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Bone transplantation remains the leading approach in addressing orthopaedic trauma or 
disease. In cases where this option is not viable, bone tissue engineering offers an 
alternative through the use of scaffolding. This approach involves the removal of 
damaged bone tissue and its replacement with porous scaffold structures to support the 
regeneration process. Recently, additive manufacturing has emerged as a promising 
technology for producing scaffold structures that satisfy the necessary performance 
criteria. In this study, PLA scaffolds with tortuous pore network designs were fabricated 
using fused deposition modelling. Scaffolds were fabricated with four different porosity 
values by changing the pore diameter in the range of 840–1732 µm. Sixteen specimens 
were tested under monotonic compression testing. Result shows the elastic moduli 
generated by each sample with 25%, 45%, 60% and 75% porosity: 545.21 ± 109.76, 446.82 
± 57.12, 312.55 ± 82.64 and 123.81 ± 23.95 MPa, respectively. Finite element simulation 
showed good correlation with experimental results, thereby effectively assessing the 
scaffold mechanical behaviour. Accordingly, the proposed finite element model can 
predict the mechanical behaviour of fabricated bone scaffolds accurately. The results 
demonstrate that the numerically predicted elastic modulus of complex scaffold is not 
closer to experimental outcomes in comparison with as-built samples. Overall, these 
findings suggest the potential of 3D-printed PLA scaffolds with tuneable porosity for 
cancellous bone replacement applications. 
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1. Introduction 
 

Tissue engineering (TE) scaffolds apply the principles of biology and engineering to the 
development of functional substitutes for bone defects, such as caused by osteonecrosis, cancer and 
severe traumatic injuries [1-5]. In orthopaedic application, TE scaffold is implanted directly into the 
injured site, then the body’s self-healing mechanism is integrated, inducing bone tissue regenerations 
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in-vivo. One of the major challenges in tissue engineering scaffold development is optimizing scaffold 
design to satisfy biological requirements. The scaffold’s design should consider its structure, including 
factors, such as tortuosity, porosity, shape, pore size, specific surface area and surface curvature. 
These factors are important because they affect nutrient transport and mechanical integrity as well 
as new bone formation [6-9]. For example, scaffolds with tortuous microchannel promote better cell 
attachment during tissue growth and permeability than scaffold with relatively straight 
microchannels [10]. Porosity, pore size and shape also improve implant mechanical interlocking and 
provide better mechanical stability [11-13]. The mechanical behaviour of the porous scaffold, in a 
particular modulus elasticity, is necessary to provide sufficient mechanical support to facilitate bone 
regeneration [14]. Modulus stiffness of the implanted scaffold should be matched with the 
surrounding bone tissue to acquire longevity by averting so-called stress shielding, depending on the 
material used to support bone regeneration [15,16]. Ideal modulus stiffness of scaffold closely 
matches that of cancellous bone and falls within the range of 0.01 GPa to 2 GPa [17-19]. 

Recently, the additive manufacturing (AM) technology, especially fused deposition modelling 
(FDM) is believed to be the most convenient approach to construct 3D porous scaffold with the 
elaborated geometry and pore structure. FDM technology allows a close control of scaffold design 
geometry with higher reproducibility, better accuracy and relatively lower production costs than 
other AM, such as stereolithography (SLA), selective laser sintering (SLS) and selective laser melting 
(SLM) [20-22]. The wide range of applications for FDM in the porous scaffold fabrication has been 
expanded by the biocompatibility of lactic acid-based polymers, such as poly-lactic acid (PLA) [23-25]. 
The conclusions suggest that PLA material is promising for use in orthopaedic implants, as evidenced 
by the successful formation of apatite on the surface of PLA scaffolds in vitro test subjects with basic 
lattice structures [26]. 

