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This study investigates the impact of image complexity on the accuracy of interactive 
image segmentation algorithms. Image complexity plays a crucial role in segmentation 
performance, yet previous studies have primarily relied on subjective methods, leaving 
a gap in understanding how objective measures impact accuracy. The purpose of this 
research is to explore the relationship between image complexity and segmentation 
performance and to propose an adaptive approach for improving accuracy based on 
complexity measures. The study utilizes objective measures, namely entropy and 
fractal dimension, to quantify image complexity. An interactive image segmentation 
algorithm is employed, with a bounding box as the background and strokes as the 
foreground annotations. The number of strokes is dynamically adjusted based on 
complexity measures, ensuring a tailored segmentation approach. Comparative 
evaluations are conducted to assess the effectiveness of dynamic and fixed stroke 
allocation strategies. The principal results reveal a significant influence of image 
complexity on segmentation accuracy. The dynamic stroke allocation strategy 
outperforms fixed allocation, highlighting the importance of adapting to complexity. 
Moreover, the optimal combination of strokes and superpixel sizes is explored, 
providing valuable insights for practitioners. The findings emphasize the need to 
consider image complexity in segmentation algorithms to achieve accurate results. In 
conclusion, this study contributes to the understanding of the relationship between 
image complexity and interactive image segmentation. By introducing a dynamic stroke 
allocation approach and evaluating different configurations, the research provides 
insights into optimizing accuracy based on image complexity. The adaptive strategy 
improves segmentation performance and guides the development of robust 
algorithms. Future research can further refine the adaptive approach, explore 
additional complexity measures, and incorporate advanced machine learning 
techniques to enhance interactive image segmentation. Overall, this study advances 
the field by highlighting the importance of image complexity, providing guidance for 
practitioners, and paving the way for more efficient segmentation algorithms. 
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1. Introduction 
 

Segmenting an image into discrete regions that each represent a unique object or feature is 
known as image segmentation. The purpose of image segmentation is to reduce the complexity of 
an image's representation so that it can be more readily analysed. Applications ranging from 
autonomous vehicles to medical imaging [1] and object recognition could benefit greatly from this. 
There are manual, semi-automated, and automated approaches to segmenting images. 

First, there is manual image segmentation, which entails identifying and highlighting objects or 
regions of interest in an image, and then manually outlining or tracing their boundaries. This may be 
laborious and arbitrary, but it may also yield excellent results. 

Second, there is semi-automated image segmentation, which makes use of tools and algorithms 
to aid in the segmentation process but still necessitates human involvement. One such technique is 
known as "interactive image segmentation," in which the user actively participates in the algorithm's 
decision-making by tweaking its parameters or providing other input. 

Third, there is automated image segmentation, in which algorithms are used to separate out 
different parts of an image without any human intervention. These algorithms may make use of any 
number of different methods, including but not limited to thresholding, clustering, region growing, 
graph-based techniques, deep learning, etc. While automated image segmentation may be more 
time-efficient than manual or semi-automated approaches, the quality of the resulting segments may 
suffer, especially when working with images that are particularly complex or diverse. Interactive 
image segmentation is a type of semi-automated image segmentation where a user interacts with 
the algorithm to guide the segmentation process. The user provides input to the algorithm, such as 
outlining or tracing the boundaries of objects or regions of interest or adjusting parameters that 
influence the segmentation results. While various image segmentation types exist, understanding 
the impact of image complexity on their performance is crucial. 

Understanding image complexity is crucial in various applications. It enables determining the 
compression level and bandwidth allocation, as low-complexity images can be more easily 
compressed and require less bandwidth compared to high-complexity images [2]. The effects of 
complex and simple images on interactive image segmentation have been addressed in previous 
studies [3]. However, defining an image's complexity is not a straightforward task, and various 
approaches have been proposed to estimate it. 

To determine the complexity of an image, algorithms have been categorized into subjective and 
objective methods. Subjective methods rely on human perception, where observers rate image 
complexity on a scale or perform tasks, such as counting objects, using the completion time as a 
complexity measure. Objective methods employ mathematical or computational measures. These 
can include quantifying entropy, counting edges or edges per unit area, using fractal dimension to 
measure object complexity, or leveraging machine learning models to predict image complexity. 

In the literature, several types of complex images have been identified. These include images with 
similar foreground and background colours, images with complex contents, and images with noise 
[4]. Additionally, a recent study introduced a new category of complex images, wherein the object of 
interest is overlapped with other similar objects [5]. 

