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Intelligent reflecting surfaces (IRS) are an innovative technique that dramatically 
increases system efficiency. The integration of massive multiple-input multiple-output 
(massive MIMO) and IRS has been considered the most efficient route to 6G networks. 
An important challenge in IRS-aided massive MIMO wireless systems is channel 
estimation. With a rise in the number of IRS-reflecting elements and IRS-assisted users, 
channel training overhead becomes too large, resulting in large transmission delays and 
poor data transfer rates. To overcome this problem, an enhanced compressive sensing 
(CS) method to determine reliable channel state information (CSI) in IRS-aided massive 
MIMO systems is proposed, which combines enhanced compressive sensing with a deep 
denoising convolution neural network (CsiNet-DeCNN). By using deep learning methods 
to denoise channel data, our proposed model is validated numerically, indicating that it 
is accurate with low NMSE. Further, the results indicate that CsiNet-DeCNN performs 
better than traditional CS methods in estimating channel parameters. 
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1. Introduction 
 

 Massive multiple-input multiple-output (massive MIMO) is emerging as an effective technique 
for coping with the exponential growth of mobile terminals and data traffic [1]. The advantages of 
massive MIMO systems include both reducing antenna transmission power and improving spectral 
efficiency [2]. Channel state information (CSI) is a vital component of massive MIMO systems in terms 
of allocating radio resources and controlling interference. Therefore, these advantages can be 
achieved through the utilization of CSI in base stations (BS) [3]. Due to the absence of mutuality of 
uplink and downlink channels in frequency division duplex (FDD) systems, obtaining CSI requires two 
phases, which are the estimation of the downlink channel and the feedback of the CSI on the uplink. 
User equipment (UE) receives a CSI pilot signal from the BS, which it uses to estimate the channel. 
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The estimated CSI is then communicated through feedback links to the BS. Massive MIMO systems 
that have more antennas at the BS have higher CSI feedback overheads, which makes it more difficult 
to implement massive MIMO in FDD systems [4].  
 Researchers have investigated compressed sensing (CS) to estimate channels [5]. Spatial and 
temporally correlated CSI collected by CS reduces feedback overhead significantly while collecting 
CSI with sufficient accuracy [6]. The channel characteristics were estimated using a least absolute 
shrinkage and selection operator (LASSO) L1 solver introduced by Daubechies et al., [7] and an 
approximate message-passing (AMP) algorithm introduced by Donoho et al., [8].  Gamal et al., [9] 
added the Adaptive Boosting (AdaBoost) algorithm to channel estimation techniques such as the 
Least Squares (LS) and was used to improve the bit error rate (BER) performance of various 
estimation techniques in a Rayleigh fading environment. The CSI model developed by Dong et al., 
[10] combines deep learning (DL) techniques with massive MIMO using CS as a basis. To reduce CSI 
feedback and achieve high-accuracy recovery, Wen et al., [11] introduced an auto-encoder channel 
state information network (CsiNet) arrangement with a few neural network (NN) layers in the FDD 
system. A channel estimation method was proposed by Helmy et al., [12] based on DL that improves 
massive MIMO performance that utilized CsiNet combined with a gated recurrent unit. 

Beyond fifth generation (B5G) and higher wireless networks, a recent innovation called intelligent 
reflecting surfaces (IRS) can boost massive MIMO system performance without raising hardware 
costs or energy usage.  This technology can potentially revolutionize wireless communication systems 
design [13]. The IRS typically consists of a lot of passive elements that are energy-efficient, such as 
phase shifters, which can dynamically alter the incident signal's phase or amplitude without adding 
any additional hardware [14]. The IRS advantage has attracted researchers to develop applications 
for a wide range of communication scenarios, including coverage enhancements, data transmission 
rate optimizations, accurate channel estimation, and protected communication [15-18]. In IRS-aided 
massive MIMO systems, obtaining accurate CSI is crucial to achieving effective control over the radio 
frequency propagation environment [19].  

