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Computational Fluid Dynamics (CFD), blending disciplines like fluid mechanics and 
computer science, plays a pivotal role in various engineering and scientific endeavors. 
Despite its importance, the prohibitive costs and restricted access to commercial CFD 
tools pose significant barriers. This study addresses the need for accessible CFD solutions 
by conducting a comprehensive review of open-source CFD tools, highlighting their role 
in promoting open science. Through methodical analysis, the present study explores the 
capabilities, performance, and applicability of these tools in various contexts. The findings 
reveal that open-source CFD tools not only offer a cost-effective alternative to proprietary 
software but also foster collaboration and transparency in the scientific community. This 
study concludes that these tools are not only viable but essential for the advancement of 
CFD applications, encouraging wider adoption and development. This review serves as a 
bridge in the literature, enhancing understanding and accessibility of open-source tools 
in CFD, and supporting the paradigm shift towards open science. 
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1. Introduction 
 

Computational Fluid Dynamics (CFD), an interdisciplinary field combining fluid mechanics, heat 
transfer, computational methods, and computer science, has revolutionized fluid flow and heat 
exchange analysis [1-4]. Its applications range from aerospace engineering to environmental 
modeling, establishing it as a cornerstone of modern scientific and engineering practices [5-11]. 
However, the high costs and proprietary nature of commercial CFD tools have limited their 
accessibility. This situation highlights the growing importance of open-source tools in CFD, which 
offer cost-effective solutions and embrace open science principles, fostering collaboration and 
transparency in research. 

Despite their growing popularity, there is a significant gap in the literature regarding a 
comprehensive understanding of these tools. Many in the scientific community are not fully aware 
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of the capabilities of open-source CFD tools. This study aims to fill this gap by providing a thorough 
review of these tools, examining their features, applications, and impact. This paper explores various 
open-source CFD tools and discusses their practical applications in areas like geometry modeling, 
mesh generation, simulation, and post-processing. The main goal is to guide the CFD community in 
leveraging these open-source resources, paving the way for a more open, collaborative scientific 
future. This study provides an exhaustive review of open-source tools in CFD underscoring their 
unique contributions and potential to reshape the field. 
 
2. Open-source Tools 
 

The rising popularity of open-source CFD tools shown in Figure 1 can be attributed largely to their 
cost-effectiveness and can be customized as per user requirements, offering a clear benefit over 
commercial options. These tools are especially beneficial for small companies and individual 
researchers with limited budgets, as they eliminate the need for expensive licensing fees. 
 

 
Fig. 1. CAE open-source simulation solvers [12] 

 
Moreover, their customizable nature allows users to tailor the tools to their specific needs, 

flexibility often restricted in commercial software. One of the key advantages of open-source tools is 
their transparency. Users can inspect, verify, and test the code for accuracy and reliability, an 
essential aspect in scientific fields like CFD as shown in Figure 2(a) and Figure 2(b) both of which 
shows the comparison of the results obtained from commercial Ansys Fluent and open source 
software called OpenFOAM. This transparency not only fosters a deeper understanding of algorithms 
and numerical methods among students and researchers but also stimulates innovation in fluid 
dynamics research. Additionally, the robust support community and continuous development 
associated with open-source tools enhance their reliability and offer assistance, simplifying both 
learning and problem-solving. 

These tools are also versatile, capable of being used in diverse areas and easily integrated into 
various workflows. In essence, open-source tools are transforming CFD by making sophisticated, 
adaptable tools widely accessible, fostering a collaborative environment conducive to learning and 
innovation. This is well exemplified by the use of OpenFOAM in small-scale aerospace projects, which 
has shown significant cost savings and flexibility, demonstrating the practical advantages of these 
tools in real-world applications. To enhance the user-friendliness of open-source software, 
developers have integrated tools like OpenFOAM into more accessible GUI environments, 
complemented by additional software for pre- and post-processing, such as Visual-CFD, HELYX, and 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 123-148 

125 
 

simFlow. While these wrappers offer the convenience of a unified interface, they introduce an extra 
layer between the user and the execution code. The main advantage of using wrappers is their ability 
to provide some benefits of comprehensive commercial platforms at a lower cost. However, they 
also have downsides, including not addressing some core limitations of open-source software, such 
as limited user support and specialized features. Additionally, these wrappers bring their own 
potential issues, including bugs and possibly inadequate support and development. 
 

