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A general framework for catchment classification may be helpful for more accurate and 
efficient modeling of hydrologic systems, as well as to improve communication 
between hydrology researchers and those in other disciplines. There are plethora 
numbers of methods applied for catchment classification, but in these years, recent 
studies are implementing the complex networks concept for classification purposes. 
The community structure methods which are complex networks-based methods are 
focus mainly to classify catchments. Hence, the efficiency of complex network ideas, 
especially using the methods of community structure is examined in this study. 
Specifically, the modularity optimization method that is one of the community 
structure methods is applied to classify 218 stream-gauges stations in entire Australia 
that covers a large variety of hydroclimatic, topographic, geomorphic, soil usage, and 
climatic parameters. In the present study, the applicability and the efficiency of the 
community structure concept is validated by the proposed method. The classification 
of Australian catchments was further assessed with threshold value of 0.8, which 
resulted formation of nine communities with at least 9 stations in a community which 
combine to have almost 77% of the total number of stations (165 out of 218). All nine 
selected communities were also examined in terms of the flow characteristics (i.e. flow 
mean and flow covariance) and the catchment characteristics (i.e. drainage area, 
elevation and stream length). The catchment behaviors for each selected communities 
were also interpreted in terms of distance and correlation relationship, which give 
some useful insights towards generalization of hydrologic framework. 

 

Keywords: 
Catchment classification; Community 
Structure; Modularity; Complex 
Networks; Streamflow 

 
1. Introduction 
 

Catchment classification is needed for a variety of environmental, hydrologic and ecological 
research, especially for determining the right level of model complexity, extrapolating and 
interpolating data scheme, and for environmental water assessment. Catchments are streamlined 
into groups and subgroups according to their key criteria in catchment classification. There are 
several strategies and techniques for classifying catchments. For examples those based on 
ecohydrologic and geomorphic factors, river/flow regimes, geostatistical properties, entropy 
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properties, hydrologic similarity indices, scale properties, data-driven methods and data-based 
mechanistic strategies as well as by hydrological responses and statistical regression analysis [1-3]. 
As a result, the complexity of various types of catchments were also varied. The primary issue with 
classifying catchments is that it necessitates studying the network of catchments and taking into 
account as much as many criterias. The number of catchments, the geographic area, the type and 
resolution of data (spatial and temporal), all affect the size and shape of such a network [4].  

With the advancement of complex network science in recent years [5], community structure 
concept has been recently applied for studying streamflow as well as other hydrological data sets, 
especially rainfall [6-9]. Whichever approach is used, the primary idea in classification of catchment 
is to observe any existence of connection (for example, correlation or similarity indices) may occurs 
between a pair of catchments and then the strength of those connections will be use for grouping 
[1]. Numerous complex networks have nodes that organize into distinct groups, each of which 
becomes more densely coupled with the other networks. The qualities of each individual node and 
the network as a whole have little bearing on the traits of this group. The "community" is this group, 
and the "community structure" is this kind of network organization [10]. Walktrap, leading 
eigenvector, edge betweenness, modularity optimization, greedy algorithm and label propagation, 
are a few techniques for community structure in complex networks. According to studies based on 
community structure methods for classification of catchments, there are several studies and method 
for detecting communities in the network have been developed [7,11,12].  

Some of the methods for community structure are based on modularity metrics, which measure 
the quality or strength of the community, such as edge betweenness [13], greedy algorithm [14], 
leading eigenvector [15], and multilevel optimization [16]. The present study is focused on the 
suitability of community structure method which is modularity-based specifically, the modularity 
optimization method to classify Australian catchments. As Australian catchment is one of the reliable 
and covering vast mass of various regions which are ideal for a ‘test bed’ to assess the performance 
for the proposed method. At the same time, this study is carried out to strengthen the assessment 
of  the general suitability of community structure techniques especially modularity-based method for 
catchment classification. Therefore, applying the modularity optimization method across large areas 
and multiple river basins, which will almost certainly include a wide range of hydroclimatic, 
topographic, geomorphic, land use and other broader related features is crucial to study and analyse 
the effectiveness of such methods in community structure concepts. Therefore, the present study 
applied the modularity optimization method to monthly 218 streamflow stations in entire Australia. 
The catchment characteristics such as drainage area, elevation and stream length as well as flow 
characteristics such as flow mean and flow covariance (CV) will be examined for catchment 
behaviours understanding based on selected communities. Apart from that, the analysis of 
classification also will interpret the communities identification based on distance and correlation 
relationship. 