Because there are several IRS reflecting elements and there aren't any signal processing 
capabilities there, it is, however, practically challenging to realize [20]. A cascaded channel is 
estimated for the user/IRS/BS channel as both channels are not individually available [21]. In this 
regard, cascaded channels pose two major challenges to channel parameter estimation: limited 
accuracy and significant training overhead. To improve channel estimation accuracy, CS and DL 
methodologies were proposed by Sur et al., [22]. An IRS-aided wireless communication system with 
negligible training overhead and an IRS architecture was demonstrated by Teha et al., [23]. Chen et 
al., [24] proposed a compressive channel estimation technique for IRS-based millimeter wave (mm-
wave) MIMO systems to reduce training overhead, with the IRS reflection matrix designed through 
CS and DL algorithms. A convolution neural network (CNN) based denoising module for the 
estimation of channels in IRS-multiuser communication systems (MUCs) to reduce noise in the 
channel data was introduced by Liu et al., [25]. 

A Deep Learning technique is presented as a contribution to this paper to enhance the efficiency 
of IRS-aided massive MIMO systems by improving channel estimation accuracy. Based on the 
technique presented in the previous study by Wen et al., [11], DL-based CSI feedback networks 
(CsiNet) are modified for FDD IRS-aided massive MIMO. The system's CSI accuracy is enhanced by 
reducing channel noise using a denoising CNN (DECNN) module. A comparison is made between the 
proposed model (CsiNet-DeCNN) and other similar models available in the literature. In the 
remainder of the paper, the following structure is used: - Sections 2 and 3 outline the system model 
and the proposed channel state information network-denoising convolution neural network (CsiNet-
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DeCNN), respectively. Section 4. presents a numerical analysis, following that Section 5. Conclusions 
of the paper are provided. 
 
2. The System Model  
 

Consider an FDD IRS-aided massive MIMO system with the BS equipped with N! transmit 
antennas that are arranged in a uniform linear array (ULA), One antenna is included with the UE. and 
N" passive reflecting elements at the IRS. A wireless communication system based on IRS-aided 
massive MIMO operates using orthogonal frequency division multiplexing (OFDM) with N" # 
subcarriers. The signal that UE received on the n!$subcarrier can be represented as follows from the 
previous study conducted by Liu et al., [25]. 

 
y% = 𝐡' %&v%	x% + s%                                                                                                                                                     (1)  
  
Where 𝐡' % ∈ 	ℂ'!×) is the cascaded channel vector BS-IRS-UE,	v% is the precoding vector, 
	x%	represents the image of transmitted data, s%is the Noise of additive white Gaussian distribution 
with unit variance and zero mean, and (∙)& is the conjugate transpose. The  𝐡' %  for IRS-aided massive 
MIMO is presented in Eq. (2). 
 
𝐡' %& =	𝐡%"*& 𝝫𝐇%+"                                                                                                                                                       (2) 
 

Where		𝐇%+" ∈ 	ℂ'"×'!	, 	𝐡%"* 	 ∈ 	 ℂ'"×),	is the channel between BS-IRS and the channel between 
IRS-UE respectively. The reflection coefficient matrix 𝝫 = β	diag[e-.# , e-.$ , ……… , e-.%]/ 	 ∈ 	 ℂ'"×'"  
is a diagonal  matrix with 0 ≤ β ≤ 1 and 0 ≤ 𝜃0 ≤ 2𝜋 where i ∈ {1,2, ……… ,N"	}	for IRS element. 
Let	𝐇F = [𝐡' ), 𝐡' 1, … , 𝐡' '2 &]

& ∈ 	 	ℂ	'2 &×'!  is the CSI matrix in the space-frequency domain as defined in 
Figure 1, Where N" # is the number of subcarriers. A large number of parameters will be sent in an IRS-
aided massive MIMO system, creating a considerable overhead in feedback. By transmitting the 
matrix of channels 𝐇F  to the angle delay domain, feedback overhead can be reduced, resulting in a 
sparse matrix 𝐇′H , Eq. (3) can be used to define the 2D discrete Fourier transform (2D-DFT). 