In recent years, many research efforts have been dedicated to microarchitecture complete design 
types and the manufacture of PLA scaffold and its composite using FDM technique. Grid structure is 
the simplest and most widely used structure in bone scaffolds. The geometry can be produced by 
depositing parallel filaments in one layer, prior to changing filament orientation on sequential layers 
[27-31]. The most common orientation schemes or raster angles are 0°/90°, 0°/60°/120°, orthogonal 
(2xOrtho), staggered orthogonal (2xSt-Ortho), isometric (2xIso) and staggered isometric (2xSt-Iso). 
Baptista and Guedes [31] investigated the morphological and mechanical behaviour of PLA scaffold 
depending on raster angle and layer configuration. The morphology of scaffold especially porosity, 
pore size and connectivity were adjusted by changing the filament offset. However, its pore 
connection and permeability are unsatisfactory, negatively influencing the continuous growth of cells 
and tissue [32,33]. Moreover, many stress concentrations at the intersection nodes of the Grid 
scaffold adversely affect its mechanical performance [34]. Triply periodic minimal surface (TPMS) 
structure has attracted considerable attention in various fields as a new type of porous structure 
[35,36]. In terms of the structural design of scaffold, the structural characteristic of TPMS, including 
pore size, shape and porosity can be controlled by adjusting the parameter to simulate the porous 
structure of natural bone. Therefore, TPMS may be an ideal and convenient porous structure design 
method for constructing bone scaffold models. On one hand, the TPMS structure has excellent pore 
connectivity, permeability, high specific surface area and outstanding tortuosity [37]. Thus, it can 
effectively simulate the natural bone structure and benefit the cell migration, proliferation and 
differentiation on the scaffold. On the contrary, the TPMS structure has an interconnected and 
smooth porous structure, which is beneficial for relieving stress concentration and improving the 
mechanical performance of the scaffold. However, TPMS structure is difficult to controllable given its 
morphology, such as porosity, pore size, tortuosity and its graded structure, using advanced 
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mathematical equations [38]. While the role of scaffold morphology has been considered necessary 
in bone replacement design, the importance of tortuosity has yet to be further elaborated. 

Many studies have been conducted on cell attachment, proliferation, and differentiation in tissue 
scaffolds and collective cell migration behavior, somewhat influenced by tortuous design 
parameters. Cell migration efficiency in scaffolds with tortuous architecture provides superior cell 
attachment compared to scaffolds having relatively straight microchannels [10]. The geometric 
curvature of the scaffold is thought to play an important role in the migration of tortuous 
microchannel cells in promoting bone tissue regeneration. Modifying the surface curve where cells 
connect to the extracellular matrix will promote tissue development [39,40]. Mazalan et al., [41] 
established a tortuous microchannel device from polydimethylsiloxane (PDMS) to investigate 
collective cell migration under various geometric constraints, with a tortuosity index ranging from 
1.57 to 2.30. The authors found that changing the radius of curvature and the tortuosity index 
resulted in a unique collective cell migration speed. 

Although tortuosity is directly related to permeability, the direct relationship between tortuosity 
parameter and the mechanical strength of scaffold structures has not been previously demonstrated, 
warranting further investigation. This study hypothesis that tortuosity can be influenced by altering 
the pore size and radius of the curvature, which in turn enhances porosity and reduces the cross-
sectional area and modulus stiffness. Furthermore, the specific surface area may play a role in this 
approach. The objective of this study is to investigate mechanical behavior of tortuous scaffold model 
using experimental and computer simulations. 
 
2. Methodology 
2.1 Material 
 

Commercial transparent PLA material for 3D printing was acquired from ESUN in the form of Ø 
1.75 mm filament and density of 1.24 g/mm3. The spool was conditioned in a humidity-controlled 
environment. 
 