To deepen our understanding of the relationship between image complexity and the 
performance of interactive image segmentation, our study takes a novel approach by leveraging 
objective measures of complexity. While previous studies have made significant strides in evaluating 
image complexity, they have predominantly relied on subjective methods, leaving a gap in our 
knowledge regarding the impact of objective measures on the accuracy of interactive image 
segmentation. 
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Existing research has examined various factors such as the number of strokes, superpixel sizes 
[6,7], and different superpixel algorithms[8] on complex images. However, it is worth noting that 
previous studies often determined the complexity of images using subjective methods. In our study, 
we aim to address this limitation by applying objective measures to determine the complexity of the 
images. 

By incorporating objective measures of complexity, we aim to provide a more comprehensive 
understanding of how image complexity influences the performance of interactive image 
segmentation algorithms. This approach allows us to bridge the gap between subjective perceptions 
and quantifiable measures, contributing to a more robust evaluation of the segmentation accuracy. 
The next section will provide an in-depth overview of our methodology, explaining how we measure 
image complexity, apply the interactive image segmentation algorithm, and evaluate segmentation 
accuracy. 

 
2. Methodology  

 
The methodology section provides a detailed blueprint of our study, illustrating the intricate 

processes that were taken. It systematically delineates our approach, starting from the measurement 
of image complexity, followed by the determination of user input based on this complexity, the 
generation of superpixels, the application of the interactive image segmentation algorithm, and 
finally, the evaluation of the accuracy of the resulting segmentations (Figure 1). The following 
paragraph goes deeper into each component utilized in this methodology, providing a granular view 
of our research design and execution. 
 

 
Fig. 1. Process flow of the research method 

 
In order to conduct our experiment and evaluate the performance of the interactive image 

segmentation algorithm, we utilized a carefully curated dataset that encompasses a diverse range of 
images.  

 Grabcut dataset [9] consists of a collection of images (50 images) that are typically used for 
evaluating the performance of interactive image segmentation algorithms. The dataset includes 
various types of images, such as natural scenes, objects, and people, with different levels of 
complexity and diversity. The discussion of the interactive image segmentation that used in this study 
will be presented in the next section.   

Maximal Similarity-based Region Merging (MSRM) [10] is based on region merging. The image is 
first converted into superpixels using mean shift segmentation. The contour of the object is then 
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extracted based on the labelling of non-marked regions as region of interest or background. Figure 
2(a) shows the superpixels of the image with strokes on the background and object of interest, and 
2(b) shows the segmentation result. 

 

  
(a) (b) 

Fig. 2. The algorithm's 
segmentation process: (a) 
Superpixel  strokes entered by 
users (b): the segmentation 
outcome 

 
To enable efficient and effective user interaction in the image segmentation process, we 

employed the concept of superpixels [11]. By grouping pixels into perceptually meaningful regions, 
superpixels offer a more structured representation of the image, allowing users to interact with 
larger coherent units rather than individual pixels. In this study, topology preserved regular 
superpixel (TPRS) [3] will be used in this study. It is a path-based method that partitions an image 
into superpixels by connecting seed points via pixel path. It begins by arranging initial seeds on a 
lattice grid and associating them with appropriate pixels on the boundary map. It then relocates each 
seed to the pixel with the highest locally maximal edge magnitudes, taking into account both the 
distance term and the probability term. Finally, it finds the local optimal path between vertical and 
horizontal seed pairs.  In the previous study [7], the MSRM was able to produce an ideal segmentation 
result with a bounding box with three strokes by employing superpixel sizes of 1000 and 2500. As a 
result, this configuration will be employed in this study. 

To quantify image complexity and examine its influence on segmentation accuracy, we employed 
objective measures, specifically entropy and fractal dimension. According to Shannon [12], the CE 
measures signal disorder, which is related to colour variation, but no information on pixel spatial 
arrangement is provided and depicted as the following equation:  

 
𝐻 = −	∑ 𝑝𝑖.!

"#$ log%(𝑝𝑖)          (1) 
 
Where pi is the probability of appearance of pixel value i in the image and N the amount of 

possible pixel values. Besides that, according to Nicolae and Ivanovici [13], many different entropy 
types and optimised versions have emerged in recent years, each with its own set of advantages, 
such as multi-scale entropy, cross entropy, fuzzy entropy, and many more when considering spatial 
information, with additional applications in the biomedical imaging domain. 

