

Journal of Advanced Research in Applied Sciences and Engineering Technology 47, Issue 1 (2025) 105-122

105

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

WCA: Integration of Natural Language Processing Methods and Machine
Learning Model for Effective Analysis of Web Content to Classify
Malicious Webpages

Shaheetha Liaquathali1,*, Vadivazhagan Kadirvelu1

1 Department of Computer and Information Science, Annamalai University, Tamil Nadu 608002, India

ARTICLE INFO ABSTRACT

Article history:
Received 7 December 2023
Received in revised form 12 May 2024
Accepted 23 May 2024
Available online 20 June 2024

Malicious websites have become a pervasive concern in the digital realm, targeting
careless users as well as organizations. It may result in substantial financial losses,
identity theft, data intrusions, and damage to reputation. In order to create efficient
countermeasures, it is crucial to comprehend the effects of interacting with such
websites. There are several ways to classify malicious webpages. Web content analysis
is one such way for protecting internet users from malicious activities. It entails
analysing websites to identify potential hazards, such as phishing attempts, malware
distribution, and fraudulent activities. Traditional methods relied on rule-based
systems, but recent advances in natural language processing and machine learning
have opened up new avenues for increasing the precision and scalability of web
content analysis to classify malicious webpages. Most of the exciting research work
focuses more on URL alone for risk free processing. This paper introduces novel method
for analysing web contents especially textual contents of the webpages for
classification. Among various tags in web technology, proposed method focuses on div,
paragraph and meta tags. The textual contents of these tags are extracted and
vectorized using three different vectorizers in natural language processing and classify
the webpages using machine learning models. Seven different machine learning
models are used for performance evaluation. The result shows that a combined textual
content of three distinct tags with count vectorizer + random forest achieves the higher
accuracy of 93.46% with 1000 features.

Keywords:

Count; Term frequency and inverse
document frequency; Machine learning
model; Phishing; Malicious webpages

1. Introduction

Malicious websites offer serious security risks to the digital world. These websites deceive users
into giving important information, infecting their devices with malware, or other unlawful acts [1].
Phishing attacks employ malicious websites to deceive visitors into entering sensitive information
like login passwords or bank details [2].

* Corresponding author.
E-mail address: shahee.aasc@gmail.com

https://doi.org/10.37934/araset.47.1.105122

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

106

Malicious websites serve as platforms for the distribution of malicious software, such as viruses,
worms, ransomware, and spyware. These dangerous programs may be unintentionally downloaded
and executed by users, compromising systems or destroying data [3]. Malicious websites can use
browser or plugin vulnerabilities to automatically download and install malware on visitors' devices
[4]. Social engineering, such as phony login prompts or urgent alerts, is used by malicious websites
to trick users into providing sensitive information or executing hazardous activities [5]. By effectively
recognizing and blocking these webpages, users can avoid financial loss, data breaches, and
unauthorized access to sensitive information. It prevents infections and malware proliferation,
decreasing the impact on individuals, organizations, and the internet ecosystem [6]. Malicious
webpage classification can be done using many methods. The blacklist method [7] is a well-known
technique to detect dangerous websites. Blacklisting involves keeping a database of harmful websites
and comparing visiting webpage's URLs or other identifiers to it. If matched, the page is harmful.
Security companies and organizations frequently generate and maintain blacklists. Despite being a
simple technique, it has some limitations.

This method is reactive in nature; therefore, it can only block websites that have already been
classified as harmful and placed on the blacklist. It may take time for new threats to be detected and
added to the blacklist.

i. Keeping a blacklist current takes time and resources. Security teams must regularly check

and update the blacklist to add new threats and remove outdated items.
ii. Blacklisting can consume considerable computational and network bandwidth. For every

webpage request, matching URLs or other identifiers against a big blacklist database can
cause latency and degrade security system performance.

The next method is heuristic analysis [8] which is the process of looking at different aspects of a

website by using a set of rules or formulas that have already been set up. These criteria are intended
to spot patterns frequently connected to malicious behaviour, such as suspicious URLs, a lot of pop-
up advertising, concealed iframes, or obfuscated JavaScript code. Compared to blacklisting, heuristic
analysis is a better generalize detection method, although it still has significant drawbacks.

i. Rules may not encompass the full spectrum of benign webpages, resulting in false

positives in which benign webpages are incorrectly identified as malicious. False positives
can interfere with user access and degrade their overall experience.

ii. Occasionally, heuristic analysis may over generalize features associated with malicious
websites. For instance, if a heuristic rule flags a certain JavaScript function as possibly
harmful, it may do the same for legitimate websites that employ the function for
legitimate purposes.

iii. Heuristic analysis, especially large-scale or real-time analysis, can slow performance.