2.2 Scaffold Design 
 

In this study, the scaffold is an open porous model with tortuous microchannel made with 
SolidWorks (Dassault systems SolidWorks Corp., Waltham, MA, USA) software. A schematic of the 
scaffold design stage is shown in Figure 1. Initially, pore shape was generated using meandering pore 
channel concepts with parametric design as shown in Table 1. The radius curvature of the pore 
channel was set to 0.9 mm. The unit cell of scaffold, namely, Negative Schwarz Primitive (NSP) was 
generated using Boolean subtraction function with the primary dimension of width, height and length 
measuring "4.2×4.2×4.2 mm", respectively. The unit cell was considered with four different porosities 
Φ (25%, 45%, 60% and 75%) within the porosity range of the cancellous bone structure [42,43]. The 
unit cell of scaffold was stacked to create scaffold architecture. Finally, cylindrical scaffold model was 
created with diameter 8 mm and height 12 mm. Each geometry was labelled after the structure and 
its porosity; for example, NSP25r0.9 refers to the Negative Schwarz Primitive scaffold with Φ: 25% 
porosity and radius curvature 0.9 mm. The final scaffold’s porosity and tortuosity can be modified at 
convenience by changing the fluid pore dimension (X) and radius curvature (r). 
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(a) (b) 

  
(c) (d) 

 
(e) 

 
 

(f) (g) 
Fig. 1. Schematic process showing the unit cell design principle based on tortuosity 
fluid pathway. (a) Fluid channel geometry. (b) Following the geometry duplication 
and assembly, they are interconnected to create tortuous fluid pathway. (c) The fluid 
geometry and a solid cubic was assembled. (d) 3D model was obtained by Boolean 
subtraction function. (e) Unit cell porosity controlled by tuning up the fluid pore size 
and radius curvature. (f) assembled Unit cell of scaffold. (g) Modelled scaffold 
specimen 
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Table 1 
Dimension parameter features of the Negative Schwarz Primitive (NSP) 
model CAD design (see also Figure 1) 
Dimensional parametric study Value (mm) 
Model NSPr0.8 NSPr0.9 NSPr0.98 
r 0.8 0.9 0.98 
constant,	𝑐 1.49 1.49 1.49 
y 2𝑐 − 𝑟 2𝑐 − 𝑟 2𝑐 − 𝑟 
z 𝑐 −

𝑟
2 𝑐 −

𝑟
2 𝑐 −

𝑟
2 

t 4.2 4.2 4.2 
x (Φ : 25%) 0.9 0.842 0.82 
x (Φ : 45%) 1.24 1.206 1.2 
x (Φ : 60%) 1.48 1.462 1.464 
x (Φ : 75%) N/A 1.732 1.752 

 
NSPr0.8 = NSP scaffold model with radius curvature of 0.8 mm; NSPr0.9 = NSP scaffold model 

with radius curvature of 0.9 mm; NSPr0.98 = NSP scaffold model with radius curvature of 0.98 mm. 
 
2.3 Morphological Analysis 
 

The unit cell of scaffold morphology, including porosity and surface area, was conducted using 
CAD software features. 3D CAD models were exported to stereolithography (STL) format and 
imported into the slice software program Chitubox (CBD-Tech, Guangdong, China). The CAD model 
was sliced using resolution of 17.20 µm. The remaining 244 slices and 500 x 500-pixel images were 
analysed using Fiji (Image J, NIH). The image data set was then exported to MATLAB (MathWorks 
Corp., Natick, MA, USA) software to calculate the diffusion tortuosity. The open solver plugin 
Taufactor is used to calculate the tortuosity value based on the finite difference method (FDM), and 
image voxels are directly used as discretisation meshes for simulation [44,45]. 
 
2.4 Scaffold Fabrication 
 

The designed specimen was sliced using CURA software to generate G-code files. The fabrication 
parameter is listed in Table 2 according previous literature, and approximately 1 hour is required for 
each sample to complete [31,46,47]. Four identical specimens for each porosity group were 
additively manufactured. The scaffold was fabricated using low-cost Creality Ender 3 3D printer. In 
fabricating the complete 3D structure with material extrusion, the nozzle is heated to melt the 
filament prior to layer-by-layer deposition. The prepared specimens are shown in Figure 2. The 
samples have a few manufacturing imperfections, but the overall structure is intact. 
 

