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According to World Health Organization (WHO), in 2020 there were 2.3 million of 
women have been diagnosed with breast cancer and there are up to 685,000 deaths 
globally. 85% of breast cancer arises in the lining cells (epithelium) of the ducts known 
as ductal carcinoma in situ (DCIS). One of the contributing factors that increase cancer 
mortality is the lack of understanding of the biological complexities of cancer growth 
and its evolution. Mathematical-model approaches are widely used to quantitatively 
understand the behaviour of the cancer cells and the treatment resistance. In order to 
justify the treatment customization and convey the treatment inefficacy, the 
mathematical modelling is usually considered as a tool to support drug and treatment 
decision making. By now, several mathematical models via ordinary differential 
equations (ODEs) for the cancer cell growth process have been formulated in the 
literature. Unfortunately, due to the noise behaviour of cancerous cells, the developed 
linear model cannot represent the real behaviour of the cancer cells growth which led 
to the development of stochastic model of cancer cells growth. This study is devoted to 
comparing the performance of linear and stochastic cell growth model of DCIS. The 
linear model cell growth model of DCIS has been solved via Runge-Kutta method of 
order 4.0 while the stochastic cell growth model of DCIS has been solved via fifth-stage 
stochastic Runge-Kutta method (SRK5) of order 2.0. The numerical results obtained 
have been compared to the real cell growth data for DCIS patients and the best model 
representing the cell growth of DCIS has been concluded. This study has shown that 
stochastic Gompertzian model has a great representation of the real systems of breast 
cancer cell growth.  This useful clinical knowledge provides a better understanding of 
cancer evolution to overcome the treatment resistance hence may help oncologists to 
design better treatment strategies and bring opportunities to treat cancer patients. 
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1. Introduction 
 

The growth of abnormal cells uncontrollably leads to the formation of cancer cells that can start 
in almost any organ or tissue of the body. Even though there have been tremendous progress been 
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made in conjunction to increase one’s understanding of how the cancer cells growth and also 
increasing the way they respond to treatment, the financial cost and deaths of cancer cases continues 
to grow worldwide with estimated of 19.3 million new cancer cases and about 10 million cancer 
related deaths in 2020 which caused cancer to be nominated as the second leading cause of mortality 
throughout the world.  

The condition where the abnormal cells are found inside a breast milk duct is known as ductal 
carcinoma in situ (DCIS). DCIS is represented as the first type of breast cancer since is unlikely to turn 
invasive as it remains confined within the milk duct and does not spread beyond. Thus, DCIS is 
considered as non-invasive breast cancer. DCIS requires an evaluation and discussion of treatment 
alternatives even if it is not an emergency. Surgery to remove all of the breast tissue or radiation 
therapy may be used as a kind of treatment. Another choice would be a clinical trial looking at active 
monitoring as an alternative to surgery. 

