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Malicious websites have become a pervasive concern in the digital realm, targeting 
careless users as well as organizations. It may result in substantial financial losses, 
identity theft, data intrusions, and damage to reputation. In order to create efficient 
countermeasures, it is crucial to comprehend the effects of interacting with such 
websites. There are several ways to classify malicious webpages.  Web content analysis 
is one such way for protecting internet users from malicious activities. It entails 
analysing websites to identify potential hazards, such as phishing attempts, malware 
distribution, and fraudulent activities. Traditional methods relied on rule-based 
systems, but recent advances in natural language processing and machine learning 
have opened up new avenues for increasing the precision and scalability of web 
content analysis to classify malicious webpages. Most of the exciting research work 
focuses more on URL alone for risk free processing. This paper introduces novel method 
for analysing web contents especially textual contents of the webpages for 
classification. Among various tags in web technology, proposed method focuses on div, 
paragraph and meta tags. The textual contents of these tags are extracted and 
vectorized using three different vectorizers in natural language processing and classify 
the webpages using machine learning models. Seven different machine learning 
models are used for performance evaluation. The result shows that a combined textual 
content of three distinct tags with count vectorizer + random forest achieves the higher 
accuracy of 93.46% with 1000 features.  
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1. Introduction 
 

Malicious websites offer serious security risks to the digital world. These websites deceive users 
into giving important information, infecting their devices with malware, or other unlawful acts [1].  
Phishing attacks employ malicious websites to deceive visitors into entering sensitive information 
like login passwords or bank details [2].  
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Malicious websites serve as platforms for the distribution of malicious software, such as viruses, 
worms, ransomware, and spyware. These dangerous programs may be unintentionally downloaded 
and executed by users, compromising systems or destroying data [3]. Malicious websites can use 
browser or plugin vulnerabilities to automatically download and install malware on visitors' devices 
[4]. Social engineering, such as phony login prompts or urgent alerts, is used by malicious websites 
to trick users into providing sensitive information or executing hazardous activities [5]. By effectively 
recognizing and blocking these webpages, users can avoid financial loss, data breaches, and 
unauthorized access to sensitive information. It prevents infections and malware proliferation, 
decreasing the impact on individuals, organizations, and the internet ecosystem [6]. Malicious 
webpage classification can be done using many methods. The blacklist method [7] is a well-known 
technique to detect dangerous websites. Blacklisting involves keeping a database of harmful websites 
and comparing visiting webpage's URLs or other identifiers to it. If matched, the page is harmful. 
Security companies and organizations frequently generate and maintain blacklists. Despite being a 
simple technique, it has some limitations. 

This method is reactive in nature; therefore, it can only block websites that have already been 
classified as harmful and placed on the blacklist. It may take time for new threats to be detected and 
added to the blacklist.  

 
i. Keeping a blacklist current takes time and resources. Security teams must regularly check 

and update the blacklist to add new threats and remove outdated items.  
ii. Blacklisting can consume considerable computational and network bandwidth. For every 

webpage request, matching URLs or other identifiers against a big blacklist database can 
cause latency and degrade security system performance. 

 
The next method is heuristic analysis [8] which is the process of looking at different aspects of a 

website by using a set of rules or formulas that have already been set up. These criteria are intended 
to spot patterns frequently connected to malicious behaviour, such as suspicious URLs, a lot of pop-
up advertising, concealed iframes, or obfuscated JavaScript code. Compared to blacklisting, heuristic 
analysis is a better generalize detection method, although it still has significant drawbacks. 

 
i. Rules may not encompass the full spectrum of benign webpages, resulting in false 

positives in which benign webpages are incorrectly identified as malicious. False positives 
can interfere with user access and degrade their overall experience. 

ii. Occasionally, heuristic analysis may over generalize features associated with malicious 
websites. For instance, if a heuristic rule flags a certain JavaScript function as possibly 
harmful, it may do the same for legitimate websites that employ the function for 
legitimate purposes. 

iii. Heuristic analysis, especially large-scale or real-time analysis, can slow performance. 
 