Table 2 
Fabrication Process 
Parameter PLA 
Extruder temperature 210°C 

Bed temperature 60°C 
Nozzle diameter 0.2 mm 
Printing speed 25 mm/s 
Layer thickness 0.08 mm 
Support type Brim 
Nozzle size 0.2 mm 
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Fig. 2. Fabricated PLA scaffolds 

 
2.5 Material Characterization 
 

PLA scaffold was characterised by scanning electron microscopy (SEM). The Archimedes method 
in ethanol was used to determine the density of printed scaffold; these values were used to calculate 
the effective scaffold’s porosity. Axia Chemi SEM (Thermo Fisher Scientific, Waltham, MA, USA) was 
used to study the morphology, porosity and defect features of the produced PLA scaffolds prior to 
mechanical testing. 
 
2.6 Experimental Compression Test 
 

Compression tests were performed to evaluate the mechanical properties of PLA scaffolds. The 
test was carried out at the crosshead speed of 0.001 min/min using universal testing machine (The 
Fast Track 8874, Instron, Norwood, USA). The procedure was determined as per ASTM D1621 and 
ASTM D695 standard. The compression characteristic including quasi-elastic gradient and 
compression test were calculated from the stress–strain curve. The quasi-elastic gradient is defined 
as the slope of the straight line at the beginning of the compression stress–strain curve, which is 
defined as the modulus of elasticity. The yield stress was measured as a compression offset stress of 
0.2%. Monotonic compression test (n = 4) was carried out upon all scaffold’s configurations, i.e., 
porosity 25%–75%. The compressive stress is also recorded and measured. The experimental setup 
is shown in Figure 3. 
 

 
Fig. 3. Isometric views with vertical applied load 
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2.7 Numerical Analysis 
 

Finite element analysis (FEA) was carried out using COMSOL Multiphysics software to identify the 
mechanical properties and failure mechanism of the structures [48]. Prior to the FEA analysis, pure 
solid PLA samples (n = 4) were compressed to determine the material properties including elastic 
modulus, yield strength and plastic strain. Using standard equation, namely, Eq. (1) and Eq. (2), the 
nominal yield strain and nominal plastic strain produced by the experiments were converted to true 
stress and strain. The true stress and strain were determined to identify the plasticity behaviour 
under similar loading conditions in the finite element model. 
 
𝜀!"#$ = ln(1 + 𝜀%&')             (1) 
 
𝜎!"#$ = 𝜎%&'(1 + 𝜀%&')            (2) 
 
where 𝜎!"#$  indicates true stress, 𝜀!"#$  is true strain, 𝜎%&' represents nominal stress, and 𝜀%&' is 
nominal strain. 

Furthermore, CAD models of similar size to the fabricated model were used to simulate and 
validate the experimental test. The elastic properties of PLA were assigned to achieve a modulus of 
1350 MPa and a density 1250 kg/m3. The value of elastic modulus obtained from the experimental 
work is reasonable, ranging from 1 GPa to 4 GPa. Poisson’s ratio was set to 0.36. The 3D model of 
porous PLA was assigned homogenous, isotropic and elastic–plastic properties. The boundary 
conditions are demonstrated in Figure 4, where time-dependent displacement boundary condition 
refers to the nodes assigned on the top surface to be solved in a finite domain. In addition, a zero-
displacement boundary condition was assigned to the opposite surface in its normal direction, 
simulating a stationary compression platen. Nodes included in this boundary condition were confined 
only in the y-direction but were to move freely inside the x–z plane. The macroscopic compression 
strain limit of 30% was selected for the scope of this study because plasticity is predicted to occur 
within the specified plastic strain range. 
 