One of the contributing factors that increase cancer mortality is the lack of knowledge of the 
biochemical complexity involved in the development of cancer and its evolution as mentioned in 
Yang et al., [1]. The complicated and varied nature of cancer highlights the ongoing need to improve 
knowledge of how malignancies originate and how medical professionals should provide systematic 
treatments to maximize the therapeutic value for specific patients. Significant advancements in 
theoretical, clinical as well as experimental methods to comprehend the behavior of cancer cells, the 
mechanism, the progression of cancer, and therapeutic resistances have recently been made. 
According to Ma et al., [2], within the last five years, attention has been given to intensively 
investigating the evolution of cancer cells through a model-based approach. Since the mathematical 
approach was proven to provide the quantitative characterization of cancer evolution, therefore, the 
use of mathematical modelling to enhance pharmacological and treatment decision making is widely 
regarded as a way to overcome treatment failure and rationalize therapy personalization. 
Mathematical-model approaches are widely used to quantitatively understand the behavior of the 
cancer cells and the treatment resistance. In previous research, it has been mentioned that the 
Hallmarks of Cancer provide a comprehensive conceptual framework for understanding numerous 
aspects of cancer biology and the causes of the disease's acknowledged variety. However, it can be 
quite challenging for a particular individual to comprehend how the hallmarks that happen affect 
their tumor’s growth dynamics and responsiveness to treatment using only verbal thinking. In Bull 
and Byrne studies in [3], the authors illustrate how mathematical modeling might offer a 
complementary framework for addressing all difficulties and introduce a characteristic of 
mathematical oncology in order to characterize mathematical models to represent the dynamics of 
cancer cells. Six key mathematical characteristics have been identifying which are Single framework 
vs Hybrid framework, Homogeneous vs Heterogeneous, Spatially averaged vs Spatially resolved, 
Single scale vs Multi-scale, Deterministic vs Stochastic and Continuum vs Discrete [3]. Each 
characteristic represents a decision that will ascertain the degree of biological details to be weighed, 
the complexity to solve the model and all data that the model can provide. There are different 
mathematical modelling approaches with different complexities existed. This is due to each model 
representing a different combination of cancer characteristics in different ways which involve more 
biological complexity and more difficulties to analyze. Different mathematical models such as 
Ordinary differential equations, stochastic differential equations, partial differential equations, 
mixed systems of differential equations, cellular automata and off-lattice agent-based models 
combine cancer characteristics in different ways. It contributes to the different biological 
complexities involved [3]. 
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By now, several mathematical models for the cancer cell growth process have been formulated 
in the literature. Classical mathematical models depicting the growth of tumors have influenced our 
understanding of cancer and have overall consequences for determining the optimal dosage and the 
timing of patients should be treated as studied by Ghaffari et al., in [4]. However, Yin et al., in [5] said 
it is evident that cancer evolution takes place in a highly uncertain environment as a result of the 
chaotic behaviour in the human body. To reflect the realistic behaviour of cancerous cell growth, a 
mathematical model that describes this process should take into account the stochastic effects. In 
2021, a stochastic process that may affect the development of metastases in lung cancer has been 
included in research on the growth and metastatic spread. Kozlowska and Swierniak have mentioned 
in [6], this study has shown that a mathematical oncology approach could be used to determine 
which cancer therapy options could delay the emergence of metastases. Mathematical modelling of 
solid tumor growth starts when Gompertz created a mathematical model to describe his law of 
human mortality as proven in Ma et al., [2]. There has been wide range of applications of the 
Gompertz model in predicting the growth of tumor cell. The deterministic Gompertz model can be 
written as 
 

                                                                                                                (1) 
 
where   represent the area in of the tumor at time,  ,  is a parameter related to the 
initial mitosis rate representing the intrinsic growth rate of the tumor and  which is the growth 
rate deceleration factor is related to the process known as antiangiogenic process. However, there 
are always differences between the curve predicted by the Gompertz model and the clinical data of 
tumour growth since there are inherent disturbances or oscillations in tumour growth. These 
inherent noises or fluctuations may be caused by hormonal changes, variations in blood pressure, 
breathing, variable neural control of muscle activity, enzymatic reactions, energy requirements, 
cellular metabolism, sympathetic nerve activity, or other differences in an individual’s characteristics 
like body mass index, genes, smoking status, stress level, etc. [7]. Therefore, a better mathematical 
model to represent tumor growth was developed. The growth of cancer cells has been modelled via 
stochastic differential equations (SDEs) by incorporating random effects to the deterministic 
Gompertz model. Assuming that the variation of environmental conditions had influenced the rate 
of intrinsic growth, , therefore the uncontrolled factors is allowed into (1) by writing the intrinsic 
growth parameter as 
 

                                                                                                                                       (2) 

 
Note that  is the diffusion coefficient and for ,  is a stochastic process having 

Gaussian distribution with variance,  and mean zero. Hence, the stochastic differential equation 
for mathematical model of breast cancer tumor growth can be written as 
 

                                                                                           (3) 
 

The equation in (3) known as a stochastic Gompertzian model as in Mazlan and Rosli, [8] 
describing in vivo growth of tumor and its sensitivity treatment with the presence of antiangiogenic 
drugs. In this study, the stochastic Gompertzian model in (3) has been solved and compared to the 
deterministic Gompertz model, the forecasting model of breast cancer cell growth and the real data. 
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This study will reveal the performance of stochastic Gompertz model in describing the growth of 
breast cancer cells. 
 
