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This paper explores the influence of metamaterial structures on the performance of 
LTE/Wi-Fi printed antennas, examining two antenna versions. One version integrates a 
metamaterial ground layer, representing the traditional antenna, while the other 
incorporates a metamaterial load attached to the modified antenna. The inclusion of 
the metamaterial ground layer supports the unit cell with the MTM structure, enabling 
an analysis of how the MTM structure impacts antenna performance. Testing is 
conducted using Roger 5880 substrate with a thickness of 1.575 mm and a dielectric 
constant of 2.2. The antenna's overall dimensions are 60×49×1.575mm, with a loss 
tangent of 0.0009. Once optimal inductor/capacitor values are determined, equivalent 
circuits are generated for both the planned and conventional circuits. These circuits are 
simulated using CST Microwave Studio, with the Path Wave ADS simulator running the 
equivalent circuit. Antenna manufacturing and measurement are conducted using a 
Network Analyzer. Frequency ranges covered by the antenna include 1.68 GHz to 2.51 
GHz, 3.56 GHz to 4.63 GHz, and 4.1 GHz to 5.1 GHz, suitable for standard applications. 
Simulated gain is reported as 2.58 dB/2.45 dB, with observed gain at 2.22 dB/5.19 dB, 
showing excellent agreement between measured and simulated values from both 
simulators. Additionally, simulated specific absorption rate (SAR) on a sample Breast 
Phantom ensures compliance with the 1g/10g SAR value requirements set by the 
European Union and the United States. This confirms the antenna's suitability for 
cancer diagnosis and detection applications 
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The path wave ADS simulator runs the equivalent circuit. The antenna Rode is manufactured 
and measured by Network Analyzer. The frequency ranges covered by the antenna are as follows: 
1.68 GHz-2.51 GHz 3.56-4.63 GHz 4.1 GHz-5.1 GHz Standard applications (LTE, Wi-Fi, etc.) 
2.58dB/2.45dB. However, printed thin strip antennas have become necessary for every new gadget 
due to the explosive proliferation of handheld wireless communication devices in the previous 
several years. This sort is good since it achieves the smallest size and covers all of the frequency 
ranges required in today's different applications. Users and service providers frequently want 
wireless devices with antennas that are tiny and compact, easy to link with other components of a 
wireless communication system, low profile, and reasonably priced to manufacture, in addition to 
meeting operational criteria [7–10].  

However, compared to devices and bodies, flexible or thinner substrate-based wearable 
antennas provide a number of benefits, one of which is the ability to design simpler configurations. 
They can also include gates in a variety of shapes, such as bodies or gadgets [11–15]. They can also 
be supported by MTM cells, which can increase gain and bandwidth [18–19].  

Regarding MTM, it is a substance that is usually synthesized with unique or artificial structures 
in order to generate electromagnetic characteristics that are uncommon or challenging to generate 
in the natural world. It is abnormal and has distinct qualities that aren't found in the natural 
environment [20–21]. It has a negative permeability, a negative dielectric constant, or both [22]. 
Many people are interested in them because of their features, and they may find utility in a wide 
range of electromagnetic applications, from the microwave to the optical regime [22–26].  

This report provides a thorough analysis of the most recent research initiatives related to 
those MTM-based tiny antennas. They are analyzed and classified into multiple kinds, including MTM 
loadings, metaresonators, and antennas based on dispersion engineering. A few real-world obstacles 
or restrictions on the advancement of MTM-based tiny antennas are mentioned, along with potential 
solutions. 

Another significant occurrence that is happening increasingly frequently these days is the 
diagnosis of breast cancer. It is a contributing factor to the greatest annual number of women's 
cancer cases that are reported. In Malaysia, women are more likely than men to have cancer; in 2016, 
10,290 cases out of 100,000 individuals had the highest incidence (14.5%), according to [27]. This is 
in contrast to other cancer cases, such as leukaemia, stomach, and lung cancer. Unchecked aberrant 
cell development produces malignant tumours, which are usually referred to as cancer. These 
tumours can move to other organs or infect surrounding body components. It is imperative to identify 
a diagnosis and a means of detection for this illness. 
         Antennas placed within or on top of bodily organs can be used to detect cancer. Additionally, 
while researching and using an implanted antenna for the detection of human cancer, SAR presents 
a safety risk [28–40]. After fabrication, the antennas are measured. Similar circuit technology is also 
used to test it, producing the ideal conductor and capacitor values [41-44]. 
 