To overcome these limitations, researchers prefer to implement a machine learning model 

capable of autonomously classifying websites as malicious or benign [9]. In this method, a huge 
dataset of webpages that have been classified as malicious or benign is gathered, appropriate 
features are extracted (such as URL structure, HTML content, and JavaScript behaviour), and a 
machine learning model is trained to classify webpages based on these features. This paper focuses 
on processing textual contents of the webpages which include malicious and benign. Train and 
classify these websites using machine learning models. URL lexical analysis is the most common 
classification technique for malicious webpages due to its risk-free nature. URL lexical analysis 
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focuses predominantly on the structure, syntax, and components of a URL to identify patterns or 
indicators of malicious intent. The most widely used features are domain, subdomain, path, query 
parameters, special characters, length, etc. URL lexical analysis is often faster than webpage content 
analysis because it only entails analysing the URL. However, it has limited features and does not 
consider contextual information about the webpage. In URL lexical analysis, it is crucial to identify 
significant features that can distinguish between benign and malicious URLs [10]. However, not all 
extracted features are informative or contribute significantly to classification. It may not fully utilize 
the dataset's capabilities. Furthermore, redundant features can add computational effort and noise 
to analysis. On the other side, webpage content analysis is the process of looking at a website's text, 
pictures, scripts, metadata, and other embedded elements. Web page content analysis can capture 
the semantic meaning and context of the content, enabling a more in-depth understanding of the 
webpage's purpose and possible risks. As contrasted to URL lexical analysis, webpage content 
analysis may necessitate loading and parsing the webpage, which introduces a delay. This research 
work focuses on textual contents from div, paragraph and anchor tags of the webpages.  

Most of the recent research uses features that can be generated from webpage contents or URLs 
for classification. But in this research, employs natural language processing (NLP) techniques to solve 
the feature generation problem. NLP methods can convert text into numerical representations that 
may be used as features in machine learning models. These representations utilize vectorizers, such 
as bag-of-words, TF-IDF, and hashing, which capture the salient information of the text while 
preserving the semantic relationships between words [11]. Seven different machine learning 
algorithms are utilized for experiments and performance assessments. The result shows that 
combined textual contents of three distinct tags with count vectorizer + random forest achieve the 
higher accuracy of 93.46%with 1000 features. This paper makes several significant contributions to 
the field of web content analysis and malicious webpage classification. First, we introduce a novel 
method that goes beyond traditional URL-centric approaches, focusing on the analysis of textual 
content within div, paragraph, and meta tags. This departure from the norm enables a more 
comprehensive understanding of webpage content. Second, the incorporation of three different 
vectorizers in natural language processing enhances the extraction and processing of textual 
information, contributing to the precision of our classification model. Third, the utilization of seven 
distinct machine learning models for performance evaluation demonstrates the robustness and 
versatility of our approach. Lastly, our results reveal a remarkable accuracy of 93.46% with 1000 
features, underscoring the efficacy of our proposed method. These contributions collectively 
advance the state-of-the-art in web content analysis and provide valuable insights for the 
development of more effective countermeasures against malicious activities on the internet. 

The structure of the paper is as follows. Part I discusses the significance of the research and 
current methodologies. Additionally, it emphasizes the contribution of the current paper. Part II 
covers previous study, findings, and remarks. The proposed work is fully described in Part III. The 
experimental results are shown in Part IV. The paper is concluded in Part V.  
 
2. Related works 

 
Malicious website detection protects users from online threats like malware, phishing, and data 