 
Fig. 4. Isometric views with boundary condition for 
compression test 

 
2.8 Convergence Mesh Method 
 

The u is the parameter for the mesh sensitivity test using the grid convergency index (GCI) analysis 
[49]. An example of GCI calculation is 
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𝐺𝐶𝐼 = 	𝐹( /
)

#!"#$%

#!"#$&'*#!"#$%
"!!(#*)

/ ∙ 100%          (3) 

 
Fs is safety factor of 1.25, r is the grid refinement ratio, and q is the convergency observed order. 

The numerical calculation of q is 
 

𝑞%+) = 𝑙𝑛 67 #!"#$*#!"#$%
#!"#$%*#!"#$&'

8𝑟,(,"-#*):; + 𝑟,(,"-#6 ln	(𝑟,(,"< ∙ 𝑟,",)       (4) 

 
And for the r calculation is 
 

𝑟,, = =.!"#$%

.!"#$&'
>
/.1

             (5) 

 
M is the mesh number. Then, the mesh number is normalized by inverse comparison. The 

example of normalized mesh number (h) is 
 
ℎ,2%$(! = ℎ,2%$" ∙ 𝑟,,             (6) 
 
Where ℎ,2%$"  of 1. The 𝑢$345!  or 𝑢∆3→~ or is predicted using the extrapolation approach. The 
formulation for extrapolation is 
 

𝑢∆3→~ = 𝑢,2%$" − =
#!"#$&'*#!"#$%
"!!(#)**)

>           (7) 

 
3. Results and Discussion 
 

A new design scaffold with tortuous pore parameters was considered. Scaffolds with pore 
tortuous have proven to have a promising topological structure that mimics the natural cancellous 
bone. Adequate mechanical properties are provided for structural strength and biological properties 
to permit tissue ingrowth, especially for load-bearing applications. Maintaining a high-strength 
scaffold with sufficient stiffness is crucial to avoid bone loosening and stress shielding effect between 
the scaffold and surrounding tissue. Therefore, the significant parameters to consider are porosity, 
pore size and tortuosity. Compression tests have been conducted to evaluate the mechanical 
characteristics of all specimens. An experimental test was performed to validate the result from the 
FEA. Notably, FEA was much easier to deform severely due to smooth and frictionless contact 
between the specimen and the platen during the compression process. The bond strength between 
layers should be improved to achieve a 3D-printed complex structure, such as NSP, through fused 
deposition modelling with excellent mechanical properties. In this regard, the process parameters 
should be optimized [50,51]. Applying optimized parameters in 3D printing leads to the production 
of scaffold with acceptable mechanical properties [52]. 
 
3.1 GCI Calculation Result 
 

Four mesh numbers are compared to find out the optimum mesh number: 40k (coarse), 61.2k 
(medium), 115k (fine), 759.8k (finest). Based on the calculation using Eq. (5) and Eq. (6), the hfs is 1, 
hf is 2.57, hm is 3.52, hc is 4.35 respectively. Based on FEA results, the E of each mesh is 780.38 MPa 
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(coarse), 720.06 MPa (medium), 661.33 (fine), 660.18 MPa (finest). Furthermore, based on Eq. (4), 
the qn of 13.82. Then, using Eq. (7), the exact value from the extrapolation approach using 3rd orded 
polynomial was 659.81 MPa. Finally, using Eq. (3) the GCIfsf of 0.06%, the GCIfm of 11.99%, and the 
GCImc of 19.42%. Therefore, the mesh number of 115k was chosen since, based on GCI results has an 
error below 1%. A summary of the GCI calculation results can be seen in Figure 5. 
 

