green represents 
weak coherence (anti-phase), and shades of blue indicate no coherence. Differences between the 
groups are evident, with stronger coherence observed in the normal weight group compared to the 
overweight group.  
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Fig. 7. Coherence of Fp1-Fp2 based on time-frequency 
contents of EEG signals for overweight (top) and normal 
weight groups(bottom) 

 
The results of the ANOVA test are presented in Table 7, indicating a significant difference in 

coherence maps between the two groups (F = 9.28, p-value = 0.004). These findings suggest that 
overweight status impacts the functional connectivity between the left and right prefrontal cortex, 
potentially affecting cognitive functions associated with overeating behaviours [5,29]. 

 
Table 7 
ANOVA Test Parameters of Top-SVD Values of 
Coherence Maps (Fp1-Fp2) for Overweight Group and 
Normal Weight Group 

Top-SVD Overweight Group Normal Weight Group 

Mean 311.03 425.30 
Variance 114.26 
F 9.28 
p-value  0.004 

 
4. Discussion 

 
The present study assessed the relationship between high BMI status and neural activity of the 

PFC based on EEG-resting state data, providing insights into the underlying neurophysiological 
mechanisms of how weight gain impacts brain functions. According to the outcomes, the null 
hypothesis that the mean of sub-EEG frequency band power in the overweight group is equal to the 
mean of sub-EEG frequency band power in the normal weight group was rejected. The following main 
points summarize the results: Firstly, the power of the sub-Theta band (4.49-5.34 Hz) in EEG signals 
for Fp1 and Fp2 increased in overweight compared to normal weight subjects. Secondly, the 
functional connectivity based on wavelet coherence between Fp1 and Fp2 decreased significantly 
among overweight subjects compared with the normal weight group. These findings suggest that 
overweight-specific PFC-EEG signals are characterized by higher slow-band activity (Theta) during the 
resting state, akin to EEG signals observed in other impulsivity-related disorders such as ADHD [25]. 
Additionally, the study suggests that frontal cortical dysfunction, as observed in individuals with 
ADHD, might explain deficits in self-eating regulation in adults with overweight and obesity. 
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Direct comparison of this study's outcomes with previous research on resting-state activities in 
overweight subjects was challenging due to the variations in neuroimaging acquisition terms and 
feature extraction methods. However, a brief comparison with previous studies is outlined in Table 
1. Notably, while there were some differences in experimental terms, all studies hypothesized the 
same concept. For instance, in the study by Babiloni et al., [15], encoded EEG signals during the 
resting state with closed eyes, revealing abnormal EEG-Alpha band activity in parietal, occipital, and 
temporal scalp sites related to overweight status. Similarly, Del Percio et al., [16] aimed to assess the 
EEG-Alpha band in parietal, occipital, and temporal scalp sites with eyes open during the resting state. 
However, their findings may not directly correlate with understanding impulsivity behaviour in 
overweight subjects due to the absence of direct cognitive function control over parietal, occipital, 
and temporal scalp sites [20]. Another study by Schmidt et al., [17] focused on examining the 
relationship between neural activities during the resting state and children with overweight status, 
but EEG signals differ based on age, rendering their results inapplicable to adults aged over 15 years 
[18]. Stephan et al., [29] observed that overweight individuals exhibit altered resting-state functional 
connectivity (rsFC) in the medial frontal cortex (MFC) using fMRI data acquisition.  Furthermore, the 
previous studies employed the power spectral density technique for EEG feature extraction and 
applied the ANOVA test to identify the most significant band related to overweight subjects 
compared to the normal weight group as controls. However, the wavelet transform technique is 
highly effective in nonstationary signal analysis such as EEG [23,24]. 

The primary contribution of this study lies in the utilization of resting-state EEG, combined with 
the wavelet transform method, for the assessment of brain activity in overweight individuals, as an 
alternative to fMRI. When comparing EEG and fMRI, it becomes evident that EEG offers superior time 
resolution compared to fMRI, providing more precise and time-localized information about brain 
activity. The wavelet transform plays a crucial role in providing time-localized information about the 
EEG signal, enabling the identification of specific events or patterns within the signal. This capability 
underscores the significance of decomposing the EEG signals into multiple levels, facilitating the 
visualization of the sub-EEG frequency bands, and ensuring an accurate assessment of the 
relationship between EEG mechanisms and the subjects under study. As demonstrated in the results 
section, the sub-Theta bands of the prefrontal cortex (PFC) were found to be heightened in 
overweight subjects compared to those with a normal weight. This significant finding can potentially 
be seamlessly integrated with other research focusing on behaviour control in overweight 
individuals, offering valuable insights into sensory-driven behaviours that contribute to overeating 
and subsequent weight gain. 

 
5. Conclusion 

 
This study successfully assessed the relationship between body mass index and neural activity in 

the prefrontal cortex of overweight adults using EEG resting state data. Our findings demonstrate a 
significant increase in the power of the sub-Theta band and dysfunctional connectivity between 
prefrontal sites in overweight subjects, highlighting potential neurophysiological factors associated 
with impulsivity behaviour related to overeating. These specific EEG patterns observed in overweight 
individuals provide valuable insights for developing targeted neurotherapy courses, such as EEG-
neurofeedback, to influence neural processes underlying impulsive behaviour and support 
overweight management. By integrating neuroscientific approaches with weight management 
strategies, we aim to pave the way for more effective and personalized interventions for individuals 
struggling with overweight and obesity. 
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Table 8 
Summary of existing resting-state studies for overweight and obesity 
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