theft. The researchers devised a number of techniques for identifying fraudulent websites. The 
malicious website's features, including HTML and JavaScript, were listed by Wan et al., [12]. Malak et 
al., [13] evaluated a dataset of 66,506 URLs to detect dangerous websites using ML and DL models.  
Three different kinds of features such as lexical-based, network-based, and content-based were 
utilized for detection for malicious webpages. The dataset's most discriminative properties were 
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extracted using correlation analysis, ANOVA, and chi-square. The results showed that Nave Bayes 
(NB) was the best model for detecting malicious URLs using the applied data, with an accuracy of 
96%.A framework for the detection of malicious web pages is provided by Sirageldin et al., [14]. When 
utilizing machine learning algorithms to identify fraudulent web pages, two different factors (URL 
keywords and page content) were considered. The dataset included both good and bad websites. 
Alexa, malwareurl, phishtank, malwaredomainlist.com, StopBadWare, mwsl.org.cn dataset was 
used. The gathered features are divided into two categories: training and test. The model had a 97% 
accuracy rate and no false positives. Machine learning and deep learning were used by Saleem et al., 
[15] to classify harmful webpages by content. The approach uses only HTML tags, event methods, 
DOM keywords, and JavaScript functions from online content. The investigations made use of data 
from the Kaggle dataset. More than 206 features are extracted from the dataset. The top-scoring 
features are chosen for the experiment using the selectKbest method. The results show that support 
vector machine (SVM) has 88% accuracy and random forest (RF) 93%.Desai et al., [16] proposes a 
Chrome Extension to help users spot phishing websites.  The experiment made use of the UCI dataset. 
The dataset has 11055 records with 30 features. Only 22 of the dataset's 30 features were taken into 
consideration for the experiment. The outcome reveals that the Random Forest algorithm achieves 
96% accuracy, SVM achieves 93.5% accuracy, and KNN algorithm achieves 93% accuracy. Saleem et 
al., [9] suggested a lightweight malicious URL detection algorithm. The authors note that blacklists 
and reputation-based malicious URL detection methods are incapable of detecting new threats. To 
address this problem, the authors propose a novel approach that employs a set of lexical features, 
such as the URL's length, the presence of specific characters, and the number of subdomains, to train 
a machine learning model to detect malicious URLs. According to the study, k-nearest neighbour (k-
NN) algorithms and random forest (RF) algorithms can both detect malicious URLs with 98% and 99% 
accuracy, respectively. With the help of rank-based, bag-of-words, web page-based, and lexical 
criteria, Pradeepa et al., [17] devised a method for identifying malicious URLs. The datasets from 
Phistank and Kaggle were used. The outcome demonstrates that Random Forest offers 99% accuracy. 
Saleem et al., [18] implements NLP to vectorize URL terms. Machine learning and deep learning 
models are used for classification.  Two datasets (D1 and D2) are utilized for the experiment. Three 
vectorization methods vectorize URL text such as Count, TF-IDF, Hashing.  With the D1 dataset, the 
Decision Tree (DT) with count vectorizer and Random Forest (RF) with TF-IDF vectorizer both reach 
92.4% accuracy. With the D2 dataset, the Decision Tree (DT) with TF-IDF vectorizer achieves a higher 
accuracy of 99.5%. The Artificial Neural Network (ANN) model has an accuracy of 89.6% with the D1 
dataset and 99.2% with the D2 dataset. Table 1 summarizes the recent works in the field. 
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Table 1 
Summary of recent works 

No Proposed 
Method 

Features Accuracy Remarks 

1 Malak et al., 
[13] 

URL lexical features, Content 
features, Reputation features, 
Network features 

Nave Bayes: 96% The dataset is underutilized. 
Depending on the features chosen, 
the outcome could vary. 

2 Sirageldin et 
al., [14] 

URL keywords and page content 97% Features are limited. Depending on 
the features chosen, the outcome 
could vary. 

3 Saleem et 
al., [15] 

HTML tags, event methods, DOM 
keywords, and JavaScript functions 

SVM: 88% RF: 
93% 

Features are limited. 
Longer processing time. Unable to 
be extended. 

4 Desai et al., 
[16] 

URL lexical features, Content 
features, Reputation features, 
Network features 

RF: 96%, SVM: 
93.5% KNN: 93%  

Features are limited. Depending on 
the features chosen, the outcome 
could vary. 

5 Saleem et 
al., [9] 

URL lexical features, Content 
features, Reputation features, 
Network features 

K-NN: 98%, RF: 
99%  

Features are limited. Depending on 
the features chosen, the outcome 
could vary. 

6 Pradeepa et 
al., [17] 

Rank-based features, Bag-of-words 
features, Web page content 
features, URL lexical features 

RF: 99% Features are limited. Depending on 
the features chosen, the outcome 
could vary 

7 Saleem et 
al., [18] 

URL vectorized features using NLP 
method 

DT with TF-IDF 
vectorizer: 
99.5%.  

URLs alone may not be adequate for 
better classification. 

 
While the existing body of literature has made commendable strides in the realm of malicious 

webpage classification, our proposed system aims to bridge a notable research gap. Prior studies 
have predominantly focused on URL-centric analyses, often overlooking the comprehensive 
examination of textual content within webpages. The proposed system introduces a novel approach 
by prioritizing the analysis of div, paragraph, and meta tags, thereby providing a more nuanced 
understanding of webpage content. This departure from conventional methodologies addresses the 
need for a more holistic examination of potential threats, ultimately contributing to the advancement 
of web content analysis in the context of malicious activities. Our work thus complements and 
extends the existing research landscape by offering a fresh perspective and insights into an 
underexplored facet of malicious webpage classification. 
 