This paper is organized as follows. In Methodology, the Modularity Optimization method is 
explained. Next section describes the study area of Australian catchments and the details of 
streamflow data used is provided. The study's findings and the classification of streamflow in 
Australia are discussed and interpreted in results and discussion section. In final section offers 
suggestions for more research directions and make some conclusions. 
 
2. Methodology  
 

Network is consists of a set of nodes connected by links when represent in hydrological research, 
streamflow are represented as nodes and links are denoting similarities between the pair of nodes. 
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Then, a set of nodes that share similarities will create communities [17]. Several methods for 
detecting communities in networks have been developed. Modularity (Q) value, which measures the 
strength or the quality of a community are highly hinged in several of these methods. 
 
2.1 Modularity Optimization Method 

 
This modularity optimization method proposed by Blondel [16] uses a similar approach from the 

greedy algorithm method where initially, each node is placed to its own community. Moreover, as 
the aforementioned modularity function (or Q value) proposed by Newman and Girvan [15] is a well-
known method to measure community structure. To identify community characteristics, the Q value 
will calculate the difference between the actual number of intra-community links and the expected 
number of links. Divisions with the highest modularity values have better community structure than 
divisions with the lowest modularity values. Modularity is a standard objective function in defining 
network clusters that measures the quality of network division into communities. Networks that have 
communities based on high modularity values are communities that have strong link connections 
between nodes in the community but have weak connections between nodes in other communities 
[18]. Modularity can also have a positive or negative value, where a positive value indicates the 
presence of community structure, and a negative value indicates the absence of community 
organization. Hence, the structure of communities can be accurately analysed by finding network 
partitions with positive and large modularity values [19]. 

Figure 1 shows a simple undirected network graph with six nodes and seven links where the 
connection between node 𝑖 and node 𝑗 is similar to the connection between node j and node i. The 
procedure to apply modularity optimization method is firstly, consider such a network has 𝑛 
vertices/nodes. By dividing a given network into two subgroups let, 𝑠𝑖 = 1 if vertex 𝑖 belongs to group 
1 and 𝑠𝑖 = −1 if it belongs to group 2. Then, adjacency matrix will be constructed where if there is 
exist a link between a pair of vertices 𝑖 and 𝑗, it will be denoted with 1 and 0, otherwise. The 
modularity function to calculate the modularity value (Q value) to each subgroup, used in the present 
study is shown in Eq. (1). 

 

 
Fig. 1. A simple undirected network graph 

 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝑐𝑖𝑖,𝑗 , 𝑐𝑗)           (1) 

 
where 𝐴𝑖𝑗  represents the adjacency matrix, m is the count of edges, 𝑘𝑖  and 𝑘𝑗  represents the degree, 

from the adjacency matrix, 𝑐𝑖 is the count of all rows/columns, and 𝑐𝑗 represent a type (or group), 

and 𝛿 represents the Kronecker delta which is 1 if 𝑐𝑖 = 𝑐𝑗 (where nodes i and j are within same type 

or group) and as 0, otherwise. 
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3. Study Area 
 

Australia is the smallest continent and one of the largest countries on earth, where it is located 
in the southern hemisphere between the Pacific ocean and the Indian ocean. Australia's large lands 
extend approximately 2,500 miles (4,000 km) from west to east and nearly 2,000 miles (3.2 km) from 
the Cape York Peninsula in the northeast to Wilsons Promontory in the southeast (3,200 km) [20]. In 
the present study, a total of 218 streamflow monitoring stations across Australia were taken into 
account for the classification of catchments. The location of the considered streamflow stations are 
shown in Figure 2. The Hydrological Reference Station (HRS), where the database is maintained by 
the Australian Bureau of Meteorology (BoM), provided a total of 218 streamflow data. The length of 
observation and human impacts were two of the many considerations used to construct the HRS 
database. Zhang [20] provides information on the HRS database's selection by BoM. However, due 
to the presence of a handful of missing data, several stations from the HRS database were excluded 
from this study. The flow data used in this study spanned a period of 26 years, that is, from January 
1981 to December 2006 and the data is the value for the monthly average. Table 1 shows a summary 
of the minimum and maximum values for some important features of the station or data, as well as 
the corresponding station numbers. As seen in Table 1, the 218 streamflow stations and streamflow 
data observed show enormous variations in their characteristics. For example, the drainage area is 
between 11.65𝑘𝑚2 (4.5 𝑚𝑖2) to 603069.15 𝑘𝑚2 (232846.3 𝑚𝑖2). 

