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The problem of predicting Freeze of Gait (FoG) on Parkinson diseased patients has been 
well studied.  There exists number of approaches in predicting FoG, which uses sensory 
features, EEG data and so on. However, the methods suffer to achieve higher 
performance. To handle this issue, an efficient Time Orient Acceleration Gait pattern 
based FoG prediction model (TOAGP-FoG) is presented in this paper. The model 
designed to attach accelerometer sensors at different ankle and joints of the body. The 
sensor signals are recorded at different gait movement in long term. The sensory signals 
are passed to the central data server which tracks the movement signals. With the time 
variant signals stored by the model, the method generates Acceleration Gait Pattern 
with number of features. At each movement, the method analyses the patterns to 
compute FOG Risk Support (FoGRS) towards various gait movement. The FoG Risk 
Support is measured according to the movement forces produced by the patient for 
various gait movement in different time stamp and computes minimum gait force to be 
produced. Based on the FoGRS value, the method performs FoG prediction. The 
proposed method improves the performance of FoG prediction with higher accuracy. 
Other notable aspects of the suggested model include comparable performance, 
resiliency, real-time prediction capabilities, FOG-specific integration of data, and 
advanced deep learning methodologies for accurate prediction. The Special Features of 
TOAGP-FoG include the Multi-Sensor Configuration, Temporal Analysis, Adaptive 
Thresholding, Dynamic FoG Risk Support (FoGRS), and Enriched Feature Extraction. The 
TOAGP-FoG model offers an important breakthrough in the predictive modelling of 
Parkinson's disease since it integrates several features such as temporal flexibility, 
dynamic FoGRS computation, adaptive thresholding, enriched feature extraction, and 
multi-sensor configurations. 
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1. Introduction 
 

The human society faces number of diseases in their lifespan, where some of them affect the 
quality of life and some of them are claiming the whole life. The medical practitioners suffer to 
identify and conclude the disease in many occasions. To support the medical practitioner, the 
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decisive support systems are designed to provide recommendation for them. However, predicting 
the disease at the early stage would support the medical practitioner in providing effective treatment 
for the patients.  The Parkinson disease is one among them, which appears on old age people due to 
neurodegenerative condition. Presence of PD introduces muscular rigidity, bradykinesia, 
sluggishness, and postural instability on their body which challenge the patient in performing regular 
activities with more comfortable way. However, FoG (Freeze of Gait) is the most dominant issue 
identified on the PD patients. This is a kind of mobility problem which make the people to get trouble 
on walking and leads to fall on ground. Presence of FoG or forthcoming FoG can be identified with 
the support of earlier traces. For any person, there will be specific momentum would require or some 
sort of acceleration would be required to proceed with the Gait movement. By monitoring the 
acceleration and he force produced by the person would be useful in predicting the FoG. However, 
it requires huge amount of data and by maintaining such huge volume of data, the presence of the 
FoG can be predicted. By predicting such FoG movement, then it can be alerted to provide enough 
support for the person. In this case, machine learning can be used as it has been used for variety of 
problems. 

The deep learning models like CNN (Convolution neural network) [7] and LSTM (Long Short Term 
Memory) [6] has been used in several occasions to handle the problem. However, the method uses 
variety of features like plantar pressure, frequency features, and EEG features in predicting the 
possibility of FoG. Still the methods suffer to achieve higher performance in predicting FoG.  
However, the possibility of FoG can be identified by maintaining number of FoG pattern and by 
computing risk support towards various class of FoG.  Also, the performance predicting FoG can be 
further improved by considering number of features like the plantar pressure, frequency features, 
EEG features, accelerating features, weight features and so on. By considering all these, a novel Time 
Orient Acceleration Gait Pattern Based FoG Prediction model (TOAGP-FoG) is presented in this paper.  