3. Proposed Systems 

 
The proposed system (Web Content Analysis-WCA) incorporates various machine learning 

techniques including Logistic Regression (LogR), Gaussian Naive Bayes (GNB), K-Nearest Neighbors 
(KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient 
Boosting (XGB). For assessing the model's efficacy, it is essential to ensure accurate data selection 
and balancing. The experiment utilized well-established datasets such as URL dataset (ISCX-URL2016) 
[19], UNB [20], and phistank [21]. Imbalanced data poses a common challenge in machine learning, 
where one class has significantly more samples than the others [21-24]. This imbalance can lead to 
biased models that prioritize the majority class and perform poorly with the minority class [25,26]. 
In order to resolve this issue and prevent skewed results, an equal number of benign and malicious 
URLs have been selected for the experiment. Table 2 provides the summary of the total benign and 
malicious URLs used. 
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Table 2 
Dataset Summary 
No Type Count 
1 Benign  5530 
2 Malicious  5882 

 
In our experiment, focuses solely on the textual content of webpages especially textual contents 

in <para>, <div> and <meta> tag. Algorithm 1 presents the text extraction process. Most of the textual 
content on webpages is organized using by using these tags. Paragraphs in HTML are defined by the 
<p> tag. It is one of the most popular tags for organizing and exhibiting textual content on web pages. 
HTML's <div> tag is a versatile and widely used tag for dividing a webpage.  To organize the content, 
<div> tags are utilized.  The <meta> tag adds metadata to a webpage. Metadata delivers vital 
information to browsers, search engines, and other web services. 

 
Algorithm #1:  Textual content extraction 
function 

extract_text_from_webpage(html_content): 
div_texts = [] 
meta_texts = [] 
para_texts = [] 
 
    # Parse the HTML content 
    soup = parse_html(html_content) 
 
    # Extract text from <div> tags 
div_tags = find_div_tags(soup) 
    for div_tag in div_tags: 
div_text = extract_text(div_tag) 
        if div_text is not empty: 
add_to_list(div_texts, div_text) 
 
    # Extract text from <meta> tags 
meta_tags = find_meta_tags(soup) 
    for meta_tag in meta_tags: 
meta_text = extract_content(meta_tag) 
        if meta_text is not empty: 
add_to_list(meta_texts, meta_text) 
 
    # Extract text from <p> tags 
para_tags = find_para_tags(soup) 
    for para_tag in para_tags: 
para_text = extract_text(para_tag) 
        if para_text is not empty: 
add_to_list(para_texts, para_text) 
 
    # Return the extracted text from all the 

tags 
    return div_texts, meta_texts, para_texts 
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i. parse_html (html_content) represents the function to parse the HTML content and create 
a parse tree. 

ii. find_div_tags(soup), find_meta_tags(soup), and find_para_tags(soup) represent 
functions to locate <div>, <meta>, and <p> tags respectively in the parse tree. 

iii. extract_text (tag) represents the function to extract the text content from a given tag. 
iv. extract_content(tag) represents the function to extract the content attribute value from 

a given tag. 
v. add_to_list(list, text) represents the function to add non-empty text to a given list. 

 
Textual data must first be transformed into numbers because machine learning algorithms often 

operate on numerical data. This method, referred to as vectorization, involves converting text data 
into a numerical format that machine learning algorithms can understand. Algorithm 2 presents the 
text vectorization process. Vectorization methods like Count, Term Frequency-Inverse Document 
Frequency (TF-IDF), and Hashing are used to encode textual data as numerical vectors [22]. These 
methods record the semantic and syntactic connections between various words and sentences. 

 
Algorithm #2. Text Vectorization 
function vectorize_text(texts, 

max_features): 
    vectorizer = initialize_vectorizer() 
 
    # Set the maximum number of features 
set_max_features(vectorizer, 

max_features) 
 
    # Fit the vectorizer on the text data 
fitted_vectorizer = 

fit_vectorizer(vectorizer, texts) 
 
    # Transform the text data into feature 

vectors 
feature_vectors = 

transform_text(fitted_vectorizer, texts) 
 
    return feature_vectors 

 
i. initialize_vectorizer() represents the function to initialize the text vectorizer. The choice 

of vectorizer (e.g., Bag-of-Words, TF-IDF, and Word2Vec) and the configuration of 
parameters would depend on the specific vectorization technique you want to use. 

ii. set_max_features(vectorizer,max_features) represents the function to set the maximum 
number of features for the vectorizer. This ensures that the resulting feature vectors have 
the desired dimensionality. 

iii. fit_vectorizer(vectorizer, texts) represents the function to fit the vectorizer on the given 
texts. This step calculates any necessary statistics or parameters from the text data 
required for vectorization. 
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iv. transform_text (fitted_vectorizer, texts) represents the function to transform the text 
data into feature vectors using the fitted vectorizer. This step converts the textual data 
into numerical representations according to the chosen vectorization technique. 

v. feature_vectors is the resulting feature matrix containing the vectorized representation 
of the input texts. 