To overcome these limitations, researchers prefer to implement a machine learning model

capable of autonomously classifying websites as malicious or benign [9]. In this method, a huge
dataset of webpages that have been classified as malicious or benign is gathered, appropriate
features are extracted (such as URL structure, HTML content, and JavaScript behaviour), and a
machine learning model is trained to classify webpages based on these features. This paper focuses
on processing textual contents of the webpages which include malicious and benign. Train and
classify these websites using machine learning models. URL lexical analysis is the most common
classification technique for malicious webpages due to its risk-free nature. URL lexical analysis

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

107

focuses predominantly on the structure, syntax, and components of a URL to identify patterns or
indicators of malicious intent. The most widely used features are domain, subdomain, path, query
parameters, special characters, length, etc. URL lexical analysis is often faster than webpage content
analysis because it only entails analysing the URL. However, it has limited features and does not
consider contextual information about the webpage. In URL lexical analysis, it is crucial to identify
significant features that can distinguish between benign and malicious URLs [10]. However, not all
extracted features are informative or contribute significantly to classification. It may not fully utilize
the dataset's capabilities. Furthermore, redundant features can add computational effort and noise
to analysis. On the other side, webpage content analysis is the process of looking at a website's text,
pictures, scripts, metadata, and other embedded elements. Web page content analysis can capture
the semantic meaning and context of the content, enabling a more in-depth understanding of the
webpage's purpose and possible risks. As contrasted to URL lexical analysis, webpage content
analysis may necessitate loading and parsing the webpage, which introduces a delay. This research
work focuses on textual contents from div, paragraph and anchor tags of the webpages.

Most of the recent research uses features that can be generated from webpage contents or URLs
for classification. But in this research, employs natural language processing (NLP) techniques to solve
the feature generation problem. NLP methods can convert text into numerical representations that
may be used as features in machine learning models. These representations utilize vectorizers, such
as bag-of-words, TF-IDF, and hashing, which capture the salient information of the text while
preserving the semantic relationships between words [11]. Seven different machine learning
algorithms are utilized for experiments and performance assessments. The result shows that
combined textual contents of three distinct tags with count vectorizer + random forest achieve the
higher accuracy of 93.46%with 1000 features. This paper makes several significant contributions to
the field of web content analysis and malicious webpage classification. First, we introduce a novel
method that goes beyond traditional URL-centric approaches, focusing on the analysis of textual
content within div, paragraph, and meta tags. This departure from the norm enables a more
comprehensive understanding of webpage content. Second, the incorporation of three different
vectorizers in natural language processing enhances the extraction and processing of textual
information, contributing to the precision of our classification model. Third, the utilization of seven
distinct machine learning models for performance evaluation demonstrates the robustness and
versatility of our approach. Lastly, our results reveal a remarkable accuracy of 93.46% with 1000
features, underscoring the efficacy of our proposed method. These contributions collectively
advance the state-of-the-art in web content analysis and provide valuable insights for the
development of more effective countermeasures against malicious activities on the internet.

The structure of the paper is as follows. Part I discusses the significance of the research and
current methodologies. Additionally, it emphasizes the contribution of the current paper. Part II
covers previous study, findings, and remarks. The proposed work is fully described in Part III. The
experimental results are shown in Part IV. The paper is concluded in Part V.

2. Related works

Malicious website detection protects users from online threats like malware, phishing, and data

theft. The researchers devised a number of techniques for identifying fraudulent websites. The
malicious website's features, including HTML and JavaScript, were listed by Wan et al., [12]. Malak et
al., [13] evaluated a dataset of 66,506 URLs to detect dangerous websites using ML and DL models.
Three different kinds of features such as lexical-based, network-based, and content-based were
utilized for detection for malicious webpages. The dataset's most discriminative properties were

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

108

extracted using correlation analysis, ANOVA, and chi-square. The results showed that Nave Bayes
(NB) was the best model for detecting malicious URLs using the applied data, with an accuracy of
96%.A framework for the detection of malicious web pages is provided by Sirageldin et al., [14]. When
utilizing machine learning algorithms to identify fraudulent web pages, two different factors (URL
keywords and page content) were considered. The dataset included both good and bad websites.
Alexa, malwareurl, phishtank, malwaredomainlist.com, StopBadWare, mwsl.org.cn dataset was
used. The gathered features are divided into two categories: training and test. The model had a 97%
accuracy rate and no false positives. Machine learning and deep learning were used by Saleem et al.,
[15] to classify harmful webpages by content. The approach uses only HTML tags, event methods,
DOM keywords, and JavaScript functions from online content. The investigations made use of data
from the Kaggle dataset. More than 206 features are extracted from the dataset. The top-scoring
features are chosen for the experiment using the selectKbest method. The results show that support
vector machine (SVM) has 88% accuracy and random forest (RF) 93%.Desai et al., [16] proposes a
Chrome Extension to help users spot phishing websites. The experiment made use of the UCI dataset.
The dataset has 11055 records with 30 features. Only 22 of the dataset's 30 features were taken into
consideration for the experiment. The outcome reveals that the Random Forest algorithm achieves
96% accuracy, SVM achieves 93.5% accuracy, and KNN algorithm achieves 93% accuracy. Saleem et
al., [9] suggested a lightweight malicious URL detection algorithm. The authors note that blacklists
and reputation-based malicious URL detection methods are incapable of detecting new threats. To
address this problem, the authors propose a novel approach that employs a set of lexical features,
such as the URL's length, the presence of specific characters, and the number of subdomains, to train
a machine learning model to detect malicious URLs. According to the study, k-nearest neighbour (k-
NN) algorithms and random forest (RF) algorithms can both detect malicious URLs with 98% and 99%
accuracy, respectively. With the help of rank-based, bag-of-words, web page-based, and lexical
criteria, Pradeepa et al., [17] devised a method for identifying malicious URLs. The datasets from
Phistank and Kaggle were used. The outcome demonstrates that Random Forest offers 99% accuracy.
Saleem et al., [18] implements NLP to vectorize URL terms. Machine learning and deep learning
models are used for classification. Two datasets (D1 and D2) are utilized for the experiment. Three
vectorization methods vectorize URL text such as Count, TF-IDF, Hashing. With the D1 dataset, the
Decision Tree (DT) with count vectorizer and Random Forest (RF) with TF-IDF vectorizer both reach
92.4% accuracy. With the D2 dataset, the Decision Tree (DT) with TF-IDF vectorizer achieves a higher
accuracy of 99.5%. The Artificial Neural Network (ANN) model has an accuracy of 89.6% with the D1
dataset and 99.2% with the D2 dataset. Table 1 summarizes the recent works in the field.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