To summary, this research proposes a completely new and extremely accurate Time Orient 
Acceleration Gait Pattern-based FoG prediction model (TOAGP-FoG) to address the limitations of 
existing methods for predicting Freeze of Gait (FoG) in patients with Parkinson's disease. By 
strategically positioning accelerometer sensors at different body joints and ankle placements, the 
simulation is able to gather extensive sensory data over a prolonged duration of different gait 
movements. The model is more relevant to the particular neurological condition when FoG-specific 
data integration is prioritised, yet accurate predictions are ensured by the integration of 
sophisticated deep learning algorithms. Further, the comparative performance for the proposed 
method, that illustrates greater precision in comparison to existing methodologies, clearly shows its 
value. By providing a novel approach that uses technology and data analytics to enhance the 
prediction of FoG in Parkinson's patients, this study makes a substantial contribution to the field and 
eventually improves patient outcomes and treatment quality. Its usefulness in tackling the 
complicated nature of Parkinson's disease is highlighted by its real-time capabilities, which further 
improve by the incorporation of data applicable to FoG and comparative performance analysis. This 
study aims to offer a practical and efficient solution for long-term monitoring, addressing challenges 
in FoG prediction accuracy, false ratio occurrences, and time complexity. The goal is to enable more 
reliable and timely interventions, positively impacting the lives of Parkinson's patients. 

 
2. Related Works 
 

There exists number of approaches around predicting FoG on PD patients. This section details 
some of them around the problem. A machine learning and walking pattern-based FoG prediction 
model is presented in [1], which records the pattern using wearable system to support the prediction.  
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The pressure data collected from various limbs and MAS are used towards predicting FoG in [2], 
which collect pressure data at various walking trials and frequency features. Based on them, FoG 
prediction is performed.  An LSTM based neural network has been used towards predicting FoG in 
[3], which collects plantar pressure data to perform FoG prediction.  A machine learning classifier is 
presented in [4], which collects sensor data from wearable system and generates walking patterns  
and velocity patterns to support FoG classification. A neural network based gait prediction model is 
presented in [5], where the multi-level perceptron model FGPuMLP, achieves lesser error compared 
to the logistic regression model. An LSTM based FoG episode prediction model is discussed in [6], 
which consider different features towards classification. A deep convolution based LSTM model 
COnv-LSTM is presented in [7], which classify the FoG under three classes according to the angular 
axes features obtained from spectrogram images. A detailed review on the problem of FoG prediction 
is presented in [8], which analyses the performance using various data sets.   

 The performance of various machine learning models like Random forest, SVM, gradient 
boosting, neural network and RBF are analyzed for their performance against various data sets in [9].   
A machine learning model is presented in [10], which uses step-based impaired gait features and 
conventional FoG detection features to predict the FoG.  The variations of gait complexity are 
recorded to predict the FoG in [11]. The method extracts 3 dimensional acceleration data and 
performs analysis on topological symptom to perform the task.  A frequency analysis-based FoG 
detection model is presented in [12], where on body acceleration sensors are used to measure the 
movements of patients to detect FoG.   An expert system is designed to classify gait patterns in [13], 
which computes pearson correlation measure to classify the patterns.  The skin conductance and EEG 
signals are more important in classifying FoG pattern and an anomaly based algorithm is presented 
in [14] to classify the patterns.   

A vision based FoG detection model is presented in [15], which generates a graph convolution 
neural network to produce directed graph from videos to perform classification.  An auto regressive 
predictive model is presented in [16], which collects movement data from sensors to train the model. 
With the acceleration data, the method performs classification.  An event based anomaly detection 
model is presented in [17], which extract relevant features and perform classification.  A time varying 
auto regressive moving average model (TV-ARMA) is presented in [18], which computes time varying 
parameters to transform frequency domain to compute time-frequency spectrum and calculate the 
FI. A k nearest neighbour algorithm (K-NN) is presented in [19], towards classifying three class of 
events.  A deep gait anomaly detector (DGAD) is presented in [20], which applies transfer learning to 
perform prediction.   A continuous wavelet transform based scheme is presented in [21], which 
applies time frequency analysis to predict FoG. This study aims to offer a practical and efficient 
solution for long-term monitoring, addressing challenges in FoG prediction accuracy, false ratio 
occurrences, and time complexity [22-25]. The goal is to enable more reliable and timely 
interventions, positively impacting the lives of Parkinson's patients. The challenges mentioned in 
these works involve noise resiliency, selecting the best scale, meeting patient differences, and being 
practical in real time [26-27]. Gaining understanding of these difficulties is essential to improve 
continuous wavelet transform-based methods and widening the area of FoG prediction in Parkinson's 
disease research [28-30]. 