2. Numerical Method 

 
Solving the stochastic models will be challenging due to its complexity in representing random 

effects incorporated. In many cases analytic solutions are not available for these SDEs. Therefore, we 
are required to use numerical methods to approximate the solution. In ordinary differential 
equations (ODEs), Runge-Kutta (RK) method is a popular alternative to solve ODEs numerically. RK 
method is a free-derivative method since it does not require the use of the high order derivatives of 
functions where it can develop high-order accurate numerical methods using only the functions 
themselves. These characteristics of RK method somehow contribute to the convergency of the 
solution to the ODEs [9].  Since the accuracy in the solution of an initial value problem (IVP) can be 
guaranteed by solving the problem using variable step size [10], the Runge-Kutta Fehlberg (RKF45) 
method has been used to solve the Linear Gompertz model. It has a process to check whether the 
right step size h is being applied. Two distinct approximations for the solution are created and 
contrasted at each step. The approximation is approved if there is substantial agreement between 
the two responses. The step size is decreased if there is a discrepancy between the two responses to 
a given accuracy. The step size is increased if the solutions agree to more significant digits than 
necessary. Use of each of the following six values is necessary for each step: 
 
  

                                                                          (4) 

 
Then, an approximation to the solution of the IVP is made using Runge-Kutta method of order 4: 

 

                                                                                                   (5) 

 
where the four function values  and  are used. A better value for the solution is 
determined using a Runge-Kutta method of order 5: 
 

                                                                           (6) 
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The optimal step size can be determined by multiplying the scalar  times the current step size, 
. The scalar   is 

 

                                                                                                       (7) 

 
The great performances of RK method in solving ODEs attract researchers’ attention to develop 

RK method in the field of SDEs. The development of stochastic Runge-Kutta (SRK) method for solving 
SDEs started when Rumelin in 1982 expanded the Runge-Kutta method in the area of SDEs by 
replacing the derivatives of the stochastic Taylor approximation in the Milstein scheme by differences 
[11]. In 2018, SRK method for SDEs with high order of convergence 2.0 has been developed by [12] 
known as fifth-stage SRK method (SRK5). The SRK5 scheme for solving SDEs can be written as 
 

                                 (8) 

 
where 
 

 

 
and  and  represent the stochastic integrals. In Butcher’s tableau form, the numerical scheme 
of SRK5 method can be written below. 
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On the other hand, Box-Jenkins Model is one of the mathematical models designed to forecast 

data ranges based on inputs from a specified time series. In order to provide accurate forecasts, the 
Box-Jenkins Model is able to perform analyses on a wide variety of time series data. The approach 
enables the model to identify trends by employing moving averages, seasonal differencing, and 
autoregression in order to provide forecasts, which is why Autoregressive Integrated Moving Average 
(ARIMA) models are a variant of Box-Jenkins model. It is not uncommon for people to use the phrases 
ARIMA and Box-Jenkins interchangeably. This method is the most common method used in price 
prediction research. The SRK5 method presented above has been used to solve stochastic 
Gompertzian model for breast cancer cell growth in (3). The approximate solution to this model will 
then be compared to the deterministic Gompertzian model in (1), forecasting model of cancer cell’s 
growth and the clinical data of breast cancer patients. 
 