 
The proposed method (Web Content Analysis-WCA) contains three steps. The first step entails 

extracting the required text from the three distinct tags of the web pages. Text is pre-processed 
during the second step. Preprocessing includes all the steps that are needed for text vectorization. 
Cleaning text eliminates special characters and only takes into account text and numerals. After 
cleaning the text, it will be changed to lowercase, stop words will be removed, and it will be 
lemmatized to reduce the number of features while vectorizing. Figure 1 depicts the entire process. 

 
Several NLP approaches, such as bag of words, TFIDF, and hash vectorizer, are used to convert 

text into a real-valued vector. In step three, seven different machine learning algorithms are used to 
analyse the data that has been vectorized. 
 

 
Fig. 1. Proposed System (WCA) 

 
Several NLP approaches, such as bag of words, TFIDF, and hash vectorizer, are used to convert 

text into a real-valued vector. In step three, seven different machine learning algorithms are used to 
analyse the data that has been vectorized. 

The experimental setup consists of Windows 10, an I5 processor running at 3.2 GHz, and 8 GB of 
RAM. Python is used for programming in Jupyter Notebook with the sklearn package. The 
performance metrics that are considered are accuracy, precision, recall, and f1-score. The number of 
features that vectorizers output ranges from 500 to 2000. The contents of each tag are separately 
evaluated. Table 3 to Table 6 show the results of count vectorizer experiments.  
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Table 3 
Performance of Count Vectorizer with <div> tag 

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Count LOGR 500 81.63 78.47 91.38 83.93 

KNN 79.74 78.60 86.16 81.54 
GNB 74.26 69.86 97.01 80.41 
DT 84.52 81.01 93.16 86.38 
RF 87.06 84.38 92.77 88.23 
GB 81.50 77.71 92.64 84.08 
XGB 85.67 82.03 93.95 87.32 
LOGR 1000 82.41 79.24 91.53 84.54 
KNN 77.80 77.39 84.68 79.98 
GNB 73.57 69.07 98.06 80.22 
DT 84.17 80.70 93.05 86.13 
RF 87.16 84.68 92.64 88.31 
GB 82.16 78.15 93.33 84.66 
XGB 85.62 82.11 93.74 87.26 
LOGR 1500 85.30 82.35 92.50 86.84 
KNN 80.56 79.50 86.93 82.36 
GNB 75.12 70.39 97.60 81.03 
DT 81.10 78.63 91.29 83.79 
RF 85.75 83.92 91.40 87.12 
GB 80.29 76.35 92.89 83.35 
XGB 86.15 82.61 93.91 87.67 
LOGR 2000 85.83 83.02 92.57 87.25 
KNN 78.88 77.47 87.54 81.45 
GNB 76.14 71.30 97.26 81.55 
DT 84.25 82.02 90.63 85.74 
RF 87.47 86.01 91.38 88.36 
GB 80.40 76.60 92.69 83.40 
XGB 85.47 81.65 94.37 87.26 
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Table 4 
Performance of Count Vectorizer with <meta> tag 
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Count LOGR 500 84.35 82.65 90.24 85.83 

KNN 78.07 77.04 85.31 80.26 
GNB 83.47 82.14 88.73 84.94 
DT 85.70 83.06 92.26 87.14 
RF 87.41 85.45 92.20 88.47 
GB 79.50 75.34 94.46 83.16 
XGB 84.17 81.52 91.97 85.96 
LOGR 1000 86.86 85.20 91.57 87.95 
KNN 76.63 74.51 88.66 80.00 
GNB 80.41 93.32 66.86 77.42 
DT 87.39 85.27 92.31 88.45 
RF 88.86 87.58 92.04 89.60 
GB 77.36 75.24 90.80 80.52 
XGB 84.73 81.79 92.55 86.44 
LOGR 1500 87.69 85.88 92.45 88.74 
KNN 76.99 72.96 93.33 81.26 
GNB 72.83 93.84 50.25 63.81 
DT 85.71 83.17 92.45 87.31 
RF 89.24 87.98 92.31 89.96 
GB 79.16 75.19 94.34 82.94 
XGB 85.19 82.47 92.60 86.83 
LOGR 2000 87.76 85.71 92.84 88.85 
KNN 76.65 73.67 90.60 80.36 
GNB 72.49 94.35 49.37 63.07 
DT 87.42 85.21 92.45 88.50 
RF 89.44 88.19 92.45 90.13 
GB 79.20 75.18 94.51 83.01 
XGB 85.48 82.83 92.59 87.03 
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Table 5 
Performance of Count Vectorizer with <para> tag 
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Count LOGR 500 79.35 75.91 91.97 82.60 