 
Fig. 5. Mesh sensitivity study on NSP scaffold 

 
3.2 Mechanical Characterization 
 

Monotonic compression tests using experimentation and simulation were carried out on the 
produced PLA scaffold specimen. The monotonic stress–strain compression curve of the porous 
scaffold with Φ: 25% porosity is shown in Figure 6(a). PLA scaffold showed elastic deformation in the 
initial stage, then a long plateau up to the strain of 0.04 in the plastic deformation stage, followed by 
densification deformation. Meanwhile, the curve shows good agreement between experimental and 
simulation data for strains up to 0.005. The simulation curve gradually increased (known as the 
plateau region) past the 0.03 strain. This phenomenon is caused by the consideration of only the yield 
strength of the material acquired from the experimental data using the FE software. 

Furthermore, the scaffold’s porosity strongly correlates with elastic modulus, as illustrated in 
Figure 6(b). As porosity increases, the elastic modulus decreases. A similar conclusion was made in 
previous literature [31,53]. Rezabeigi et al., [54] reported that an increase in the porosity of the PLA 
foam from 40.7% to 90.8% decreased the compressive elastic modulus from 57 MPa to 1.8 MPa. 
Maharjan et al., [55] investigated the mechanical properties of fused deposition modelling-printed 
gyroid PLA cellular lattices with a gyroid structure with porosity ranging from 75% to 85%. Their 
scaffolds exhibited an elastic modulus of over 20–76 MPa and a yield strength of 1 MPa to 3 MPa. In 
this study, the compressive elastic modulus and yield strength of the PLA NSP scaffold with porosity 
from 25% to 75% were 101,99–674,87 and 1,76–17,36 MPa, respectively. For relatively low porosity 
scaffolds, simulated compressive modulus values are consistent with the experimental values. For 
higher porosity scaffold, simulated compressive modulus values are lower than the experimental 
ones with a percentage difference of 10.4%, and the simulation results follow the experimental trend. 
The FEA findings and the experiment results are in good agreement, despite the fact the error 
deviation between the two outcomes. A significant enhancement of the yield strength and elastic 
modulus of NSP PLA scaffolds manufactured compared with the other scaffolds with similar porosity 
reported in the literature. The greater mechanical properties of the NSP PLA scaffold manufactured 
are attributable to the appropriate design parameters, including shape, porosity, pore size and 
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tortuosity. The tortuosity parameters contribute to enhancing the mechanical properties of the NSP 
scaffold. Figure 6(c) shows the correlation between tortuosity and elastic modulus of the NSP scaffold 
with the same porosity of 60%. The NSP 0.8, NSP 0.9 and NSP 0.98 samples generated tortuosity 
values of 1.8, 1.6 and 1,5, respectively. The tortuosity can be maintained within the same porosity by 
altering the pore size and radius of curvature. The pore size must be reduced to increase tortuosity. 
A relatively low pore size generated a high strut, increasing the elastic modulus. The advantage of 
NSP scaffold design is that it is a simple method using parametric equations and is not as difficult as 
TPMS, which is described using the advantages of mathematical equations [56]. Furthermore, the 
elastic modulus of the NSP 3D-printed scaffold is suitable for cancellous bone replacement. Fatihhi 
et al., [57] reported a 621 MPa elastic modulus value for bovine cancellous bone with 77% density. 
Kopperdahl and Keaveny [58] on the contrary, reported a lower value of 291 MPa for human 
trabecular bone with an average density of 46% [58]. Another study reported that the elastic modulus 
value of natural cancellous bone is 0.01 GPa to 2 GPa, according to the anatomical site [17-19]. 
Additionally, the compressive properties of the PLA scaffold compared in this study and previous 
literature can be summarized in Table 3. 
 