 
Table 1 
Catchment Characteristics of Australian Streamflow Data 
 Minimum Maximum Station (State) 

Latitude −43.14° −11.83° Minimum: #473 (TAS)𝑎 

Maximum:#926002𝐴 (QLD) 

Longitude 115.44° 153.42° Minimum:#610008 (WA) 

Maximum: #146012𝐴 (QLD) 

Drainage area (𝑘𝑚2) 11.65 

(4.5 𝑚𝑖2) 

603069.15 

(232846.3 𝑚𝑖2) 

Minimum: #235205 (VIC) 

Maximum: #𝐴0030501 (SA) 

Elevation (𝑚) 5 

(16.37 𝑓𝑡) 

2181.55 

(7157.32 𝑓𝑡) 

Minimum: #𝐺8140040 (NT) 

Maximum: #401012 (NSW) 

Flow mean (𝑚3/𝑠) 0.36 

(12.83 𝑓𝑡3/𝑠) 

182.42 

(6442 𝑓𝑡3/𝑠) 

Minimum: #𝐴0030501 (SA) 

Maximum: #112002𝐴 (QLD) 

Flow standard 

deviation (𝑚3/𝑠) 

0.944 

(33.337 𝑓𝑡3/𝑠) 

233.9082 

(8260.39 𝑓𝑡3/𝑠) 

Minimum: #616013 (WA) 

Maximum: 112002𝐴 (QLD) 

Flow CV 0.471 6.12 Minimum: #226222 (VIC) 

Maximum: #𝐺0010005 (NT) 

NT Northern Territory; TAS Tasmania; SA South Australia; QLD Queensland; WA Western 
Australia; VIC Victoria; NSW New South Wales. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 45, Issue 2 (2025) 78-89 

82 
 

 
Fig. 2. The location of 218 hydrological stream 
flow monitoring stations in Australia 

 
4. Results 
 

The link between node pairs i.e., the station is given to classify catchments based on the Pearson 
correlation coefficient of catchments in implementing the modularity optimization method to 218 
monthly catchment data in Australia. The correlation threshold range (T) is determined based on the 
examination of streamflow data and other hydrological characteristics using a network-based 
approach. This analysis is done to better represent the threshold influence value. T = 0.65, 0.7, 0.75, 
and 0.8 are the threshold levels that have been taken into account. Based on Figure 3 (a-d), different 
colors are used to visualize communities that have more than 9 stations while the smaller 
communities are in open circle and have no significance when comparing thresholds. Generally, 
based on overall observations in Figure 3, a very large count of links will be identified when low value 
of threshold is generated. As a result, it will form a large-scale community that will cover most of the 
study area, e.g. communities identified with T=0.65 (Figure 3 (a)). However, this will not help on 
studying the stream flows variability. As opposed to that, when the threshold value is high, a small 
number of connected links which eventually breaks the network into smaller and very close 
neighbors and lead to more remote communities. An accurate amount of number of communities 
with number of stations in Table 2 is obtained to show the improvement of physical explanations and 
interpretations for the classification of catchments, as well as a better understanding of hydrological 
similarities. According to Table 2, when the threshold rises, the number of stations for the largest 
communities drops while it rises for communities with just a few catchments (one and two 
catchments). However, the number of communities are also varies when the threshold value 
increases.  