 
𝐇′H 	= 𝐊3𝐇F𝐊4/                                                                                                                                                       (3) 
 
Where 𝐊3  and 𝐊4 are N" 5 × N" 5 and N! × N! DFT matrices respectively.  
 

In 𝐇′H, large components comprise only a few elements, and all other components have a very 
small value due to the limited time delay between arrivals of the multipath. As a result, we can keep 
the first 	N5 rows of  𝐇′Hand get rid of the remaining rows. Thus, the new channel coefficient matrix 
will be called H is the truncated channel matrix with size N5 ×	N!. Utilizing a channel estimation 
module based on CsiNet introduced in the previous study by Wen et al., [11], Calculating 𝐇F  and 
utilizing 2D-DFT in Eq. (3). To obtain a truncated channel matrix H, the user generates the code word 
using an auto-encoding algorithm that utilizes compression techniques. Through a feedback link, the 
IRS sends this codeword to BS. BS performs auto-decoding to calculate the reconstructed channel 
matrix 𝑯L . By performing an inverse DFT, a final channel matrix can be determined. 

 



 
Journal of Advanced Research in Applied Sciences and Engineering Technology 46, Issue 2 (2025) 263-274 

 

266 
 

 
Fig. 1. IRS-aided massive-MIMO-based CsiNet [11] 

 
3. Proposed CsiNet-DeCNN Model 
 

This section presents a detailed explanation of our proposal CSI reconstruction method CsiNet-
DeCNN. The CsiNet-DeCNN system consists of an auto-encoder on the UE side is presented in Figure 
2, and an auto-decoder on the BS side after reflected from IRS elements is presented in Figure 3. In 
UE, H is divided into real and imaginary sections for deep NN processing, and its values are normalized 
within a range between [0,1]. Figure 2 shows the auto-encoder module has two steps. In the feature 
extraction module, a 3x3 kernel convolution (Conv.) layer filter is employed as well as a leaky rectified 
linear unit (LeakyRELU) as a nonlinear activation function, and batch normalization (BN) is applied to 
each layer. A 3x3 kernel layer model has been used throughout this paper according to previously 
published work from Wen et al., [11]. The 3x3 kernel layer model has demonstrated superior 
performance simultaneously with achievable and acceptable computational complexity. After 
reshaping the feature maps into vectors, the data is split into two separate flows: a fully connected 
network (FCN) that accelerating convergence and solving vanishing gradient problems [26], while the 
DeCNN network is the second flow that can reduce the noise from the channel matrix by using the 
denoising module. 

 

 
            Fig. 2. The proposed model CsiNet-DeCNN auto-encoder 
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Compression is performed by reshaping a vector as the input layer. To progressively improve 
denoising performance, identically structured three denoising blocks are used. The denoising blocks 
consist of 15 layers of Conv+BN+rectified linear units (ReLU). A combination of Conv. and ReLU 
operations was implemented with consideration of the spatial properties of the channel matrix. By 
introducing BN between Conv. and RELU, network stability and training speed were enhanced. This 
model employs 15 layers consistent with previous work by Liu et al., [25]. These 15 layers have 
demonstrated higher performance in removing noise and achieving higher accuracy. Due to the 
additive nature of the noise in the received signals, element-wise subtraction of the inputs and 
outputs is performed to determine the denoised channel matrix. Upon integrating the FCN and 
DeCNN modules, the output of the encoder is produced by combining the feature information 
between the two modules, and then adding it to the encoder output. 

By using the feedback channel, the compressed vector is then transmitted to IRS and reflected to 
BS for CSI recovery as depicted in Figure 3. A reliable feedback channel is considered to be adequate 
to relay a decompressed codeword efficiently during feedback transmission. By utilizing a decoder 
that is comprised of feature decompression and channel recovery, the codeword is utilized at the BS 
for the recovery of the truncated matrix H. The feature decompression module is composed of 
DeCNN and FCN. simultaneously, identical to the compression module in the encoder as shown in 
Figure 3. To enhance the efficiency of information recovery, the output codeword passes through 
RefineNet units, which overcomes the vanishing gradient problem. RefineNet units consist of four 
layers. Layer one is the input layer; subsequent layers use 3x3 kernels. Layers two and three produce 
8 and 16 feature maps, respectively, while layer four produces the reconstructed version of 𝑯L . With 
zero padding, we set the feature maps generated by the three convolutional layers equivalent to the 
size of the input channel matrix using leakyRELU as the activation function. We apply BN to each layer 
individually. 