 
3. Proposed Prediction Model  
 

The Time Orient Acceleration Gait pattern based FoG prediction model (TOAGP-FoG) model 
collects gait features through various accelerometer sensors attached at different ankle and joints of 
the body. The sensor signals are recorded at different gait movement in long term. The sensory 
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signals recorded are generated into gait pattern and trains with deep neural network. The DNN 
designed has number of intermediate layers and the neurons are designed to measure FOG Risk 
Support (FoGRS) towards various gait movement. The FoG Risk Support is measured according to the 
movement forces produced by the patient for various gait movement in different time stamp and 
computes minimum gait force to be produced. Based on the FoGRS value, the neurons at the output 
layer produces different FoGRS value towards different classes.  Based on the value of FoGRS, the 
method performs classification.  

The working structure of proposed model is presented in Figure 1, which has been explained in 
detail in this part. 

 

 
Fig. 1. Architecture of proposed model 

 
3.1 Gait Pattern Generation 
 

The proposed model monitors the gait accelerometer sensors connected with various limbs and 
knee of the person. From each sensor, the model reads the sensor signals and produces values of 
pressure, ankle movement, weight, ECG signals and so on. Such features are extracted and generates 
a Gait Pattern according to the features considered.  The following are the features being considered 
for the gait pattern. Ankle pressure, knee pressure, spin pressure,  ankle degree, knee degree, knee 
weight, ankle weight, blood pressure, pulse rate, limb pressure and so on. Such features are extracted 
and produced as a gait pattern. Such patterns generated are used to train the network and the same 
has been used to perform classification. 

 
Gait Pattern Generation Algorithm: 
Input: Sensor Signals Ses, Ecg signal Ec 
Output: Gait pattern Gp. 
Start 
 Read Ses and Ec. 
 Ankle pressure Ao = AnklePressure ∈ ses 
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  knee pressure Kp = KneePressure ∈ ses 
 Spin pressure Sp = SpinPressure ∈ ses 
 Ankle degree Ad = AnkleDegree ∈ ses 
 Knee degree Kd = KneeDegree ∈ ses 
 Knee weight Kw = kneeweight ∈ ses 
 Ankle weight Aw = AnkleWeight ∈ ses 
 Blood pressure Bp = BloodPressure ∈ ses 
 Pulse Rate Pr = PulseRate ∈ ses 
 Limb Pressure Lpr = LimbPressure ∈ ses 
 Gp = {Ap, Kp, Sp, Ad, Kd, Kw, Aw, Bp, Pr, Lpr} 
Stop 
 

The Gait pattern generation algorithm extracts various feature from the sensors and Ecg signals 
to support FoG prediction. 

 
3.2 DNN Training 
 

The proposed model trains the deep neural network with number of intermediate layers. The 
pattern sets generated are read and for each patter, the method generates a neuron. The neurons 
are initialized with the pattern features and are designed to measure the risk support value. The 
neurons are designed to compute risk support on various class of features.  The intermediate layers 
measure the risk support and pass to the other layer neurons. Finally, the output layer neurons 
measures the overall risk support towards various class produce the result to the user. 