 Communities identified based on threshold value, T=0.8 (Figure 3(d)) has been selected to allow 
for a better interpretation of catchment characteristics when referred to the classification by the 
division of catchments based on regions and boundaries. In particular, a total of 9 communities with 
at least nine stations were studied. By referring to Table 3, based on T = 0.8, there are six communities 
that have more than 10 stations of which 11, 16, 17, 24, 25 and 43 stations. These stations are 
combined to make up approximately 62% from total stations in the network (136 from 218) and the 
9 largest communities (out of 48) have over 77% of the total number of stations when combined (165 
from 218). This count has shown that, either the distance between the communities or whether they 
are located in different basins or regions, it can be suggested that every catchment in a large 
community has a strong relationship with other catchments in that community. 

As referred to Table 2, almost 68% of the total count of identified communities (48) is consist of 
communities with only one catchment (32 out of 48) but only covers about 16% of the total count of 
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stations (32 out of 218). Therefore, it is often assumed that each catchment in this tiny community 
has no link to other catchments or only has a tenuous connection to them, regardless of whether the 
community is present in the same basin or area. As a result, this study can be further explored by 
connecting the communities that have been identified with catchment or flow characteristics like 
station drainage area, station elevation and station flow length (as the characteristics of catchment), 
as well as the station flow mean and station flow coefficient of variation (CV) (as the characteristics 
of flow). 

 

 
Fig. 3 (a-d). Classification using modularity optimization 
method for streamflow from Australia at four different 
correlation threshold values 

 
Table 2  
Count of communities identified in Australia using Modularity Optimization method at four 
correlation threshold values (T=0.65, 0.7, 0.75 and 0.8). NC is the number of communities, NS 
is the number of stations and NSC is the number of stations in the communities identified 

T = 0.65 T = 0.7 T = 0.75 T = 0.8 

NSC NC NS NSC NC NS NSC NC NS NSC NC NS 
1 8 8 1 12 12 1 24 24 1 32 32 
2 3 6 2 6 12 2 3 6 2 2 4 
3 1 3 5 1 5 3 1 3 3 3 9 
7 1 7 7 1 7 4 2 8 4 2 8 
18 1 18 10 1 10 9 1 9 9 1 9 
20 1 20 14 1 14 10 2 20 10 2 20 
31 1 31 20 1 20 17 1 17 11 1 11 
33 1 33 27 1 27 24 1 24 16 1 16 
42 1 42 29 1 29 26 2 52 17 1 17 
50 1 50 39 1 39 55 1 55 24 1 24 
 43 1 43    25 1 25 
     43 1 43 

Total     19          218 Total      27           218 Total      38           218 Total    48          218 

 

(a) T =0.65 (b) T =0.7 

(d) T =0.8 (c) T =0.75 
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The relationship between catchment characteristics (drainage area, elevation mean and stream 
length) and flow mean from 9 selected communities (165 stations) is presented in Figure 4(a-c). By 
referring to Figure 3 (d), a total of nine largest communities are selected to be considered throughout 
the analysis. There are three communities located in the south-east (Community 1 is in red, 
Community 12 is in blue, and Community 34 is in pink). Then, in the north and northeast parts, 
community 22 (colored in green) and community 24 (colored in cyan). Meanwhile, in the eastern 
region, there are two communities (Community 26 is in yellow and Community 28 is in purple). There 
are also communities 38 (colored in orange) located in Tasmania and Community 44 (colored in 
brown) is located in the south-west region.  

As seen in Figure 4(a), the relationship between drainage area and flow mean does not indicate 
a linear relationship. It can be seen that some stations from some communities are scattered, 
especially communities 22 (green), 24 (cyan), 28 (purple), 34 (pink), 44 (brown) and 38 (orange), 
however one particular community which is 12 is more clustered. Whereas, for the relationship 
between (stream length against flow mean) as in Figure 4(b), it is almost similar distribution as in 
Figure 4(a) which is not linearly correlated. It is interesting to observe that in Figure 4(c), when 
elevation mean against flow mean, there can be seen visible variability when in terms of elevation 
and flow mean which is almost a straight line especially for communities 1 (red), 12 (blue) and 34 
(pink) which all communities are mostly located in the southeast region. So, it can be suggested that 
the factor of geographical proximity is most likely contributed to the relationship between the 
watersheds within the community.  