KNN 77.29 75.90 86.42 80.10 
GNB 71.65 67.43 97.81 79.00 
DT 83.47 80.54 91.72 85.49 
RF 86.90 85.68 90.94 88.04 
GB 80.55 77.79 90.97 83.25 
XGB 84.53 81.59 92.62 86.43 
LOGR 1000 81.31 78.31 91.46 83.89 
KNN 78.18 76.01 88.08 81.04 
GNB 72.12 67.81 97.57 79.21 
DT 84.00 81.04 92.33 86.02 
RF 87.81 86.88 91.46 88.88 
GB 80.71 77.92 91.09 83.39 
XGB 85.24 82.65 92.57 86.99 
LOGR 1500 84.31 81.30 92.54 86.22 
KNN 78.51 75.53 90.68 81.78 
GNB 73.66 69.03 97.26 80.03 
DT 83.54 80.66 91.96 85.61 
RF 88.24 87.21 91.58 89.18 
GB 81.71 78.93 91.02 84.02 
XGB 86.17 83.56 92.93 87.72 
LOGR 2000 85.07 82.12 92.91 86.87 
KNN 78.31 75.36 90.89 81.66 
GNB 74.37 69.63 97.25 80.46 
DT 85.48 82.80 92.14 87.03 
RF 87.29 85.68 91.86 88.47 
GB 82.06 79.03 91.65 84.39 
XGB 86.82 84.33 93.23 88.28 
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Table 6 
Performance of Count Vectorizer with combined tags (<div><meta><para>) 
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Count LOGR 500 85.02 82.34 92.76 86.84 

KNN 82.54 78.65 94.05 85.20 
GNB 75.06 70.22 97.14 80.81 
DT 89.11 87.58 92.40 89.81 
RF 92.67 93.97 91.92 92.86 
GB 84.84 82.80 91.35 86.46 
XGB 91.03 89.50 94.24 91.67 
LOGR 1000 88.58 86.28 93.61 89.58 
KNN 82.94 78.89 94.61 85.57 
GNB 76.90 71.80 97.06 81.93 
DT 89.58 87.99 92.89 90.28 
RF 93.46 95.17 92.11 93.56 
GB 85.69 83.57 92.16 87.26 
XGB 91.73 90.44 94.39 92.26 
LOGR 1500 89.39 87.48 93.47 90.22 
KNN 81.83 77.89 93.56 84.57 
GNB 80.18 75.21 96.87 84.10 
DT 88.27 87.14 91.82 89.24 
RF 93.00 94.84 91.55 93.11 
GB 85.99 83.48 92.91 87.58 
XGB 91.94 90.45 94.80 92.48 
LOGR 2000 90.02 88.35 93.54 90.74 
KNN 81.42 77.37 94.03 84.38 
GNB 79.13 73.88 97.31 83.43 
DT 88.24 87.09 91.77 89.20 
RF 92.96 94.96 91.29 93.04 
GB 86.07 83.68 92.74 87.63 
XGB 92.06 90.69 94.75 92.58 

 
Table 7 shows the summary of performance of count vectorizer. The result shows that combined 

textual contents of three different tags with random forest (RF) gives better result of 93.46% accuracy 
with 1000 features. Timing parameters play a crucial role in the performance and efficiency of the 
WCA system. Given the substantial computational requirements associated with tasks such as text 
extraction, preprocessing, and the application of machine learning algorithms, a clear understanding 
of timing parameters becomes essential. This includes examining the time required for tasks like 
HTML parsing, tag-specific text extraction, vectorization, and model training. Furthermore, as the 
proposed system aims to process web content in real-time, timing considerations become pivotal for 
ensuring its practical applicability. Understanding the temporal aspects of the system's operations is 
essential for evaluating its responsiveness, especially in scenarios where timely analysis of web 
content is crucial, such as in cybersecurity applications. 