 

 
Fig. 3. The proposed model CsiNet-DeCNN auto-decoder 

 
Several RefineNet units were used to refine the channel matrix before input to Conv. Layer where 

the sigmoid function was applied to scale the values to [0, 1].  Two RefineNet units produce good 
performance, according to experiments by Wen et al., [11]. While increasing computational 
complexity, more RefineNet units do not significantly improve reconstruction quality. As a final step, 
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the reconstructed channel matrix 𝑯L  is incorporated into the original channel matrix H through 
inverse 2D-DFT operations and non-zero connections.  
   
4. Numerical Result 
 

The proposed technique CsiNet-DeCNN is implemented in Collaboratory (Python) without 
requiring any configuration. The COST 2100 MIMO channel model is used to obtain channel matrix 
datasets, which include training, validation, and testing sets [27]. An algorithm of the proposed 
CsiNet-DeCNN, which includes offline training and online recovery is shown below. Training will 
provide feedback directly to the trained neural network and in Table 1, a summary of the total 
parameters of the IRS-aided massive MIMO channel system is provided.  

 
Input: Generated channel matrix H.  
 
Training data:  
 
Step 1: Create the initial channel matrix 𝐇F  according to the MIMO module of Cost 2100 [27]. 
Transform the channel matrix using 2D-DFT 	𝐇′H  and truncation. Identify the real and imagined 
components, then aggregate both to produce the original channel H. 
 
Step 2: H is provided to the encoder. Convolution and reshaping operations are used to extract 
feature vectors. FCN and DeCNN are used to compress the vector and encode it. 
 
Step 3: In the UE, the encoder will transmit the codeword to the IRS and the IRS will reflect that 
codeword to BS. 
 
Step 4: The BS decompresses the codeword using FCN and DeCNN to a vector, which is then 
recovered into CSI via the RefineNet units. 
 
Step 5: To mitigate the inaccuracy compared to the initial matrix H and the calculated 	𝐇′H, determine 
the loss function using MSE, and then enhance the model's parameters through the Adaptive 
Moment Estimation algorithm (ADAM) optimization. 
 
Iterate Steps 2 - 4 until optimal CSI feedback NN is obtained. 
 
Testing data: The UE imports the estimated CSI into the encoder and transmits it to the BS via the IRS 
reflecting element. By transmitting vectors to the decoder and using them to provide feedback to the 
CSI system without many iterations at BS, the complexity of channel feedback systems is effectively 
reduced. 
 
Output: Reconstructed channel matrix 𝑯L . 
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Table 1 
Simulation parameters 

Parameters Settings 
COST 2100 channel model [27] Indoor: Pico cellular - 5.3 GHz 

Outdoor:  rural - 300MHz 
N' 32 antennas 
N" ( 1024 subcarrier 
N) 32 
H 32 ×32 
Training Samples 100 000 
Validation Samples 30 000 
Testing Samples 20 000 
Epochs 1000 
Learning Rate 0.001 
Batch size 200 
Compress ratio (CR) 1/4, 1/16, 1/32, 1/64 

 
The proposed models were compared to previous similar modeling approaches, including LASSO 

[7], CsiNet [11], and TVAL3 [28], as part of our analysis. We examine the comparisons considering the 
Normalized Mean Square Error (NMSE), correlation coefficient, and accuracy in both indoor and 
outdoor channels. The NMSE is a measurement of the variation between the reconstructed channel 
𝑯L  with the original channel H, can be calculated as follows for the time T5 [11]. 