109

Table 1
Summary of recent works

No Proposed
Method

Features Accuracy Remarks

1 Malak et al.,
[13]

URL lexical features, Content
features, Reputation features,
Network features

Nave Bayes: 96% The dataset is underutilized.
Depending on the features chosen,
the outcome could vary.

2 Sirageldin et
al., [14]

URL keywords and page content 97% Features are limited. Depending on
the features chosen, the outcome
could vary.

3 Saleem et
al., [15]

HTML tags, event methods, DOM
keywords, and JavaScript functions

SVM: 88% RF:
93%

Features are limited.
Longer processing time. Unable to
be extended.

4 Desai et al.,
[16]

URL lexical features, Content
features, Reputation features,
Network features

RF: 96%, SVM:
93.5% KNN: 93%

Features are limited. Depending on
the features chosen, the outcome
could vary.

5 Saleem et
al., [9]

URL lexical features, Content
features, Reputation features,
Network features

K-NN: 98%, RF:
99%

Features are limited. Depending on
the features chosen, the outcome
could vary.

6 Pradeepa et
al., [17]

Rank-based features, Bag-of-words
features, Web page content
features, URL lexical features

RF: 99% Features are limited. Depending on
the features chosen, the outcome
could vary

7 Saleem et
al., [18]

URL vectorized features using NLP
method

DT with TF-IDF
vectorizer:
99.5%.

URLs alone may not be adequate for
better classification.

While the existing body of literature has made commendable strides in the realm of malicious

webpage classification, our proposed system aims to bridge a notable research gap. Prior studies
have predominantly focused on URL-centric analyses, often overlooking the comprehensive
examination of textual content within webpages. The proposed system introduces a novel approach
by prioritizing the analysis of div, paragraph, and meta tags, thereby providing a more nuanced
understanding of webpage content. This departure from conventional methodologies addresses the
need for a more holistic examination of potential threats, ultimately contributing to the advancement
of web content analysis in the context of malicious activities. Our work thus complements and
extends the existing research landscape by offering a fresh perspective and insights into an
underexplored facet of malicious webpage classification.

3. Proposed Systems

The proposed system (Web Content Analysis-WCA) incorporates various machine learning

techniques including Logistic Regression (LogR), Gaussian Naive Bayes (GNB), K-Nearest Neighbors
(KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient
Boosting (XGB). For assessing the model's efficacy, it is essential to ensure accurate data selection
and balancing. The experiment utilized well-established datasets such as URL dataset (ISCX-URL2016)
[19], UNB [20], and phistank [21]. Imbalanced data poses a common challenge in machine learning,
where one class has significantly more samples than the others [21-24]. This imbalance can lead to
biased models that prioritize the majority class and perform poorly with the minority class [25,26].
In order to resolve this issue and prevent skewed results, an equal number of benign and malicious
URLs have been selected for the experiment. Table 2 provides the summary of the total benign and
malicious URLs used.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

110

Table 2
Dataset Summary
No Type Count
1 Benign 5530
2 Malicious 5882

In our experiment, focuses solely on the textual content of webpages especially textual contents

in <para>, <div> and <meta> tag. Algorithm 1 presents the text extraction process. Most of the textual
content on webpages is organized using by using these tags. Paragraphs in HTML are defined by the
<p> tag. It is one of the most popular tags for organizing and exhibiting textual content on web pages.
HTML's <div> tag is a versatile and widely used tag for dividing a webpage. To organize the content,
<div> tags are utilized. The <meta> tag adds metadata to a webpage. Metadata delivers vital
information to browsers, search engines, and other web services.

Algorithm #1: Textual content extraction
function

extract_text_from_webpage(html_content):
div_texts = []
meta_texts = []
para_texts = []

 # Parse the HTML content
 soup = parse_html(html_content)

 # Extract text from <div> tags
div_tags = find_div_tags(soup)
 for div_tag in div_tags:
div_text = extract_text(div_tag)
 if div_text is not empty:
add_to_list(div_texts, div_text)

 # Extract text from <meta> tags
meta_tags = find_meta_tags(soup)
 for meta_tag in meta_tags:
meta_text = extract_content(meta_tag)
 if meta_text is not empty:
add_to_list(meta_texts, meta_text)

 # Extract text from <p> tags
para_tags = find_para_tags(soup)
 for para_tag in para_tags:
para_text = extract_text(para_tag)
 if para_text is not empty:
add_to_list(para_texts, para_text)

 # Return the extracted text from all the

tags
 return div_texts, meta_texts, para_texts

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

111

i. parse_html (html_content) represents the function to parse the HTML content and create
a parse tree.

ii. find_div_tags(soup), find_meta_tags(soup), and find_para_tags(soup) represent
functions to locate <div>, <meta>, and <p> tags respectively in the parse tree.

iii. extract_text (tag) represents the function to extract the text content from a given tag.
iv. extract_content(tag) represents the function to extract the content attribute value from

a given tag.
v. add_to_list(list, text) represents the function to add non-empty text to a given list.