2. Methodology  
2.1 Antenna Design 
2.1.1 Conventional antenna 

 
A typical patch antenna is shown in Figure 1. This study presents a microstrip antenna design 

with and without MTM. Applications for WiFi and LTE use it. Studies on the human breast are being 
conducted concurrently to determine whether or not it could be utilized as a sensor for the 
identification and diagnosis of cancer. The patch combines multiple horizontal strips to partially 
realise the LTE frequency spectrum. Its measurements are shown in Table I, and the manufactured 
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version is shown in Figure 2. Based on Roger 5880, the design has a thickness of 1.575 mm and a ϵr 
of 2.2. 

 
 

Table 1 
Reconfigurable-Pin Diode Switches 

Antenna 
Parameter 

Dimension(mm) 

ws 49 
w1 4.80 
w2 20 
w3 30 
w4 48 
ls 60 
l1 12 
l2 11 

Wp 14 
Lg 8(conv.),11(MTM) 

 
Figure 3 illustrates the model of the structure's similar circuit. It is made up of three inductors, 

three capacitors, and a resistor that mimics the resistance of the patch. The values of these 
components are found using equations 1 and 2, where l is the length of the strip, w is its width, h is 
the height of the substrate, and c is the speed of light in vacuum. 

 

 
 

 
Fig. 3. Equivalent circuit of conventional antenna. 

 
 

 
Fig. 1. Conventional Antenna Structure: (a) 
Top View, (b) Bottom View 

 
Fig. 2. Conventional Antenna Fabrication:(a) Top 
View, (b) Bottom View 
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2.1.2 Metamaterial Antenna 
 
         The built MTM antenna is depicted in Figure 5, its equivalent circuit is illustrated in Figure 6, and 
the bottom layer of DGS ground is substituted with a layer composed of a 3x3 array of copper patches 
spaced 1.00 mm apart. Table I displays its measurements. 

 
Fig. 4. MTM Antenna Structure: (a) Top View, (b) 
Bottom View 

 
2.2 Optimization 
 

The goal of this part is to optimise the two antennas' various dimensions in order to reach the 
targeted frequency ranges of 2.1 GHz and 4.1 GHz. 

 
2.2.1 Conventional Antenna 

 
The optimization of a standard antenna's size to reach resonance frequencies of 2.1 GHz 

and 4.1 GHz is illustrated in Figure 7. As seen in figures 7a, b, and c, respectively, the reflection 
coefficient is optimized for various values of substrate thickness (hs), patch width (W4), and ground 
length (lg).  

It is evident that the primary element affecting the second response at 4.1 GHz is the ground 
length (lg), with an optimal value of 10mm. It is evident that modifications to the dielectric thickness 

 
Fig. 5. MTM Antenna Fabrication:(a) Top View                        (b) 
Bottom View 

 
Fig. 6. Equivalent circuit of MTM antenna 
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(hs) and patch width (w1) can induce resonance at 2.1 GHz, whereas ground length modifications can 
induce resonance at 4.1 GHz.   

 

                                                         (a) 

 

(b) 

 

(c)  

Fig. 7. conventional antenna optimization (a) substrate thickness, 
(b) patch width and (c) ground length 

 
The simulated and measured reflection coefficient of the optimized conventional antenna is 
presented in Figure 8, and the findings are in good agreement with the simulations. 
 

 
Fig. 8. Simulated and measured of the reflection coefficient of the 
optimized conventional antenna 
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2.2.2 MTM Antenna 
 

The reflection coefficient for a range of unit cell edges (wp) optimized to reach both 2.1 GHz 
and 4.1 GHz resonance frequencies is displayed in Figure 9. It is evident that the ideal unit cell square 
edge (wp) value is 14 mm since both resonances are apparent. 

 
Fig. 9. MTM’s unit cell edge antenna optimization 

 
       Starting with initial values of 1nH and 1pF, respectively, Figure 10 illustrates the equivalent circuit 
response of the MTM antenna for various parametric adjustments for the values of capacitors and 
inductors. It is evident that optimization number two is capable of reaching both 2.1GHz and 4.1GHz 
(2).  
 