 
Algorithm for gait pattern with DNN: 
Input: Gait pattern set Gps 
Obtain: DNN. 
Start 
 Read Gps. 
 Generate deep neural network DNN. 
 For each pattern gp 
  Generate a neuron N. 
  Initialize N with pattern gp. 
  For each intermediate layer l 
   Connect the neurons with others. 
  End 
 End 
 For each layer l 
  For each neuron N 
   Compute gait risk support Grs. 
   Pass to other layer neuron. 
  End 
 End 
Stop 
 

The deep neural network has been trained by the gait pattern generated by the model. For each 
pattern a neuron is generated and the network is trained to measure the risk support for the patterns 
and forward the value to the other layer neuron.  The trained network is used to perform 
classification.  
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3.3 FoG Prediction & FoGRS Estimation 
 

The proposed method performs FoG prediction by extracting the features and framing the gait 
pattern. The gait pattern generated is passed to the network trained. The neurons at the 
intermediate layer estimates FoG risk support towards various class of features. The FoG risk support 
represents how efficient the feature would influence the arrival of FoG on the patient. Accordingly, 
the method computes Ankle Risk support (ARS), Knee Risk Support (KRS), Limb Risk Support (LGS), 
Echo Risk support (ERS) and Spine Risk Support (SRS). Using all these measures, the method computes 
the value of FoGRS to support prediction.  According to the value of FoGRS, the method classifies the 
class of gait as normal, pre fog and Fog. 

 
Algorithm for FoG Prediction & FoGRS Estimation: 
Input: Gait Pattern Gp, DNN 
Obtain: Class C 
Start 
 Read Gp, DNN. 
 Pass Gp to DNN 
 For each layer l 
  For each neuron n 

   Compute Ankle Risk support (ARS) =

!"#$(&)
∑)"!*&(").,-,/-.0-)

"12
!"#$(&)

∑)"!*&(").,3,/-.03)
"12

×

!"#$(&)
∑)"!*&(").,4,/-.04)

"12
56.67.5$896:!

 

   Compute Knee Risk Support (KRS) =

!"#$(&)
∑)"!*&(").;-,/-.;-)

"12
!"#$(&)

∑)"!*&(").<3,/-.<3)
"12

×

!"#$(&)
∑)"!*&(").;4,/-.;4)

"12
	56	67	:$896:!

 

   Compute Limb Risk Support (LGS) =

!"#$(&)
∑)"!*&(").>-,/-.>-)

"12
!"#$(&)

∑)"!*&(").>3,/-.>3)
"12

× No. of. neurons 

   Compute Spine Risk Support (SRS) =

!"#$(&)
∑)"!*&(").?-,/-.?-)

"12
!"#$(&)

∑)"!*&(").,4,/-.04)
"12

× No. of. neurons 

   Compute Echo Risk Support (ERS) =

!"#$(&)
∑)"!*&(").@-,/-.@-)

"12
!"#$(&)

∑)"!*&(").A9,/-.A9)
"12

× No. of. neurons 

  End 
  Compute FogRS = ,B?

;B?
× >/?

?B?
× ERS 

 End 
 Class C = Choose the class with maximum FoGRS. 
Stop 
 

The FoG prediction algorithm computes FoG risk support towards various class of FoG and based 
on the value of FoGRS, the method identifies the class of the sample. 

 
4. Results and Discussion 
 

The proposed model has been hardcoded with python and has been evaluated for its 
performance under various constraints. The performance of the method has been measured and 
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compared with others. This section details the results obtained and presents detail explanation on 
the results.  

The experimental setup considered for the performance evaluation of the proposed model is 
presented in Table 1. The table provides details about the experimental setup for the research, 
outlining key factors related to the data set and the parameters used in the study. In short, a 
significant FoG data collection of 50,000 samples collected from 500 users make up the setup for the 
experiment. The paper deals with a multiple-class assignment where there are 3 different classes 
related to parameters connected to footfall or gait. These specifics offer a basis for understanding 
the scope, variety, and objectives of the research's investigations. 

 
Table 1 
Experimental setup 
Key Factor 
Data set  FoG data set 
Number of samples 50000 
No of users 500 
No of classes 3 

 
The accuracy in predicting FoG in PD patients are measured and presented in Figure 2, where the 

TOAGP-FoG has produced higher results. The accuracy in predicting FoG in PD patients are measured 
and presented in Table 2, where the TOAGP-FoG has produced higher results. The table provides an 
analysis of Freezing of Gait (FoG) prediction accuracy for various methods used in the study. In 
summary, the table provides the ability to compare the precision of FoG predictions derived from 
different methods. According to the evaluation metrics utilised in the study, a techniques. 