Textual data must first be transformed into numbers because machine learning algorithms often

operate on numerical data. This method, referred to as vectorization, involves converting text data
into a numerical format that machine learning algorithms can understand. Algorithm 2 presents the
text vectorization process. Vectorization methods like Count, Term Frequency-Inverse Document
Frequency (TF-IDF), and Hashing are used to encode textual data as numerical vectors [22]. These
methods record the semantic and syntactic connections between various words and sentences.

Algorithm #2. Text Vectorization
function vectorize_text(texts,

max_features):
 vectorizer = initialize_vectorizer()

 # Set the maximum number of features
set_max_features(vectorizer,

max_features)

 # Fit the vectorizer on the text data
fitted_vectorizer =

fit_vectorizer(vectorizer, texts)

 # Transform the text data into feature

vectors
feature_vectors =

transform_text(fitted_vectorizer, texts)

 return feature_vectors

i. initialize_vectorizer() represents the function to initialize the text vectorizer. The choice

of vectorizer (e.g., Bag-of-Words, TF-IDF, and Word2Vec) and the configuration of
parameters would depend on the specific vectorization technique you want to use.

ii. set_max_features(vectorizer,max_features) represents the function to set the maximum
number of features for the vectorizer. This ensures that the resulting feature vectors have
the desired dimensionality.

iii. fit_vectorizer(vectorizer, texts) represents the function to fit the vectorizer on the given
texts. This step calculates any necessary statistics or parameters from the text data
required for vectorization.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

112

iv. transform_text (fitted_vectorizer, texts) represents the function to transform the text
data into feature vectors using the fitted vectorizer. This step converts the textual data
into numerical representations according to the chosen vectorization technique.

v. feature_vectors is the resulting feature matrix containing the vectorized representation
of the input texts.

The proposed method (Web Content Analysis-WCA) contains three steps. The first step entails

extracting the required text from the three distinct tags of the web pages. Text is pre-processed
during the second step. Preprocessing includes all the steps that are needed for text vectorization.
Cleaning text eliminates special characters and only takes into account text and numerals. After
cleaning the text, it will be changed to lowercase, stop words will be removed, and it will be
lemmatized to reduce the number of features while vectorizing. Figure 1 depicts the entire process.

Several NLP approaches, such as bag of words, TFIDF, and hash vectorizer, are used to convert

text into a real-valued vector. In step three, seven different machine learning algorithms are used to
analyse the data that has been vectorized.

Fig. 1. Proposed System (WCA)

Several NLP approaches, such as bag of words, TFIDF, and hash vectorizer, are used to convert

text into a real-valued vector. In step three, seven different machine learning algorithms are used to
analyse the data that has been vectorized.

The experimental setup consists of Windows 10, an I5 processor running at 3.2 GHz, and 8 GB of
RAM. Python is used for programming in Jupyter Notebook with the sklearn package. The
performance metrics that are considered are accuracy, precision, recall, and f1-score. The number of
features that vectorizers output ranges from 500 to 2000. The contents of each tag are separately
evaluated. Table 3 to Table 6 show the results of count vectorizer experiments.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

113

Table 3
Performance of Count Vectorizer with <div> tag

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Count LOGR 500 81.63 78.47 91.38 83.93

KNN 79.74 78.60 86.16 81.54
GNB 74.26 69.86 97.01 80.41
DT 84.52 81.01 93.16 86.38
RF 87.06 84.38 92.77 88.23
GB 81.50 77.71 92.64 84.08
XGB 85.67 82.03 93.95 87.32
LOGR 1000 82.41 79.24 91.53 84.54
KNN 77.80 77.39 84.68 79.98
GNB 73.57 69.07 98.06 80.22
DT 84.17 80.70 93.05 86.13
RF 87.16 84.68 92.64 88.31
GB 82.16 78.15 93.33 84.66
XGB 85.62 82.11 93.74 87.26
LOGR 1500 85.30 82.35 92.50 86.84
KNN 80.56 79.50 86.93 82.36
GNB 75.12 70.39 97.60 81.03
DT 81.10 78.63 91.29 83.79
RF 85.75 83.92 91.40 87.12
GB 80.29 76.35 92.89 83.35
XGB 86.15 82.61 93.91 87.67
LOGR 2000 85.83 83.02 92.57 87.25
KNN 78.88 77.47 87.54 81.45
GNB 76.14 71.30 97.26 81.55
DT 84.25 82.02 90.63 85.74
RF 87.47 86.01 91.38 88.36
GB 80.40 76.60 92.69 83.40
XGB 85.47 81.65 94.37 87.26

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

114

Table 4
Performance of Count Vectorizer with <meta> tag
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Count LOGR 500 84.35 82.65 90.24 85.83