  
(a) (b) 

 
(c) 

Fig. 6. (a) Comparison of compressive stress–strain curves between the experimental and finite 
element simulation for specimen Φ: 25%; (b) Range of modulus experimental values for specimens 
25%, 45%, 60% and 75% of porosity was as follows (453.33–674.87 MPa), (367.91–503.84 MPa), 
(245.10–399.24 MPa) and (101.99–156.68 MPa), respectively, compare with simulation; and (c) 
Relationship between elastic modulus and tortuosity of NSP scaffold model with the same porosity of 
60% 
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Table 3 
Compressive properties of PLA scaffolds manufactured via fused deposition modelling in this study in 
comparison with various porous structures published in the literature 
Scaffold Porosity (%) Elastic modulus, 

(MPa) 
Yield Strength 
(MPa) 

Method 

NSP 25 545,21±  
109,76 
 

17,36 ± 4,75 
 

Fused Desposition Modelling 

NSP 45 446,82 ± 57,12 7,99 ± 2,71 
 

Fused Desposition Modelling 

NSP 60 312,55 ± 82,64 5,29 ± 1,72 
 

Fused Desposition Modelling 

NSP  75 123,81 ± 23,95 1,76 ± 1,04 Fused Desposition Modelling 
Gyroid 70-75 50 - Fused Desposition Modelling [59] 
Cubic 55 0,53 ± 0,1 13,25± 1,6 Fused Desposition Modelling [60] 
 60 0,40 ± 0,006 9,47± 0,47  
 66 0,46 ± 0,06 5,75± 0,27  
Grid 2xOrtho 30 818.7 22.80 Fused Desposition Modelling [46] 
 50 510,81 12.89  
 70 230,49 5.31  
Grid 2xIso 30 736,43 20.17  
 50 435.75 10.72  
 70 185.96 4.21  
Bovine 
Cancellous bone 

5.68 – 77.69 4.39-80.14 0.68-9.93 [61] 

 
3.3 Morphology Characterization of Porous Scaffold 
 

The macroscopic and microscopic morphology of the scaffold for the sample with Φ:60% porosity 
was observed using SEM, as shown in Figure 7(a). The figure shows that all pores were open, and 
excellent interconnection between pores was observed. In the novel NSP scaffold structure, the 
struts extend horizontally vertically, at an angle of 45°, and develop arc-shaped struts. Combining 
these struts could increase the mechanical strength of the scaffold structure. Interestingly, the 
structure creates a radius connection at these strut nodes and finally develops negative concave 
surface curvature. Scaffolds with concave surfaces can induce an earlier and quantitatively enhanced 
bone differentiation, as reported in previous studies [62-65]. Figure 6(b) shows the SEM images of a 
3D-printed scaffold, indicating the layer-by-layer deposition of the fused PLA filaments around the 
pore walls. The 3D-printed layers have a smooth surface despite unattached tiny molten filament 
pieces. No gaps, voids or looseness between the molten PLA layers were detected despite the highly 
porous structure of the component. Figure 6(c) compares the scaffold structure between CAD and 
3D-printed models. The strut size of the manufactured scaffolds was increased compared with the 
design values, and the percentage difference was below 9.93%. The strut thickness can increase the 
modulus stiffness of the scaffold. As the thickness of the scaffold increases, the stiffness also 
increases. Thus, the experiment’s elastic modulus did not agree with the simulation result because 
of the effect of printing parameters on part accuracy [66]. 