 
Table 7 
Summary of Count Vectorizer 
Tag Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Div RF 2000 87.47 86.01 91.38 88.36 
Meta RF 2000 89.44 88.19 92.45 90.13 
Para RF 1500 88.24 87.21 91.58 89.18 
Combined RF 1000 93.46 95.17 92.11 93.56 

 
Table 8 to Table 11 shows the results of TF-IDF vectorizer experiments.  
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Table 8 
Performance of TF-IDF vectorizer with <div> tag 

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
TF-IDF LOGR 500 83.28 80.93 90.19 84.92 

KNN 75.07 74.51 79.39 75.75 
GNB 79.03 74.32 95.51 83.02 
DT 84.39 80.89 92.96 86.24 
RF 87.19 84.60 92.79 88.34 
GB 82.21 78.61 92.48 84.56 
XGB 85.77 82.33 93.73 87.40 
LOGR 1000 83.45 81.12 90.24 85.06 
KNN 74.54 74.18 78.90 75.58 
GNB 75.46 70.60 97.84 81.29 
DT 84.15 80.71 92.77 86.03 
RF 87.28 84.78 92.77 88.42 
GB 82.36 78.61 92.88 84.73 
XGB 85.89 82.29 94.10 87.53 
LOGR 1500 84.65 82.90 90.07 85.84 
KNN 75.90 74.25 86.43 79.04 
GNB 79.59 74.41 96.82 83.62 
DT 81.41 78.51 91.99 84.07 
RF 85.47 83.59 91.17 86.85 
GB 81.43 77.75 92.82 84.16 
XGB 86.95 83.65 94.01 88.31 
LOGR 2000 85.09 83.59 89.97 86.18 
KNN 79.20 76.61 89.15 81.79 
GNB 80.68 76.03 95.44 84.14 
DT 84.59 82.55 90.51 85.97 
RF 87.39 85.90 91.36 88.29 
GB 81.07 77.47 92.30 83.80 
XGB 87.01 83.73 94.03 88.35 

 
Table 9 
Performance of TF-IDF vectorizer with <meta> tag 

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
TF-IDF LOGR 500 85.16 83.98 89.92 86.38 

KNN 76.95 74.12 89.13 80.38 
GNB 83.57 83.58 86.58 84.63 
DT 86.22 83.57 92.62 87.60 
RF 88.61 86.74 92.88 89.52 
GB 80.44 76.10 95.03 83.90 
XGB 84.83 82.01 92.40 86.49 
LOGR 1000 87.08 86.29 90.38 87.93 
KNN 73.32 69.80 92.57 78.84 
GNB 80.87 91.21 70.14 78.73 
DT 87.75 85.06 93.49 88.89 
RF 89.82 88.29 93.13 90.52 
GB 76.16 75.85 87.43 78.69 
XGB 85.73 83.00 92.76 87.24 
LOGR 1500 87.78 87.23 90.49 88.52 
KNN 70.91 67.84 92.18 77.31 
GNB 75.87 93.46 56.81 68.84 
DT 88.31 85.80 93.52 89.34 
RF 90.17 88.64 93.45 90.86 
GB 76.05 75.85 87.04 78.50 
XGB 85.27 82.36 92.86 86.90 
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LOGR 2000 88.51 88.02 90.94 89.18 
KNN 67.90 65.07 87.25 73.70 
GNB 75.07 93.90 54.96 67.58 
DT 88.26 85.88 93.11 89.22 
RF 90.22 88.86 93.18 90.86 
GB 76.21 75.85 87.35 78.64 
XGB 85.44 82.43 93.08 87.06 

 
Table 10 
Performance of TF-IDF vectorizer with <para> tag 
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
TF-IDF LOGR 500 80.98 79.58 87.96 83.02 