 
(a) 

 
(b) 

Fig. 2. (a) Domain and boundary conditions of bubble with OpenFOAM, (b) 
Comparison between ANSYS Fluent and OpenFOAM analysis with velocity 
streamlines at Re = 10 [13] 

 
3. Comparison between Commercial and Open-source Tools 
 

An open-source tool, is free and allows extensive customization, making it ideal for specialized 
research or unique simulation demands. Its flexibility is enhanced by the ability to modify and extend 
the code, especially useful for those proficient in programming skills. However, its less intuitive 
interface and steep learning curve, coupled with community-driven support, make it more 
challenging to master. Open-source tools are particularly accessible for individuals, small companies, 
or educational institutions with limited budgets. On the other hand, a commercial tool, is known for 
its user-friendly interface, making it easier for newcomers. It offers regular updates, dedicated 
customer support, and technical training as part of its licensing. Commercial tools seamlessly 
integrate with other tools for multi-physics simulations and provides advanced models and features 
right out of the box. However, its significant cost can be a barrier for smaller entities, and it offers 
less flexibility for customization than open-source. The license varies in cost from thousands to lakhs 
depending on usage, and there is a limitation on cell/nodes for student licenses. Open-source is more 
suited for users seeking deep customization, possessing programming skills, and engaged in unique 
or research-focused projects. Commercial tools cater more to commercial applications and users 
favoring an intuitive interface with less emphasis on customization. The choice between them hinges 
on the specific needs, budget, and expertise of the user or organization. 
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Computational Fluid Dynamics (CFD) is a specialized field in engineering and physics that involves 
the simulation of fluid flow and heat transfer using numerical methods. CFD software can be broadly 
classified into two categories: commercial and open-source. In this comparison in Table 1, various 
aspects of both types to help users make informed decisions based on their specific needs. 
 

Table 1 
Comparison between commercial and open-source entities based on various factors 
Comparative Factor Commercial Open-Source 

Cost • Typically involves licensing fees, which 
can be substantial. 

• Additional costs for maintenance, 
updates, and support. 

 

• Free to download and use, reducing 
financial barriers. 

• However, costs may still be incurred for 
training, support and hardware. 

Code Accessibility and 
Transparency 

• Closed-source, limiting the ability to 
modify or customize the code. 

• Users rely on the software provider 
for updates and bug fixes. 

• Source code is accessible, allowing users 
to modify and customize. 

• Community-driven development often 
leads to frequent updates and bug fixes. 

Community Support • Typically comes with professional 
support services. 

• User forums and community support 
may be available but might not be as 
extensive. 

 

• Relies on community support, which can 
be strong and active. 

• Extensive user forums and collaborative 
development. 

 

Solver Capabilities • Often provides a wide range of pre-
built, validated solvers for various 
applications. 

• Proprietary solvers may be more user-
friendly for non-experts. 

 

• Variety of solvers available, and users can 
modify or develop their own. 

• May require more expertise to set up and 
use effectively. 

 

User Interface and 
Ease of Use 

• Generally comes with a polished, user-
friendly graphical interface. 

• Aimed at a broader audience, 
including engineers with limited 
programming knowledge. 

 

• User interfaces can vary in quality; some 
may be less intuitive. 

• Greater flexibility but may require more 
technical expertise. 

Application Range • Often covers a broad spectrum of 
applications with specialized modules. 

• Well-suited for industries with specific 
requirements and regulations. 

• Flexibility to adapt to a wide range of 
applications but may require more user 
effort. 

• Well-suited for research, academic, and 
non-commercial purposes. 

 
Integration with their 
Software 

• May have better integration with 
other proprietary engineering 
software. 

• Plug-and-play solutions for specific 
industries. 

    

• Open standards facilitate interoperability 
but may require more user effort. 

• Integration with other open-source tools 
may be straightforward. 

Documentation and 
Training 

• Generally comes with comprehensive 
documentation and user manuals. 

• Professional training programs may be 
available. 

  

• Documentation quality can vary, but 
community-driven projects often have 
extensive guides. 

• Learning resources may include tutorials, 
online courses, and community forums. 
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The choice between commercial and open-source CFD software depends on various factors, 
including budget, application requirements, user expertise, and the level of customization needed. 
Commercial software may be preferable for industries with specific needs and a larger budget, while 
open-source options provide flexibility, accessibility, and community-driven support for research and 
educational purposes. 
 
4. Foundations of Computational Fluid Dynamics 
 

In a typical CFD analysis shown in Figure 3, defining the problem and the objectives of the study 
is the pivotal first step, requiring a thorough understanding of the physical processes involved, such 
as flow, heat transfer, and chemical reactions. This is followed by the selection of appropriate 
physical models, geometric modelling, mesh generation, and the meticulous assignment of boundary 
conditions. With the problem thus defined and contextualized, suitable numerical algorithms and 
solvers are employed to compute the flow and heat transfer. Following simulations, results are 
analysed, validated, and refined if necessary, culminating in comprehensive documentation and 
recommendations for design improvements or further analyses. Mastery of fluid mechanics, 
numerical methods, and specific software is crucial throughout the process to ensure the reliability 
and accuracy of the CFD analyses. Open-source tools provide a versatile and accessible framework 
for these foundational steps, offering extensive libraries and community-driven support for model 
selection, geometric modelling, and boundary condition assignment. 
 