KNN 78.07 77.04 85.31 80.26
GNB 83.47 82.14 88.73 84.94
DT 85.70 83.06 92.26 87.14
RF 87.41 85.45 92.20 88.47
GB 79.50 75.34 94.46 83.16
XGB 84.17 81.52 91.97 85.96
LOGR 1000 86.86 85.20 91.57 87.95
KNN 76.63 74.51 88.66 80.00
GNB 80.41 93.32 66.86 77.42
DT 87.39 85.27 92.31 88.45
RF 88.86 87.58 92.04 89.60
GB 77.36 75.24 90.80 80.52
XGB 84.73 81.79 92.55 86.44
LOGR 1500 87.69 85.88 92.45 88.74
KNN 76.99 72.96 93.33 81.26
GNB 72.83 93.84 50.25 63.81
DT 85.71 83.17 92.45 87.31
RF 89.24 87.98 92.31 89.96
GB 79.16 75.19 94.34 82.94
XGB 85.19 82.47 92.60 86.83
LOGR 2000 87.76 85.71 92.84 88.85
KNN 76.65 73.67 90.60 80.36
GNB 72.49 94.35 49.37 63.07
DT 87.42 85.21 92.45 88.50
RF 89.44 88.19 92.45 90.13
GB 79.20 75.18 94.51 83.01
XGB 85.48 82.83 92.59 87.03

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

115

Table 5
Performance of Count Vectorizer with <para> tag
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Count LOGR 500 79.35 75.91 91.97 82.60

KNN 77.29 75.90 86.42 80.10
GNB 71.65 67.43 97.81 79.00
DT 83.47 80.54 91.72 85.49
RF 86.90 85.68 90.94 88.04
GB 80.55 77.79 90.97 83.25
XGB 84.53 81.59 92.62 86.43
LOGR 1000 81.31 78.31 91.46 83.89
KNN 78.18 76.01 88.08 81.04
GNB 72.12 67.81 97.57 79.21
DT 84.00 81.04 92.33 86.02
RF 87.81 86.88 91.46 88.88
GB 80.71 77.92 91.09 83.39
XGB 85.24 82.65 92.57 86.99
LOGR 1500 84.31 81.30 92.54 86.22
KNN 78.51 75.53 90.68 81.78
GNB 73.66 69.03 97.26 80.03
DT 83.54 80.66 91.96 85.61
RF 88.24 87.21 91.58 89.18
GB 81.71 78.93 91.02 84.02
XGB 86.17 83.56 92.93 87.72
LOGR 2000 85.07 82.12 92.91 86.87
KNN 78.31 75.36 90.89 81.66
GNB 74.37 69.63 97.25 80.46
DT 85.48 82.80 92.14 87.03
RF 87.29 85.68 91.86 88.47
GB 82.06 79.03 91.65 84.39
XGB 86.82 84.33 93.23 88.28

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

116

Table 6
Performance of Count Vectorizer with combined tags (<div><meta><para>)
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Count LOGR 500 85.02 82.34 92.76 86.84

KNN 82.54 78.65 94.05 85.20
GNB 75.06 70.22 97.14 80.81
DT 89.11 87.58 92.40 89.81
RF 92.67 93.97 91.92 92.86
GB 84.84 82.80 91.35 86.46
XGB 91.03 89.50 94.24 91.67
LOGR 1000 88.58 86.28 93.61 89.58
KNN 82.94 78.89 94.61 85.57
GNB 76.90 71.80 97.06 81.93
DT 89.58 87.99 92.89 90.28
RF 93.46 95.17 92.11 93.56
GB 85.69 83.57 92.16 87.26
XGB 91.73 90.44 94.39 92.26
LOGR 1500 89.39 87.48 93.47 90.22
KNN 81.83 77.89 93.56 84.57
GNB 80.18 75.21 96.87 84.10
DT 88.27 87.14 91.82 89.24
RF 93.00 94.84 91.55 93.11
GB 85.99 83.48 92.91 87.58
XGB 91.94 90.45 94.80 92.48
LOGR 2000 90.02 88.35 93.54 90.74
KNN 81.42 77.37 94.03 84.38
GNB 79.13 73.88 97.31 83.43
DT 88.24 87.09 91.77 89.20
RF 92.96 94.96 91.29 93.04
GB 86.07 83.68 92.74 87.63
XGB 92.06 90.69 94.75 92.58

Table 7 shows the summary of performance of count vectorizer. The result shows that combined

textual contents of three different tags with random forest (RF) gives better result of 93.46% accuracy
with 1000 features. Timing parameters play a crucial role in the performance and efficiency of the
WCA system. Given the substantial computational requirements associated with tasks such as text
extraction, preprocessing, and the application of machine learning algorithms, a clear understanding
of timing parameters becomes essential. This includes examining the time required for tasks like
HTML parsing, tag-specific text extraction, vectorization, and model training. Furthermore, as the
proposed system aims to process web content in real-time, timing considerations become pivotal for
ensuring its practical applicability. Understanding the temporal aspects of the system's operations is
essential for evaluating its responsiveness, especially in scenarios where timely analysis of web
content is crucial, such as in cybersecurity applications.