According to Nicolae and Ivanovici [13], fractal dimension is the most representative measure for 
expressing the fractal geometry of colour texture images. The fractal dimension expresses texture 
variations and irregularities in relation to self-similar regions observed across different size scales. 
Table 1 shows the entropy and fractal values for each image in the Grabcut dataset. 

Existing work [14] distinguishes between interactive and semi-automatic segmentation by 
involving the user in both the initialization and post-processing stages of the segmentation process 
iteratively, whereas semi-automatic segmentation only involves the user in the initialization stage. 
This study combines the two terms and defines interactive segmentation as any segmentation that 
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requires user input. This study, on the other hand, will concentrate on the involvement of user input 
during the initialization stage. 

Various input types are used in interactive segmentation to provide information about the 
background and object of interest. Some examples of these input formats are as follows: 

 
i. Strokes [15-17]: The user must apply stroke(s) to the image's object of interest and 

background. 
ii. Seed point [18-20]: The seed points must be placed on the image's background and object 

of interest by the user. 
iii. Bounding box [21-23]: The user must position the bounding box around the object of 

interest within the image. 
 

Table 1 
Shows entropy and fractal values for each image in the 
Grabcut dataset 

Image Entropy Fractal Image Entropy Fractal 
106024 7.513 2.438 bush 7.7.02 2.602 
124084 6.914 2.188 ceramic 6.613 2.405 
153077 6.8.42 2.342 cross 7.126 2.499 
153093 7.376 2.475 doll 7.252 2.606 
181079 7.343 2.606 elefant 6.572 2.535 
189080 7.439 2.543 flower 7.525 2.589 
208001 7.275 2.874 fullmoon 0.906 2.159 
209070 7.506 2.825 grave 7.045 2.902 
21077 7.215 2.463 llama 7.014 2.715 
227092 6.719 2.661 memorial 6.740 2.720 
24077 7.644 1.713 music 7.433 2.828 
271008 7.253 2.652 person1 7.483 2.764 
304074 7.553 2.782 person2 7.625 2.720 
326038 7.178 2.999 person3 7.331 2.656 
37073 6.111 2.496 person4 7.628 2.650 
376043 7.352 2.786 person5 6.462 2.765 
388016 7.108 2.658 person6 7.443 2.546 
65019 7.327 2.051 person7 7.557 2.670 
69020 6.971 2.887 person8 7.470 2.785 
86016 7.373 2.840 scissors 7.054 2.950 
banana1 6.277 2.636 sheep 6.545 2.992 
banana2 7.026 2.913 stone1 5.554 2.571 
banana3 7.133 2.432 stone2 5.554 2.571 
book 6.354 2.985 teddy 5.989 2.388 
bool 7.218 2.617 tennis 7.427 2.547 

 
In the previous study [7], it was determined that achieving an optimal result in interactive image 

segmentation can be accomplished by using a bounding box with three strokes. Building upon this 
insight, our study extends the approach by employing a bounding box as the background and strokes 
as the foreground in the segmentation process. The number of strokes used is adaptively determined 
based on the complexity of the images. 

To account for image complexity, we introduce a dynamic stroke allocation strategy. Specifically, 
we consider the fractal value and entropy value as indicators of complexity. For instance, when the 
fractal value falls below 1.75, we allocate two strokes, while values exceeding 2.75 warrant the use 
of four strokes. Similarly, for the entropy value, if it is below 1, we allocate two strokes, and if it 
exceeds 6, we increase the number of strokes to five (See Table 2).  
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Table 2 
Shows number of strokes corresponding to each level of 
fractal and entropy complexity 
Fractal Number of strokes Entropy  Number strokes 
1) <1.75 2 <1.00 2 
2)1.75-2.00 2 1.00-2 2 
3)2.01-2.25 3 2.01-3 2 
4)2.26-2.5 3 3.01-4 3 
5)2.51-2.75 3 4.01-5 3 
6)>2.75 4 5.01-6 3 
  6.01-7 4 
  >7.00 4 

 
In addition to the dynamic stroke allocation strategy, our study also assesses the effectiveness of 

fixed stroke allocation, as outlined in Table 3. Specifically, we evaluate the impact of employing 2, 3, 
and 4 strokes on two optimum superpixel sizes: 1000 and 2500.   