3. Result & Discussion 
 

The linear Gompertzian model has been solved via RKF45 while stochastic Gompertzian model 
for breast cancer has been solved by using SRK5 method in (8) for 2 breast cancer patients, labelled 
as Patient 1 and Patient 2. This Gompertzian stochastic model has been solved and compared to the 
linear Gompertzian model, Time Series Forecasting model and also real data and the result have been 
presented as in Figures 1 and 2. Figures 1 and 2 evince that the Gompertzian stochastic model 
predicts the expansion of breast cancer cells in a manner that is commensurate with the actual data 
of the area of cancer cells for Patients 1 and 2. This is because the stochastic Gompertzian model can 
accurately depict the system of cancer cell proliferation even when random factors are present. 
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Fig. 1. The comparison of the solutions via Linear Gompertzian model, Stochastic 
Gompertzian model, Time series Forecasting model and the clinical data of breast cancer 
cells for Patient 1 
 

 
Fig. 2. The comparison of the solutions via Linear Gompertzian model, Stochastic 
Gompertzian model, Time series Forecasting model and the clinical data of breast cancer 
cells for Patient 2 

 
The comparison of root mean-square error (RMSE) and global error across all models to actual 

breast cancer patient data can support this agreement. The following formula can be used to 
determine the RMSE. 

 

                                                                                                                                         (9) 

 
where xi is the experimental data,   is the approximated solution and is number of observations. 
Meanwhile, Global error can be written as 
 

                                                                                                                                                   (10) 
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 : number of trajectories used in each numerical simulations where for this 
research, . 

 
The analysis of the RMSE and Global error can be summarized in the following Table 1 and Table 

2 respectively. 
 

Table 1 
Mean-square error (MSE) of Linear Gompertzian model, Stochastic Gompertzian model and 
Time Series forecasting 
Mathematical Model Patient 1 Patient 2 
Linear Gompertzian Model 0.92513 3.60947 
Stochastic Gompertzian Model 0.01129 0.58147 
Time Series Forecasting Model 0.70400 5.69999 

 
Table 2 
Global error of Linear Gompertzian model, Stochastic Gompertzian model and Time Series 
forecasting model 
Mathematical Model Patient 1 Patient 2 
Linear Gompertzian Model 0.0167 0.0228 
Stochastic Gompertzian Model 00014 0.0071 
Time Series Forecasting Model 0.0144 0.0324 

 
Low values of MSE and global error, as shown in Tables 1 and 2, which suggest good fits, are 

produced when the solution is obtained using the stochastic Gompertzian model, which incorporates 
random components and is therefore more consistent with the actual data. This result showed that 
the stochastic Gompertzian model more accurately predicts the tumor progression of breast cancer 
than the linear Gompertzian model and the time series forecasting model. 
 
4. Conclusions 
 

The stochastic Gompertzian model for breast cancer results is better able to describe the 
presented data than the deterministic Gompertzian model, as seen by the low values of MSE and 
global error. The growth of the cancer cell is susceptible to random influences in the real system 
because there are numerous uncontrollable external factors impacting it. Many studies on the 
development of cancers have utilised the Gompertzian deterministic model. However, there are 
always differences between the curve predicted by Gompertzian deterministic and the clinical data 
of tumor growth because there are inherent disturbances or oscillations in tumor growth. 
Consequently, a more accurate mathematical model to depict the tumor growth model was created. 
This study showed that the stochastic Gompertzian model more faithfully represents the real 
behaviour of cancer growth than its deterministic counterpart. It is important to remember that the 
stochastic Gompertzian model will give a better picture of the malignant progression for breast 
cancer since it takes into account the random events that could disrupt the real system. This finding 
advances our knowledge of the uncontrolled factors that affect breast cancer cells. Additionally, it is 
better characterising the development of cancer, which has the potential to be very helpful in the 
future personalization and optimisation of anticancer treatments. It is strongly advised that medical 
professionals take into account this mathematical model-based strategy, which can assist in 
providing a better treatment and also aid cancer patients overcome a treatment resistance. This 
study has demonstrated the stochastic Gompertzian model's excellent potential for creating a digital 

i
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replica of the real systems. As a result, oncologists will be able to model and forecast the behaviour 
of cancer cells in the future and direct them in making decisions. The ability to tailor care makes it 
possible to treat cancer as a chronic illness. 
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