Table 7
Summary of Count Vectorizer
Tag Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Div RF 2000 87.47 86.01 91.38 88.36
Meta RF 2000 89.44 88.19 92.45 90.13
Para RF 1500 88.24 87.21 91.58 89.18
Combined RF 1000 93.46 95.17 92.11 93.56

Table 8 to Table 11 shows the results of TF-IDF vectorizer experiments.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

117

Table 8
Performance of TF-IDF vectorizer with <div> tag

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
TF-IDF LOGR 500 83.28 80.93 90.19 84.92

KNN 75.07 74.51 79.39 75.75
GNB 79.03 74.32 95.51 83.02
DT 84.39 80.89 92.96 86.24
RF 87.19 84.60 92.79 88.34
GB 82.21 78.61 92.48 84.56
XGB 85.77 82.33 93.73 87.40
LOGR 1000 83.45 81.12 90.24 85.06
KNN 74.54 74.18 78.90 75.58
GNB 75.46 70.60 97.84 81.29
DT 84.15 80.71 92.77 86.03
RF 87.28 84.78 92.77 88.42
GB 82.36 78.61 92.88 84.73
XGB 85.89 82.29 94.10 87.53
LOGR 1500 84.65 82.90 90.07 85.84
KNN 75.90 74.25 86.43 79.04
GNB 79.59 74.41 96.82 83.62
DT 81.41 78.51 91.99 84.07
RF 85.47 83.59 91.17 86.85
GB 81.43 77.75 92.82 84.16
XGB 86.95 83.65 94.01 88.31
LOGR 2000 85.09 83.59 89.97 86.18
KNN 79.20 76.61 89.15 81.79
GNB 80.68 76.03 95.44 84.14
DT 84.59 82.55 90.51 85.97
RF 87.39 85.90 91.36 88.29
GB 81.07 77.47 92.30 83.80
XGB 87.01 83.73 94.03 88.35

Table 9
Performance of TF-IDF vectorizer with <meta> tag

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
TF-IDF LOGR 500 85.16 83.98 89.92 86.38

KNN 76.95 74.12 89.13 80.38
GNB 83.57 83.58 86.58 84.63
DT 86.22 83.57 92.62 87.60
RF 88.61 86.74 92.88 89.52
GB 80.44 76.10 95.03 83.90
XGB 84.83 82.01 92.40 86.49
LOGR 1000 87.08 86.29 90.38 87.93
KNN 73.32 69.80 92.57 78.84
GNB 80.87 91.21 70.14 78.73
DT 87.75 85.06 93.49 88.89
RF 89.82 88.29 93.13 90.52
GB 76.16 75.85 87.43 78.69
XGB 85.73 83.00 92.76 87.24
LOGR 1500 87.78 87.23 90.49 88.52
KNN 70.91 67.84 92.18 77.31
GNB 75.87 93.46 56.81 68.84
DT 88.31 85.80 93.52 89.34
RF 90.17 88.64 93.45 90.86
GB 76.05 75.85 87.04 78.50
XGB 85.27 82.36 92.86 86.90

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

118

LOGR 2000 88.51 88.02 90.94 89.18
KNN 67.90 65.07 87.25 73.70
GNB 75.07 93.90 54.96 67.58
DT 88.26 85.88 93.11 89.22
RF 90.22 88.86 93.18 90.86
GB 76.21 75.85 87.35 78.64
XGB 85.44 82.43 93.08 87.06

Table 10
Performance of TF-IDF vectorizer with <para> tag
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
TF-IDF LOGR 500 80.98 79.58 87.96 83.02

KNN 76.99 74.21 89.03 80.33
GNB 79.61 75.76 93.59 83.12
DT 84.27 81.78 91.53 86.08
RF 87.23 86.44 90.72 88.31
GB 79.70 77.01 90.04 82.45
XGB 85.40 83.21 91.87 87.02
LOGR 1000 82.58 80.97 88.95 84.37
KNN 71.48 68.66 83.12 74.38
GNB 79.78 75.25 95.12 83.48
DT 84.66 81.90 92.26 86.48
RF 87.41 86.34 91.21 88.50
GB 80.26 77.09 91.26 83.05
XGB 85.45 83.09 92.21 87.11
LOGR 1500 84.82 83.18 90.22 86.25
KNN 73.21 69.96 91.57 78.53
GNB 82.31 78.62 93.30 84.90
DT 85.86 83.54 92.04 87.33
RF 88.26 87.49 91.23 89.15
GB 80.94 77.72 91.75 83.60
XGB 86.61 84.19 92.82 88.03
LOGR 2000 85.60 83.80 91.12 87.01
KNN 72.69 69.00 93.54 78.66
GNB 83.79 80.43 92.93 85.90
DT 85.29 82.82 91.74 86.83
RF 88.38 87.46 91.57 89.29
GB 81.15 77.82 91.80 83.77
XGB 86.61 84.09 92.98 88.06

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

119

Table 11
Performance of TF-IDF vectorizer with combined tags (<div><meta><para>)
Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
TF-IDF LOGR 500 87.98 87.43 90.55 88.69

KNN 79.17 74.71 94.54 82.96
GNB 83.87 79.60 94.92 86.18
DT 87.05 85.54 91.18 88.05
RF 92.74 94.25 91.74 92.90
GB 85.00 83.31 90.94 86.52
XGB 90.36 89.35 93.74 91.26
LOGR 1000 89.39 88.88 91.50 89.99
KNN 78.18 73.63 94.73 82.27
GNB 84.24 79.93 94.78 86.39
DT 87.86 86.58 91.96 88.96
RF 93.19 94.74 92.04 93.32
GB 86.52 84.29 92.77 87.98
XGB 91.91 90.93 94.07 92.38
LOGR 1500 89.95 89.49 91.86 90.51
KNN 82.09 79.21 90.97 84.22
GNB 87.95 85.23 93.84 89.11
DT 85.66 84.28 91.04 87.17
RF 93.12 95.09 91.48 93.20
GB 86.27 84.16 92.30 87.69
XGB 91.79 90.73 94.10 92.29
LOGR 2000 90.07 89.64 91.86 90.59
KNN 79.82 76.83 90.38 82.56
GNB 86.45 82.04 96.31 88.31
DT 88.19 87.32 91.35 89.11
RF 93.22 95.14 91.65 93.31
GB 86.36 84.31 92.37 87.81
XGB 92.28 91.28 94.41 92.73

Table 12 shows the summary of performance of TF-IDF vectorizer. The result shows that

combined textual contents of three different tags with random forest (RF) gives better result of
93.22% accuracy with 2000 features.