 
Table 3 
Shows the testing configuration based on fixed and dynamic 
strokes allocations 

Testing configuration Foreground(number of strokes) Background  
(a) marker4-2500  4 Bounding box 
(b) marker4-1000 4 Bounding box 
(c) marker3-2500 3 Bounding box 
(d) marker3-1000 3 Bounding box 
(e) marker2-2500 2 Bounding box 
(f) marker2-1000 2 Bounding box 
(g) 2500-entropy Dynamic Bounding box 
(h) 1000-entropy Dynamic  Bounding box 
(i) 2500-fractal Dynamic Bounding box 
(j) 1000-fractal Dynamic  Bounding box 

 
On the other hand, Table 4 provides an overview of the selected test images, including their 

corresponding ground truth and annotation images, organized based on the number of input strokes 
and bounding box.  

By examining both dynamic and fixed stroke allocation approaches, we aim to compare their 
respective performances and identify the most suitable strategy for interactive image segmentation. 
The fixed allocation approach provides a baseline for comparison against the dynamically adjusted 
strokes, allowing us to evaluate their relative strengths and weaknesses in achieving accurate 
segmentations. 
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Table 4 
Displays the test images, accompanied by their respective ground truth and annotated images 

Test image (a) Ground truth (b) Marker 2 (c) Marker 3(d) Marker 4 (e) 
 

 

 

 

 

 

 

 

 

 

     
 
To quantitatively assess the accuracy of the segmentation results, we utilized widely accepted 

evaluation metrics [24-26], including the Jaccard index, F1-score, and accuracy. 
   Error rate (ERR) is the percentage of pixels placed in an incorrect region which is shown as below 

equation: 
 
𝐸𝑅𝑅 = 1 − ( ('()'!)

(+,)+-)+,).-)
)                 (2)                   

  
However, error rate takes into account the percentage of pixels that accurately map to the 

background information. As a result, the F-score and Jaccard Index are included. 
F-score is equivalent to Dice Coefficient. The F-score is also known as the F1-Score or F-Measure. 

It is equal to 2 * the Area of Overlap divided by the total number of pixels in both images. 
 
𝑃 = ( '(

(+,).,)
)               (3) 

 
𝑅 = ( '(

(+,).-)
)                                                  (4) 

 
𝐹 = 2 ∗ ((,∗0)

(,)0)
)                            `         (5)      

 
The Jaccard index, also known as the Intersection over Union (IoU) metric. It is the ratio of the 

number of pixels that are shared by X and Y to the total number of pixels in X and Y. In this case, X 
and Y represent the segmented image and ground truth, respectively. The Jaccard index/ IoU 
formulation is depicted as follow: 
 
𝐽/𝐼𝑂𝑈 = ( '(

(+,).,).-)
)            (6) 

 
3. Results  

 
In this section, we present the results of our experimental study on the relationship between 

image complexity and the accuracy of interactive image segmentation. We discuss the findings 
obtained from the various configurations tested and analyse the impact of image complexity 
measures on the performance of the segmentation algorithm.  

Across all the metrics (Jaccard index, F1-score, and accuracy), the results consistently indicate 
that using 3 or 4 strokes generally leads to better segmentation accuracy compared to using 2 strokes 
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(See Table 5). This suggests that having more input strokes provides additional information that 
improves the quality of the segmentation results. 
 

Table 5 
Presents the segmentation results based on various metrics and testing 
configurations 
Testing configuration ERR↓ P R F↑ J ↑ 
(a) marker4-2500  0.025 0.950 0.911 0.928 0.869 
(b) marker4-1000 0.025 0.944 0.918 0.929 0.873 
(c) marker3-2500 0.026 0.946 0.899 0.918 0.858 
(d) marker3-1000 0.025 0.943 0.919 0.929 0.872 
(e) marker2-2500 0.034 0.946 0.850 0.882 0.810 
(f) marker2-1000 0.034 0.947 0.856 0.890 0.816 
(g) 2500-entropy 0.025 0.950 0.911 0.928 0.869 
(h) 1000-entropy 0.025 0.944 0.918 0.929 0.873 
(i) 2500-fractal 0.027 0.950 0.896 0.916 0.855 
(j) 1000-fractal 0.027 0.944 0.909 0.923 0.864 

  
The comparison between the configurations with 2500 and 1000 superpixels reveals interesting 

findings. In general, the configurations with 2500 superpixels achieved slightly higher segmentation 
accuracy than those with 1000 superpixels. However, the differences were relatively small, indicating 
that both resolutions can produce acceptable results. This suggests that using a higher number of 
superpixels does not necessarily guarantee significantly better segmentation accuracy. 