3. Results  
3.1 Return losses and Gain  
 

Figure 11 shows the optimized MTM antenna's simulated and observed reflection 
coefficients, showing a high agreement between them. 

 
Fig. 11. MTM equivalent circuit optimization 

 
Fig 12 presents the conventional antenna’s gain versus the MTM one. One can observe that 

the MTM’s gain is slightly increased. 
 
3.2 Radiation Pattern 
 

Figure 13 shows the 3D radiation pattern for the conventional antenna operating at 4.1 GHz 
and with a gain of 4.29 dB. Figure 14 shows the 2D radiation pattern in the XZ and YZ planes. 

 
Fig. 10. MTM equivalent circuit optimization 

 
Fig. 12. MTM equivalent circuit optimization 
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Fig. 13. 3D radiation pattern of conventional 
antenna at 4.1 GHz 

 

 
(a) XZ Plane                              (b) XY Plane 

Fig. 14. 2D radiation pattern of conventional 
pattern at 4.1 GHz 

 
At 2.1 GHz and 4.1 GHz, Figure 15 shows the 3D radiation pattern of the MTM antenna. The 

measured gains are 2.22 dB and 5.19 dB, while the simulated gains are 2.58 dB and 5.45 dB, 
respectively. The 2D radiation pattern in the XZ and YZ planes for the same frequency is shown in 
Figures 16 and 17.  

 
(a) XZ Plane           (b) XY Plane  

Fig. 17. 2D radiation pattern of MTM antenna at 4.1 
GHz (a) XZ plane, (b)YZ plane 

3.3 Surface Current 
 

A typical 2.1GHz antenna's surface current is shown in Figure 18, with higher values at the 
edges. The MTM antenna's surface current is shown in Figure 19 for frequencies of 2.1 and 4.1 GHz, 
respectively. 

 
 
 
 
 
 
 
 
 
 

 
(a)                                   (b) 

Fig. 15. 3D radiation pattern of MTM antenna: (a) 
at 2.1GHz, (b) at 4.1GHz 

(a) XZ Plane                 (b) XY Plane 
Fig. 16. 2D radiation pattern of MTM antenna at 2.1 
GHz (a) XZ plane, (b)YZ plane 

 
Fig. 18. surface current for 
conventional antenna at 2.1GHz 

 
Fig. 19. Surface current for MTM antenna 
at:(a) 2.1 GHz, (b) 4.1 GHz 
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3.4 Antenna Performance on Body 
 
          The next investigation will use a phantom breast to assess the efficacy of the proposed antenna 
design. CST is applied to 1 and 10 grammes in numerical research. To replicate the anatomy of the 
human breast, a multilayer model tissue has been constructed. 
 
3.4.1 SAR evaluation  
 

The safety of the antenna operating over a human body was evaluated in order to make sure 
the SAR level complied with safety regulations. The FCC and ICNIRP's regulatory recommendations, 
which set a maximum level of 1.6 W/kg for averages over 1 gramme of tissue and 2 W/kg for averages 
over 10 grammes of tissue, form the basis of the evaluation. The SAR evaluation employed the CST 
standard with a 100 mW input power. In order to replicate the human anatomy, both antennas are 
used in this experiment on a layered human breast. CST is used for numerical analysis on 1g and 10g 
samples. 

Generally, the model was 10 mm away from the design while evaluating it along the x-axis. 
For the conventional antenna (Figures 20 and 21) and the MTM antenna (Figures 22 and 23), the 
findings are shown in Tables II and III, respectively. When compared to the standards, the results are 
satisfactory. Tables 2 and 3 show the SAR findings for the conventional and MTM antennas, 
respectively. 

 
 
 
 

                (a)                   (b) 
Fig. 21. SAR analysis of conv. antenna at 4GHz (a) 
10g, (b) 1g 

 
 

Figures 23 and 24 display the SAR values for an MTM antenna, while Figure 22 displays the 
SAR values in the breast for a traditional antenna operating at 4.1 GHz. The results for each antenna 
are summarized in Tables 2 and 3. 