From the experiments, combined textual contents of three distinct tags with count vectorizer +
random forest achieves the higher accuracy of 93.46%with 1000 features as shown in Table 12 and
Figure 2. Binary classification models are evaluated using ROC-AUC curves. It offers a comprehensive
visual representation of the discriminatory capability of a model in distinguishing positive from
negative instances at different probability thresholds. Figure 3, 4 and 5 depicts the performance of
each vectorizer with combined tags.

Table 12
Summary of the Combined Tags (<div><meta><para>)

Vectorizer Machine Learning Model No. of Features Accuracy Precision Recall F1-Score
Count RF 1000 93.46 95.17 92.11 93.56
TF-IDF RF 2000 93.22 95.14 91.65 93.31
Hashing RF 1000 92.22 93.71 91.16 92.36

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

120

Fig. 2. Performance Comparison Fig. 3. Proposed System (WCA)

Fig. 4. ROC-AUC curve for Count Vectorizer Fig. 5. ROC-AUC curve for Hashing

4. Conclusions

The detection of malicious web pages is the process of identifying and flagging web pages that

contain detrimental or malicious content. This is essential for preserving cyber security and
protecting users against potential attacks. In this paper, utilizes the textual contents of the webpages
for malicious webpage classification. Textual information is extracted from the three distinct tags of
the webpages (<div>, <meta> and <para>).After that, NLP vectorizers convert unprocessed text data
into numerical feature vectors, which machine learning algorithms can use to process and analyse
the text effectively. Text in every tag is tested separately. Finally, a test is conducted on the combined
textual contents. The result of the experiment reveals that combined textual contents of three
distinct tags with count vectorizer + random forest achieves the higher accuracy of 93.46%with 1000
features. It is important to note that the speed of textual content extraction represents a limitation
in this study, suggesting a potential avenue for future enhancements to optimize overall
performance.

Acknowledgement
This research was not funded by any grant.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

121

References
[1] Eshete, Birhanu, Adolfo Villafiorita, and Komminist Weldemariam. "Malicious website detection: Effectiveness and

efficiency issues." In 2011 First SysSec Workshop, pp. 123-126. IEEE, 2011. https://doi.org/10.1109/SysSec.2011.9
[2] National Cyber Security Centre. “Phishing”. https://www.ncsc.gov.uk/guidance/phishing
[3] University of Delaware. “How is Malware Distributed.” https://sites.udel.edu/infosecnews/2015/05/18/how-is-

malware-distributed
[4] Kaspersky. “What is a Drive by Download.” https://www.kaspersky.com/resource-center/definitions/drive-by-

download
[5] Kaspersky. “What is Social Engineering”. https://usa.kaspersky.com/resource-center/definitions/what-is-social-

engineering
[6] Madhubala, R., N. Rajesh, L. Shaheetha, and N. Arulkumar. "Survey on malicious URL detection techniques." In 2022

6th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 778-781. IEEE, 2022.
https://doi.org/10.1109/ICOEI53556.2022.9777221

[7] Shaheetha, L., and K. Vadivazhagan. "Detection of Malicious Domains in the Cyberspace using Machine Learning &
Deep Learning: A Survey." In 2022 11th International Conference on System Modeling & Advancement in Research
Trends (SMART), pp. 1540-1543. IEEE, 2022.

[8] Raja, A. Saleem, G. Pradeepa, and N. Arulkumar. "Mudhr: Malicious URL detection using heuristic rules based
approach." In AIP Conference Proceedings, vol. 2393, no. 1. AIP Publishing, 2022.
https://doi.org/10.1063/5.0074077

[9] Raja, A. Saleem, R. Vinodini, and A. Kavitha. "Lexical features based malicious URL detection using machine learning
techniques." Materials Today: Proceedings 47 (2021): 163-166. https://doi.org/10.1016/j.matpr.2021.04.041

[10] Abdul Samad, Saleem Raja, Sundarvadivazhagan Balasubaramanian, Amna Salim Al-Kaabi, Bhisham Sharma,
Subrata Chowdhury, Abolfazl Mehbodniya, Julian L. Webber, and Ali Bostani. "Analysis of the performance impact
of fine-tuned machine learning model for phishing URL detection." Electronics 12, no. 7 (2023): 1642.
https://doi.org/10.3390/electronics12071642

[11] Balasubaramanian, Sundaravadivazhagan, Pradeepa Ganesan, and Justin Rajasekaran. "Weighted ensemble
classifier for malicious link detection using natural language processing." International Journal of Pervasive
Computing and Communications (2023).