KNN 76.99 74.21 89.03 80.33 
GNB 79.61 75.76 93.59 83.12 
DT 84.27 81.78 91.53 86.08 
RF 87.23 86.44 90.72 88.31 
GB 79.70 77.01 90.04 82.45 
XGB 85.40 83.21 91.87 87.02 
LOGR 1000 82.58 80.97 88.95 84.37 
KNN 71.48 68.66 83.12 74.38 
GNB 79.78 75.25 95.12 83.48 
DT 84.66 81.90 92.26 86.48 
RF 87.41 86.34 91.21 88.50 
GB 80.26 77.09 91.26 83.05 
XGB 85.45 83.09 92.21 87.11 
LOGR 1500 84.82 83.18 90.22 86.25 
KNN 73.21 69.96 91.57 78.53 
GNB 82.31 78.62 93.30 84.90 
DT 85.86 83.54 92.04 87.33 
RF 88.26 87.49 91.23 89.15 
GB 80.94 77.72 91.75 83.60 
XGB 86.61 84.19 92.82 88.03 
LOGR 2000 85.60 83.80 91.12 87.01 
KNN 72.69 69.00 93.54 78.66 
GNB 83.79 80.43 92.93 85.90 
DT 85.29 82.82 91.74 86.83 
RF 88.38 87.46 91.57 89.29 
GB 81.15 77.82 91.80 83.77 
XGB 86.61 84.09 92.98 88.06 
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Table 11 
Performance of TF-IDF vectorizer with combined tags (<div><meta><para>) 
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
TF-IDF LOGR 500 87.98 87.43 90.55 88.69 

KNN 79.17 74.71 94.54 82.96 
GNB 83.87 79.60 94.92 86.18 
DT 87.05 85.54 91.18 88.05 
RF 92.74 94.25 91.74 92.90 
GB 85.00 83.31 90.94 86.52 
XGB 90.36 89.35 93.74 91.26 
LOGR 1000 89.39 88.88 91.50 89.99 
KNN 78.18 73.63 94.73 82.27 
GNB 84.24 79.93 94.78 86.39 
DT 87.86 86.58 91.96 88.96 
RF 93.19 94.74 92.04 93.32 
GB 86.52 84.29 92.77 87.98 
XGB 91.91 90.93 94.07 92.38 
LOGR 1500 89.95 89.49 91.86 90.51 
KNN 82.09 79.21 90.97 84.22 
GNB 87.95 85.23 93.84 89.11 
DT 85.66 84.28 91.04 87.17 
RF 93.12 95.09 91.48 93.20 
GB 86.27 84.16 92.30 87.69 
XGB 91.79 90.73 94.10 92.29 
LOGR 2000 90.07 89.64 91.86 90.59 
KNN 79.82 76.83 90.38 82.56 
GNB 86.45 82.04 96.31 88.31 
DT 88.19 87.32 91.35 89.11 
RF 93.22 95.14 91.65 93.31 
GB 86.36 84.31 92.37 87.81 
XGB 92.28 91.28 94.41 92.73 

 
Table 12 shows the summary of performance of TF-IDF vectorizer. The result shows that 

combined textual contents of three different tags with random forest (RF) gives better result of 
93.22% accuracy with 2000 features. 

From the experiments, combined textual contents of three distinct tags with count vectorizer + 
random forest achieves the higher accuracy of 93.46%with 1000 features as shown in Table 12 and 
Figure 2. Binary classification models are evaluated using ROC-AUC curves. It offers a comprehensive 
visual representation of the discriminatory capability of a model in distinguishing positive from 
negative instances at different probability thresholds. Figure 3, 4 and 5 depicts the performance of 
each vectorizer with combined tags. 
 

Table 12 
Summary of the Combined Tags (<div><meta><para>) 

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score 
Count RF 1000 93.46 95.17 92.11 93.56 
TF-IDF RF 2000 93.22 95.14 91.65 93.31 
Hashing RF 1000 92.22 93.71 91.16 92.36 
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Fig. 2. Performance Comparison Fig. 3. Proposed System (WCA) 
  

  
Fig. 4. ROC-AUC curve for Count Vectorizer Fig. 5. ROC-AUC curve for Hashing 

 
4. Conclusions 

 
The detection of malicious web pages is the process of identifying and flagging web pages that 

contain detrimental or malicious content. This is essential for preserving cyber security and 
protecting users against potential attacks. In this paper, utilizes the textual contents of the webpages 
for malicious webpage classification. Textual information is extracted from the three distinct tags of 
the webpages (<div>, <meta> and <para>).After that, NLP vectorizers convert unprocessed text data 
into numerical feature vectors, which machine learning algorithms can use to process and analyse 
the text effectively. Text in every tag is tested separately. Finally, a test is conducted on the combined 
textual contents. The result of the experiment reveals that combined textual contents of three 
distinct tags with count vectorizer + random forest achieves the higher accuracy of 93.46%with 1000 
features. It is important to note that the speed of textual content extraction represents a limitation 
in this study, suggesting a potential avenue for future enhancements to optimize overall 
performance. 
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