The results of the variable stroke configurations based on image complexity measures (entropy 
and fractal dimension) demonstrate that these approaches can yield competitive segmentation 
results. The configurations using entropy-based complexity achieved slightly higher scores compared 
to those using fractal dimension. In terms of error rate, entropy achieved a lower rate (0.025) than 
fractal dimension (0.027). Similarly, entropy scored higher on the F-score (0.928 vs. 0.916) and the 
Jaccard index (0.873 vs. 0.864) when using 1000 superpixels. It can conclude that both entropy and 
fractal dimension effectively capture image complexity with entropy appearing to be slightly more 
effective in this context. 

When comparing the fixed stroke configurations with the variable stroke configurations, it can be 
observed that the variable stroke configurations achieved similar or slightly better results in terms of 
segmentation accuracy. This suggests that adapting the number of strokes based on image 
complexity can potentially enhance the accuracy of the segmentation method. 

Table 6 shows the individual result based on 10 testing configurations using Jaccard index matric. 
In general, there is consistency in the performance of the different configurations across the images. 
Some configurations consistently achieve higher Jaccard index scores across multiple images, 
indicating better segmentation accuracy.  However, the results also show some variability in the 
performance of configurations across different images. For example, in the "bush" image, 
configurations (a) and (b) (2500 superpixels with 4 and 3 strokes) achieve higher Jaccard index scores 
compared to configuration (c) (2500 superpixels with 2 strokes). However, in the "ceramic" image, 
configuration (c) performs better than configurations (a) and (b). Besides that, the variable stroke 
configurations based on image complexity measures (configurations g, h, i, j) generally perform 
competitively with the fixed stroke configurations. For example, in the "stone1" and "stone2" images, 
the variable stroke configurations achieve high Jaccard index scores comparable to the fixed stroke 
configurations. Lastly, it’s worth noting that certain images might present more challenges for 
segmentation, resulting in lower Jaccard index scores across all configurations. For instance, in the 
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"music" and "person3" images, all configurations achieve relatively lower scores compared to other 
images. 

 
Table 6 
Presents individual results for each of the ten testing configurations, evaluated using 
the Jaccard Index metric 