 
Table 2 
Analysis on FoG prediction accuracy 

Method Value 
FGPuMLP 73 
Conv-LSTM 78 
TV-MRNA 82 
TOAGP-FoG 97 

  

 
Fig. 2. Analysis on fog prediction accuracy 
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The false prediction ratio produced by different methods are analyzed and presented in Table 3, 
where TOAGP-FoG has produced less false prediction ratio than other. 

 
Table 3 
Analysis on false ratio in FoG 

Method Value 
FGPuMLP 27 
Conv-LSTM 22 
TV-MRNA 18 
TOAGP-FoG 3 

 
The ratio of false prediction introduced by different methods is measured and presented in Figure 

3, where the TOAGP-FoG has produced less false prediction compare to others. 
 

 
Fig. 3. Analysis on false ratio in FoG prediction 

 
The table provides an analysis of the false ratio in Freezing of Gait (FoG) prediction for various 

methods used in the study. In summary, the table makes the ability to assess the false ratio in FoG 
prediction immediately between different methods. The method is more accurate in distinguishing 
between actual FoG events when the false ratio % is lower, indicating fewer incorrect predictions. 

The time complexity of methods in predicting FoG has been measured and presented in Table 4, 
where TOAGP-FoG has produced less false prediction than others.   

 
Table 4 
Analysis on time complexity in FoG prediction 
Method Value 
FGPuMLP 79 
Conv-LSTM 72 
TV-MRNA 65 
TOAGP-FoG 32 

  
The time complexity introduced by different methods is measured and presented in Figure 4, 

where the TOAGP-FoG has produced less time complexity compare to others. The table provides an 
analysis of the time complexity in Freezing of Gait (FoG) prediction for various methods used in the 
study. In summary, the table helps one quickly assess the false ratio in a FoG forecast while comparing 
different methods. When the false ratio% is smaller, indicating fewer inaccurate predictions, the 
method is more accurate in differentiating among real FoG events. Further, the temporal complexity 

0

5

10

15

20

25

30

FGPuMLP Conv-LSTM TV-MRNA TOAGP-FoG

Fa
ls

e 
ra

tio
 in

 F
oG

 P
re

di
ct

io
n 

%

False Ratio in FoG Prediction



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 47, Issue 1 (2025) 219-229 

227 
 

plot shows TOAGP-FoG's computational effectiveness and shows it as a workable option for real-time 
FoG prediction. The achieved results, which show the accuracy, discriminative capacity, and 
computational efficiency of TOAGP-FoG in the challenging task of predicting Freezing of Gait in 
patients having Parkinson's disease, end the study and validate its efficacy. 

 

 
Fig. 4. Analysis on time complexity in FoG prediction 

 
5. Conclusion 
 

This paper presented a novel Time Orient Acceleration Gait pattern based FoG prediction model 
(TOAGP-FoG). The model collects gait features through various accelerometer sensors attached at 
different ankle and joints of the body. The sensor signals are recorded at different gait movement in 
long term. The sensory signals recorded are generated into gait pattern and trains with deep neural 
network. The DNN designed has number of intermediate layers and the neurons are designed to 
measure FOG Risk Support (FoGRS) towards various gait movement. The FoG Risk Support is 
measured according to the movement forces produced by the patient for various gait movement in 
different time stamp and computes minimum gait force to be produced. Based on the FoGRS value, 
the neurons at the output layer produces different FoGRS value towards different classes.  Based on 
the value of FoGRS, the method performs classification. The proposed method improves the 
performance of FoG prediction up to 97% and time complexity up to 32 ms. However, it is essential 
to acknowledge potential demerits and areas for future work. Demerits and Future Work can be done 
across High Time Complexity, False Ratio Analysis, Long-term Monitoring Challenges and User 
Compliance. The future study must focus on improving the computational capability of the model, 
addressing the root cause for any incorrect forecasts, and confirming its effectiveness in scenarios 
that involve long-term monitoring. Implementing the suggested FoG prediction model in reality will 
require user-centered design and methods that enhance user compliance. 
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