 

                (a)                  (b) 
Fig. 20. SAR analysis of conv. antenna at 2GHz (a) 
10g ,(b) 1g 

                (a)                   (b) 
Fig. 22. SAR analysis of MTM antenna at 2GHz (a) 
10g, (b) 1g 

                (a)                   (b) 
Fig. 23. SAR analysis of MTM antenna at 4GHz (a) 
10g, (b) 1g 
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Table 2                                                                                             Table 3 
SAR analysis of conventional antenna Values near breast     SAR analysis of MTM antenna Values near breast 
 
SAR  (10 mm 
in distance 
from breast) 

SAR at 1(g) 
W/Kg 

SAR at 
10(g) W/Kg 

At 2 GHz 1.49 0.719 
At 4 GHz 1.61 0.66 
 

Table 4 compares different planar metasurface-transistor (MTM) antenna designs found in 
the literature to accepted work. 
 
Table 4 
Summary of research on planar MTM / metasurface structure-based antennas 

First author, year Substrate material Dimensions @ 
Array 

Frequency antenna Efficiency 
Simulated 

H.T. Zhong, 2017 
[40] 

Rogers Duroid 
RT5880 

0.6λ0 5.4 GHz 92% at 0° 

Wei Hu, 2019 [41] F4B/air @ 3×3 unit cells 2.45 GHz 98% at 60° 
Omar M. Rogers Duroid 

RT5880 
0.6λ0 5.8 GHz (TM-mode) 

Ramahi, 2012 [42] Rogers Duroid 
RT5880 

@ 8×8 unit cells 5.55 GHz 87.6% 

Babak Alavikia, 
2015 [43] 

Rogers RO4003 Approximately 
0.114λ0 

5.6 GHz - 

Babak Alavikia 
2015 [44] 

F4B @ 9×9 unit cells 2.5 GHz (LTE/Wi-Fi) 92% for G- CSRR 

Xuanming Zhang 
2018 

Rogers TMM10i 0.34λ0 3 GHz 87% 

[45] Rogers RO3010 PCB @ 11×11 array of G-
CSRR and 5×5 

5.33 GHz (WiFi) 90% 

Thamer S. Polytetrafluoroeth 
ylene (PTFE) 

array microstrip 
patch antenna 

2.45 GHz 97% 

Almoneef 2015 
[46] 

- Approximately 5.8 GHz 86% 

Alireza 
Ghaneizade 

Rogers RT/duroid 
6006 

λ0/5 2.45 GHz and 6 GHz 99.5% 

h, 2019 [47] F4B @ 9×9 unit cells 900 MHz, 88% at 0° and 
Xin Duan, 2018 
[48] 

F4B-2 Approximately 
0.131λ0 

2.6 GHz and 77% at 75° 

Fan Yu, 2018 [49] Rogers RO4003 @ 9×9 unit cells 5.7 GHz Higher than 90% 
B. Ghaderi, 2018 
[50] 

Roger 5880 0.075λ0 Wideband (6.2–21.4 
GHz) 

70%, 80%, 

Xuanming Zhang, 
2017 [51] 

Rogers Duroid 
RT5880 

@ 13×13 unit cells 1.75 GHz, and 82% at 

H.T. Zhong, 2017 
[52] 

F4B/air 0.13λ0 3.8 GHz, and 900 MHz, 2.6 

H.T. Zhong, 2016 
[53] 

Rogers Duroid 
RT5880 

@ 11×11 unit cells 5.4 GHz GHz and 5.7 GHz, 

This work Rogers Duroid 
RT5880 

0.16λ0 2.1 GHz and  respectively 

 
 

SAR (10 mm 
in distance 
from breast) 

SAR at 1(g) 
W/Kg 

SAR at 10(g) 
W/Kg 

At 2 GHz .029 .0126 
At 4 GHz .448 0.105 
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Table 4 shows that, in comparison to previous efforts, the antenna efficiency is 94% over the 
two operating bands. 

 
4. Conclusions 
 

This study presents, analyses, fabricates, and measures conventional and MTM LTE/Wi-
Fi/disease diagnostic antennas. Both CST and ADS simulators are used to build models of the two 
antennas. There is good agreement between the calculated and measured reflection coefficients. 
The MTM version conducts resonance at 2.1 GHz and a gain of 5.45 dB at 4.1 GHz with a bandwidth 
of 1.07 GHz, and a bandwidth of 0.832 GHz with a gain of 2.58 dB. In contrast, the conventional 
antenna operates at 4.1 GHz with a bandwidth of 1.65 GHz and a gain of 4.29 dB.   
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