 
NMSE = E Q )

/*
∑ S𝐇!* −𝑯L !*S1

1/S𝐇!*S1
1/*

!*6) V                                                                                                    (4) 

 
Where ‖. ‖1 is the Euclidean norm. The correlation coefficient measures the correlation between the 
original channel 𝐡' %,!*  and the reconstructed channel value	𝐡Y %,!*  of the	𝑛89 subcarrier at time	T5. It 
can be expressed as follows. 
 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	 = 𝐸 e )
/*

)
'2 *
∑ ∑ :𝐡< +,!*

- 	𝐡= +,!*:

>𝐡< +,!*>$>𝐡
= +,!*>$

'2 *
%6)

/*
!*6) f                                                                (5) 

 
To measure accuracy, the estimated channel vector is compared with the original channel vector 

as follows based on the previous study conducted by Helmy et al., [12]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐸 e )
/*

)
'2 *
∑ ∑ :𝐡< +,!*

- :

>𝐡= +,!*>$

'2 *
%6)

/*
!*6) f                                                                                                                       (6)  

 
The relationship between compression ratio (CR) and NMSE is examined in all types of models, 

as shown in Figure 4 and Figure 5. The analysis considers both indoor and outdoor situations. For 
each CR, the proposed model consistently achieves superior results than other published works, 
where CsiNet has reduced the error by -0.36 dB as depicted in Figure 4, but by increasing the CR, our 
model outperforms the other models and CsiNet. In general, our model performs significantly better 
than other published models. As illustrated in Figure 5, CsiNet procedures outperformed the other 
CR-based methods (LASSO  and TVAL3) for outdoor situation. Our model, however, outperformed 
the CsiNet model in all test conditions. This indicates that our model is more effective than existing 
models for both situations. Furthermore, our results reveal that the proposed model can achieve 
higher accuracy for outdoor CR. 
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Fig. 4. NMSE versus compression ratio in indoor situations 

 

 
Fig. 5. NMSE versus compression ratio in outdoor situations 

 
For all structures in both indoor and outdoor situations, Figure 6 and Figure 7 illustrate the 

relationship between correlation coefficients and CR. As compared to other models, the proposed 
model has a higher correlation coefficient of 0.99 for indoor situations and 0.88 for outdoor 
situations with lower CR. The outcomes show that the suggested model is capable of achieving 
superior-quality compression with high correlation coefficients. Moreover, the proposed model 
exhibits robustness to different types of situations. The results indicate that it is an effective and 
reliable model for compression applications. 
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Fig. 6. Correlation coefficient versus compression ratio in indoor situations 

 

 
Fig. 7. Correlation coefficient versus compression ratio in outdoor situations 

 
In Figure 8 and Figure 9, the relationship between CR and accuracy is shown for indoor and 

outdoor situations. Figure 8 and Figure 9 demonstrate that the proposed model outperforms 
previously published models in both situations. Compared to other models, the proposed model 
yields 0.82 indoor and 0.7 outdoor at low CR, showing better accuracy. 
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Fig. 8. Accuracy versus compression ratio in indoor situations 

 

 
Fig. 9. Accuracy versus compression ratio in outdoor situations 

 
5. Conclusions 

 
In this paper, we focus on the development of a CsiNet-based denoising module, referred to as 

CsiNet-DeCNN, which addresses the feedback compression problem in IRS-aided massive MIMO 
wireless communication systems. Based on the system mean square error (NMSE), correlation 
coefficient, and accuracy performance, the proposed model has been evaluated, analyzed, and 
compared with existing techniques such as LASSO, TVAL3, and CsiNet. As a result of the introduction 
of a denoising module for channel recovery to reduce the noisy channel matrix, the proposed CsiNet-
DeCNN model achieves a low NMSE, which is significantly different from traditional convolutional 
auto-encoding schemes. The proposed model achieves higher accuracy performance at higher CR 
than other models and a higher correlation coefficient of 0.99 compared to the LASSO, TVAL3, and 
CsiNet models. As a direction for future work, we will explore ways to reduce model complexity and 
increase system accuracy performance.  
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