[12] Manan, Wan Nurulsafawati Wan, Abdul Ghani Ali Ahmed, and Mohd Nizam Mohmad Kahar. "Characterizing current
features of malicious threats on websites." In Intelligent Computing & Optimization 1, pp. 210-218. Springer
International Publishing, 2019. https://doi.org/10.1007/978-3-030-00979-3_21

[13] Aljabri, Malak, Fahd Alhaidari, Rami Mustafa A. Mohammad, Samiha Mirza, Dina H. Alhamed, Hanan S. Altamimi,
and Sara Mhd Chrouf. "An assessment of lexical, network, and content-based features for detecting malicious urls
using machine learning and deep learning models." Computational Intelligence and Neuroscience 2022 (2022).
https://doi.org/10.1155/2022/3241216

[14] Sirageldin, Abubakr, Baharum B. Baharudin, and Low Tang Jung. "Malicious web page detection: A machine learning
approach." In Advances in Computer Science and its Applications: CSA 2013, pp. 217-224. Springer Berlin
Heidelberg, 2014. https://doi.org/10.1007/978-3-642-41674-3_32

[15] Raja, A. Saleem, B. Sundarvadivazhagan, R. Vijayarangan, and S. Veeramani. "Malicious webpage classification
based on web content features using machine learning and deep learning." In 2022 International Conference on
Green Energy, Computing and Sustainable Technology (GECOST), pp. 314-319. IEEE, 2022.

[16] Desai, Anand, Janvi Jatakia, Rohit Naik, and Nataasha Raul. "Malicious web content detection using machine
leaning." In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), pp. 1432-1436. IEEE, 2017. https://doi.org/10.1109/RTEICT.2017.8256834

[17] Pradeepa, Ganesan, and Radhakrishnan Devi. "Lightweight approach for malicious domain detection using machine
learning." Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 22, no. 2 (2022): 262-
268. https://doi.org/10.17586/2226-1494-2022-22-2-262-268

[18] AS, Saleem Raja, G. Pradeepa, S. Mahalakshmi, and M. S. Jayakumar. "Natural language based malicious domain
detection using machine learning and deep learning." Scientific and Technical Journal of Information Technologies,
Mechanics and Optics. 23, no. 2 (2023): 304-312. https://doi.org/10.17586/2226-1494-2023-23-2-304-312

[19] Kaggle. “Malicious URLs dataset.” https://www.kaggle.com/datasets/sid321axn/malicious-urls-
dataset?resource=download

[20] University of New Brunswick. “URL dataset (ISCX-URL2016).” (2016). https://www.unb.ca/cic/datasets/url-
2016.html

[21] Phishtank. “User Agent String.” https://www.phishtank.com/developer_info.php

https://doi.org/10.1109/SysSec.2011.9
https://www.ncsc.gov.uk/guidance/phishing
https://sites.udel.edu/infosecnews/2015/05/18/how-is-malware-distributed
https://sites.udel.edu/infosecnews/2015/05/18/how-is-malware-distributed
https://www.kaspersky.com/resource-center/definitions/drive-by-download
https://www.kaspersky.com/resource-center/definitions/drive-by-download
https://usa.kaspersky.com/resource-center/definitions/what-is-social-engineering
https://usa.kaspersky.com/resource-center/definitions/what-is-social-engineering
https://doi.org/10.1109/ICOEI53556.2022.9777221
https://doi.org/10.1063/5.0074077
https://doi.org/10.1016/j.matpr.2021.04.041
https://doi.org/10.3390/electronics12071642
https://doi.org/10.1007/978-3-030-00979-3_21
https://doi.org/10.1155/2022/3241216
https://doi.org/10.1007/978-3-642-41674-3_32
https://doi.org/10.1109/RTEICT.2017.8256834
https://doi.org/10.17586/2226-1494-2022-22-2-262-268
https://doi.org/10.17586/2226-1494-2023-23-2-304-312
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset?resource=download
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset?resource=download
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html
https://www.phishtank.com/developer_info.php

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 47, Issue 1 (2025) 105-122

122

[22] Analytics Vidhya. “Understanding Text Classification in NLP with Movie Review Example.”
https://www.analyticsvidhya.com/blog/2020/12/understanding-text-classification-in-nlp-with-movie-review-
example-example

[23] Jha, Ashish Kumar, Raja Muthalagu, and Pranav M. Pawar. "Intelligent phishing website detection using machine
learning." Multimedia Tools and Applications 82, no. 19 (2023): 29431-29456. https://doi.org/10.1007/s11042-
023-14731-4

[24] Prasad, Arvind, and Shalini Chandra. "PhiUSIIL: A diverse security profile empowered phishing URL detection
framework based on similarity index and incremental learning." Computers & Security 136 (2024): 103545.
https://doi.org/10.1016/j.cose.2023.103545

[25] Aziz, Mohd Zafran Abdul, and Koji Okamura. "A security trending review on software define network (SDN)." Journal
of Advanced Research in Computing and Applications 6, no. 1 (2016): 1-16.

[26] Nabil, Mohammed, Mohamed Helmy Megahed, and Mohamed Hassan Abdel Azeem. "Design and simulation of
new one time pad (OTP) stream cipher encryption algorithm." Journal of Advanced Research in Computing and
Applications 10, no. 1 (2018): 16-23.

https://www.analyticsvidhya.com/blog/2020/12/understanding-text-classification-in-nlp-with-movie-review-example-example
https://www.analyticsvidhya.com/blog/2020/12/understanding-text-classification-in-nlp-with-movie-review-example-example
https://doi.org/10.1007/s11042-023-14731-4
https://doi.org/10.1007/s11042-023-14731-4
https://doi.org/10.1016/j.cose.2023.103545