As seen in Figure 5, the relationship between drainage area (Figure 5 (a)) and stream length 
(Figure 5(b)) against flow CV are more sparser than against flow mean (Figure 4(a-b)). The relationship 
between elevation mean and flow CV (Figure 5 (c)) are more stretcher than against flow mean (Figure 
5(c)). Most communities such as communities 22 (colored in green), 24 (colored in cyan), 26 (colored 
in yellow), 28 (colored in purple), and 44 (colored in brown) are sparser which are still able to form 
as communities. This seems to indicate that this probably caused by the geographic proximity and 
the closeness factor within the catchments in each community where each of the community are 
formed in their respective regions and therefore indicating the efficacy of community structure 
method especially the modularity optimization method application for classifying catchments. 
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Fig. 4 (a-c). Relationship between, (a) drainage area, (b) stream length, and (c) 
elevation mean with flow mean for 9 communities identified in Australia 

 

 
Fig. 5 (a-c). Relationship between, (a) drainage area, (b) stream length, and (c) 
elevation mean with flow CV for 9 communities identified in Australia 
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By analyzing relationship of distance and correlation within community for the 9 communities 
identified, the use of the modularity optimization method for classification is also investigated. The 
linearity of distance and correlation for the 9 communities are compared as shown in Figure 6. 
Communities 1 (red), 12 (blue), 22 (green), 24 (cyan), 34 (pink), and 44 (brown) can all be observed 
to maintain comparatively stronger correlations as the distance grows (Figure 6(a), (b), (c), (d), and 
(g)). Given that very high correlations might facilitate linkages between stations that are spread 
across great distances, it is not unexpected that community 24 (cyan) is enormous and spans vast 
distances. Despite this, links are observed in communities 26 (yellow), 28 (purple), and 38 (orange) 
(Figure 6(e), (f), and (h)), which may be because of the close proximity. Therefore, geographical 
closeness and the river system may also be crucial considerations for classifying catchments. The 
count for stations in each community is substantially lower and the patterns are more sparse for the 
community 44 (brown) (Figure 6(i)). These communities can develop no matter how far apart they 
are. This appears to imply that the stations cover great distances due to the significant connections. 
Overall, the modularity optimization technique and its capacity for catchment classification according 
to connectedness as its foundation, without relying on links in streamflow but rather without 
previous knowledge of the catchment physics, has shown to be beneficial. 
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Fig. 6 (a-i). Relationship of distance and correlation for 9 communities identified in 
Australia, following to the color scheme in Fig. 3(d) 
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5. Conclusions 
 

In general, the results of the classification that has been carried out on large areas covering this 
variety of climates have shown some points. Among them, a small count of communities consist of 
big number of streamflow stations. For example, nine of communities identified have combined to 
cover almost 77% of the catchment area. In addition, a large count of communities consists of a few 
stations in them, which means that almost 68% of the total communities has only at most two 
stations in it, representing only about 20% of the streamflow stations in entire Australia. The 
relationship between correlation and distance as well as the identified community investigation of 
some important catchments and flow properties such as the drainage area, elevation, stream length, 
flow CV and flow mean have provided some insightful discussions. The results also show that the 
same correlation threshold value T=0.8 is ideal to observe the monthly streamflow data for 
catchment classification in Australia, with other application of community structure methods, which 
may be discuss in near future to assess more in depth of the usefulness and the suitability of method 
of community structure for catchment classification, as a whole.  

This is the first attempt to use the concept of modularity optimization to the classification of 
catchments across Australia. The evaluation of modularity optimization methods, particularly for 
Australian regions, has shed some light to justify the suitability of methods for classifying catchments. 
The results are encouraging, demonstrating the applicability and effectiveness of modularity 
optimization methods and community structure methods in catchment classification. However, as 
the modularity optimization method or any other community structure methods that implemented 
modularity metrices should be implemented with caution. This is because the modularity function 
has limitations and disadvantages in terms of scale resolution limit problem (variability of network 
sizes) which is common in catchment network. The improvement can be made by substituting the 
modularity function by modularity density function (or D value) to combat the limitation of scale 
resolution limit problem occurred when one applied the modularity-based classification approach. 
Therefore, improving the existing community structure methods especially the ones that are 
modularity-based methods are needed to ensure that the community detection techniques using the 
concept of community structure stay relevant and applicable towards general hydrology framework 
development. 
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