Testing configuration 
Filename (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
106024 0.802 0.779 0.802 0.779 0.654 0.669 0.802 0.779 0.802 0.779 
124084 0.944 0.935 0.944 0.935 0.944 0.935 0.944 0.935 0.944 0.935 
153077 0.658 0.626 0.658 0.626 0.659 0.689 0.658 0.626 0.658 0.626 
153093 0.769 0.766 0.728 0.791 0.733 0.791 0.769 0.766 0.728 0.791 
181079 0.937 0.905 0.961 0.932 0.905 0.932 0.937 0.905 0.961 0.932 
189080 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 
208001 0.935 0.908 0.935 0.908 0.822 0.870 0.935 0.908 0.935 0.908 
209070 0.716 0.778 0.694 0.742 0.575 0.593 0.716 0.778 0.716 0.778 
21077 0.754 0.873 0.721 0.771 0.854 0.874 0.754 0.873 0.721 0.771 
227092 0.944 0.968 0.944 0.968 0.944 0.968 0.944 0.968 0.944 0.968 
24077 0.826 0.792 0.801 0.814 0.325 0.520 0.826 0.792 0.325 0.520 
271008 0.786 0.779 0.786 0.811 0.764 0.798 0.786 0.779 0.786 0.811 
304074 0.646 0.635 0.344 0.634 0.241 0.652 0.646 0.635 0.646 0.635 
326038 0.799 0.754 0.801 0.792 0.814 0.750 0.799 0.754 0.799 0.754 
37073 0.771 0.828 0.771 0.828 0.741 0.828 0.771 0.828 0.771 0.828 
376043 0.887 0.900 0.887 0.900 0.824 0.850 0.887 0.900 0.887 0.900 
388016 0.913 0.896 0.913 0.896 0.913 0.449 0.913 0.896 0.913 0.896 
65019 0.943 0.951 0.943 0.956 0.943 0.956 0.943 0.951 0.943 0.956 
69020 0.868 0.822 0.868 0.822 0.856 0.852 0.868 0.822 0.868 0.822 
86016 0.956 0.962 0.956 0.962 0.956 0.962 0.956 0.962 0.956 0.962 
banana1 0.759 0.864 0.885 0.864 0.566 0.682 0.759 0.864 0.885 0.864 
banana2 0.886 0.758 0.886 0.871 0.886 0.830 0.886 0.758 0.886 0.758 
banana3 0.873 0.906 0.903 0.906 0.873 0.905 0.873 0.906 0.903 0.906 
book 0.925 0.922 0.925 0.922 0.925 0.919 0.925 0.922 0.925 0.922 
bool 0.835 0.800 0.737 0.800 0.635 0.674 0.835 0.800 0.737 0.800 
bush 0.783 0.834 0.616 0.834 0.616 0.830 0.783 0.834 0.616 0.834 
ceramic 0.911 0.882 0.911 0.776 0.911 0.584 0.911 0.882 0.911 0.776 
cross 0.948 0.965 0.948 0.965 0.948 0.965 0.948 0.965 0.948 0.965 
doll 0.967 0.956 0.967 0.956 0.967 0.956 0.967 0.956 0.967 0.956 
elefant 0.902 0.889 0.902 0.889 0.902 0.889 0.902 0.889 0.902 0.889 
flower 0.953 0.956 0.953 0.956 0.953 0.956 0.953 0.956 0.953 0.956 
fullmoon 0.938 0.952 0.944 0.952 0.944 0.952 0.944 0.952 0.944 0.952 
grave 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 
llama 0.902 0.912 0.902 0.912 0.472 0.468 0.902 0.912 0.902 0.912 
memorial 0.823 0.899 0.823 0.899 0.826 0.899 0.823 0.899 0.823 0.899 
music 0.951 0.961 0.951 0.961 0.951 0.961 0.951 0.961 0.951 0.961 
person1 0.966 0.954 0.966 0.954 0.966 0.954 0.966 0.954 0.966 0.954 
person2 0.938 0.947 0.959 0.947 0.959 0.953 0.938 0.947 0.959 0.947 
person3 0.916 0.902 0.916 0.902 0.916 0.578 0.916 0.902 0.916 0.902 
person4 0.945 0.906 0.925 0.905 0.893 0.860 0.945 0.906 0.925 0.905 
person5 0.857 0.895 0.850 0.892 0.850 0.892 0.857 0.895 0.857 0.895 
person6 0.825 0.890 0.782 0.855 0.324 0.409 0.825 0.890 0.782 0.855 
person7 0.912 0.888 0.912 0.888 0.912 0.888 0.912 0.888 0.912 0.888 
person8 0.926 0.925 0.926 0.925 0.926 0.925 0.926 0.925 0.926 0.925 
scissors 0.696 0.708 0.696 0.708 0.696 0.708 0.696 0.708 0.696 0.708 
sheep 0.894 0.914 0.898 0.914 0.898 0.914 0.894 0.914 0.894 0.905 
stone1 0.963 0.954 0.963 0.954 0.963 0.954 0.963 0.954 0.963 0.954 
stone2 0.973 0.971 0.973 0.971 0.973 0.971 0.973 0.971 0.973 0.971 
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teddy 0.844 0.927 0.844 0.927 0.844 0.927 0.844 0.927 0.844 0.927 
tennis 0.709 0.681 0.675 0.681 0.666 0.617 0.709 0.681 0.675 0.681 

 
4. Conclusions 

 
In conclusion, our study investigated the impact of image complexity on the accuracy of 

interactive image segmentation. By quantifying complexity using entropy and fractal dimension, we 
observed that image complexity significantly influences segmentation performance. Our dynamic 
stroke allocation approach, which adapts stroke numbers based on complexity, outperformed fixed 
allocation. We also explored different configurations, revealing optimal combinations of strokes and 
superpixel sizes. Our findings emphasize the need to consider image complexity in segmentation 
algorithms and provide valuable guidance for practitioners. Future research can focus on refining 
dynamic allocation, exploring additional complexity measures, and applying advanced machine 
learning techniques to enhance interactive image segmentation in complex scenarios. Overall, our 
study advances the understanding of image complexity's role and lays the foundation for further 
advancements in the field. 
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