The effectiveness of 3D printing techniques in generating components with complex geometries 
has been demonstrated. Applying suitable values of manufacturing parameters, such as speed of 
printing and extruder temperature, will lead to strong adhesion between the internal melted layers 
and achieve high-strength scaffolds. In the study of Baptista and Guedes [31,46], 0.4 mm nozzle was 
used at 215 °C, the printing speed was 30 mm/s, whereas the travel speed of the printer head was 
set to 90 mm/s to manufacture PLA scaffolds using grid model. Zarei et al., [67] used a 0.4 mm nozzle 
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at 215 °C temperature, printing speed of 10 mm/s and 0.3 mm layer height to fabricate a grid scaffold. 
Osgouei et al., [53] used a 0.6 mm nozzle at a 195 °C layer and height of 0.2 mm to fabricate a TPMS 
scaffold. Hussein et al., [38] fabricated a PLA conical-graded structure using a 0.3 mm nozzle 
diameter, extruder temperature of 200 °C and a layer height of 0.16 mm. Although previous studies 
justified that the effect of design variation on mechanical properties does not depend on the scaffold 
scale size due to the limitations of the FDM machine, the morphology of the scaffold, such as pore 
size and strut thickness, must be considered to support bone regeneration. The pore size of the 
scaffold to support bone regeneration is approximately 500–1000 microns [68]. Printing parameters 
were considered effective in achieving high-quality scaffold samples, including nozzle size, extruder 
speed and temperature, printing speed, layer height and infilling density. High-setting parameter 
processing, such as 0.2 mm for nozzle size, 25 mm/s for printing speed, 210 °C for extruder 
temperature, 0.08 mm for layer height and 100% for infilling percentage, was selected. Therefore, 
selecting a set of appropriate printing parameters can be considered the key condition for achieving 
excellent mechanical properties of the manufactured PLA scaffold. 
 

  
(a) (b) 

  
(c) 

Fig. 7. (a) Morphology of scaffold model; (b) layer height; and (c) Comparison between the scaffold 
CAD model and printed models 

 
3.4 Fracture Behaviour 
 

In Figure 8, the fracture patterns and principal elastic strain of specimens with varying porosity 
percentages are presented under uniaxial compression tests. Specimen Φ: 45% exhibited a global 
fracture initiating from the middle region, whereas specimens Φ: 60% and Φ: 75% underwent global 
fractures commencing from the bottom region. The early failure from the bottom region can be 
attributed to two primary factors. Firstly, cracks typically initiate from the thinnest struts due to an 
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increase in pore size, and plastification progresses to form a collapse band as it traverses weak 
regions randomly. Secondly, the process of duplicating the unit cell into the cylindrical model 
contributed to a partial loss of struts. Comparisons between experimental results and predictions 
from FEA were made within the same group of specimen morphologies. The elastic strain indicated 
a similar collapsing pattern, as denoted by the black arrow, particularly when dependent on weak 
material struts. This information holds paramount significance in the application of bone scaffolds 
for load-bearing purposes. The fracture characteristics closely resemble those of actual cancellous 
bone, thereby representing the scaffold’s damage behaviour once implanted to mitigate directional 
stress effects. Moreover, studies affirm that most cancellous bones generally exhibit a global fracture 
pattern. 
 

 
(a) 

 
(b) 

Fig. 8. (a) Contour plots of the fracture pattern under compression loading and (b) 
principal plastic strain contours from FEA 

 
4. Conclusions 
 

This study successfully introduces a novel scaffold structure design, employing a parametric 
approach to achieve controllable tortuosity and create surface curvature, thereby fostering an 
environment conducive to bone regeneration. The research significantly advances the scaffold design 
for bone regeneration by highlighting the crucial role of tortuosity and microarchitecture in scaffold 
performance. The key findings of the study are summarised as follows. Firstly, the fabrication of the 
scaffold using low-cost fused deposition modelling (FDM) with optimised processing parameters 
results in high-quality printing, effectively producing scaffolds with pore sizes suitable for bone tissue 
engineering. Secondly, all fabricated scaffolds exhibit elastic modulus values comparable to natural 
cancellous bones, ranging from 545.21 ± 109.76 MPa to 123.81 ± 23.95 MPa, corresponding to 
porosities of 25%, 45%, 60% and 75%. These values fall within the elastic modulus range of natural 
cancellous bone. Thirdly, the tortuosity parameter demonstrates a positive correlation with elastic 
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modulus, as indicated by a linear regression R² = 0.94, further emphasising the importance of 
tortuosity in scaffold design for optimal bone regeneration. These findings collectively contribute 
novel insights to scaffold design, presenting a promising avenue for enhancing bone regeneration 
strategies. 
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