 
Fig. 3. Primary steps involved in CFD analysis [14,15] 

 
4.1 Utilizing Open-Source Tools for Precision Geometry Modeling in CFD 
 

Constructing precise and refined model geometry is fundamental in CFD simulations, serving as 
the foundation for meshing and subsequent analytical tasks. The efficacy of these simulations heavily 
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relies on acquiring meticulously prepared and refined CAD files, which detail essential geometry 
descriptions for prescribing accurate physical conditions and facilitating controlled meshing. 
Simplification and error removal are integral in focusing on the fluid flow in the spaces between solid 
objects and mitigating unnecessary complexities, especially in intricate components. Creating 
geometrical models that are compatible with CFD meshing frequently becomes a lengthy and 
challenging part of the CFD analysis process. It is essential to accurately depict the actual system to 
efficiently produce a computational grid. This grid is a key element in CFD simulations, as it needs to 
be sufficiently detailed to capture all relevant scales for the specific issue being addressed, yet not 
overly detailed to avoid excessively increasing the computation time [16]. 

In the spectrum of tools facilitating advanced modeling and meshing, OpenVSP (Open Vehicle 
Sketch Pad), distinguishes itself as an open-source parametric aircraft geometry tool, initially 
developed by NASA [17-20]. This tool is designed to create 3D models of aircraft and to support the 
engineering analysis of these models. It permits users to quickly translate ideas into computer models 
that can be further analyzed, proving invaluable for generating and evaluating unconventional design 
concepts. OpenVSP offers a multitude of basic and advanced geometries common to aircraft 
modeling, which users modify and assemble to create models. Alongside geometry modeling, 
OpenVSP encompasses a variety of tools, including CompGeom and VSPAERO, aiding in aerodynamic 
or structural analysis of models [18]. It allows importing and exporting of various geometry formats 
like STL, CART3D (.tri), and PLOT3D, enhancing its utility in mesh generation and in CFD or FEA 
software. 

Among other notable tools are FreeCAD, a considerable alternative to commercial CAD packages; 
OpenSCAD, known for enabling the creation of accurate 3D models and parametric designs through 
script-based modeling; and Blender, recognized for its robust 3D modeling engine [21-30]. Wings 3D 
is pivotal for learning 3D modeling basics with its advanced subdivision modeling techniques, while 
SketchUp serves as an ideal starting point for architectural modelling [31-33]. Onshape offers 
collaborative, cloud-based 3D modeling solutions, and MeshLab provides extensive features for 
processing and editing 3D triangular meshes [34-38]. Lastly, SALOME stands out as a versatile 
platform, encompassing a broad spectrum of applications from 3D modeling to post-processing in 
various industrial sectors [39-41]. Figure 4 shows one such example of usage of Blender for UAS-
Based Photogrammetry [42]. Additionally, BRL-CAD is an open-source, cross-platform solid modelling 
system that includes a suite of tools for geometry editing, ray-tracing, image and signal processing, 
among others [43,44]. Finally, SolveSpace is identified as a user-friendly parametric 3D CAD program, 
offering both 2D sketching and 3D modelling with a focus on constraint-based modelling [45,46]. 

These tools, each with its own unique capabilities and distinctive functionalities, play an 
instrumental role in streamlining the intricate tasks of geometry construction, modelling, and 
meshing in CFD simulations. They ensure the simplification and optimization of intricate geometries, 
efficient management of computational resources, and accuracy in the representations of physical 
systems. By integrating accurate geometric modelling with advanced meshing solutions provided by 
these tools, professionals can achieve highly refined and precise simulations, marking them as 
indispensable entities in contemporary engineering landscapes. 
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(a) 

  
(b) (c) 

Fig. 4. (a) Experimental Photogrammetry (b) Blender imagery rendered using pin 
hole camera model (c) Binning gridding algorithm and its usage in visualizing 
errors and PPGC [42] 

 
4.2 Meshing Techniques and Open-Source Tools in Computational Simulations 
 

Meshing is crucial in software-based simulations like Finite Element Analysis (FEA) and, more 
prominently, in CFD as it influences the simulations’ accuracy and resource demands [47,48]. In CFD, 
the mesh quality often dictates the model’s efficacy, impacting convergence, memory needs, and 
solution precision. A robust mesh must avoid void regions and overlapping elements while 
maintaining high quality, sufficient resolution, and minimal computational cost. The structured and 
unstructured meshing techniques allow for precise transformations of continuous geometric entities 
into definable shapes, adapting to intricate designs with varying regularity. Modern meshing tools, 
many of which are open-source, have provisions for automatic checks or offer solutions to detect 
and amend transgressions in mesh creation, ensuring the absence of elements with zero or negative 
volume that render the equations extremely challenging to solve. They focus on optimizing the aspect 
ratio, mitigating skewness, and controlling growth rate, which is critical for maintaining local accuracy 
and manageable equation conditions, particularly when transitioning from high-aspect-ratio 
elements to isotropic elements in areas like boundary layer meshes. These optimizations are vital for 
maintaining solid and watertight mesh geometries in fluid flow simulations, enabling solvers to 
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identify the correct flow domain and facilitating precise assignments of governing equations to 
distinct cells. Such meticulous approaches to meshing are imperative for achieving a balanced, 
efficient, and accurate representation in numerical analyses, particularly in areas subjected to 
significant stress or located in the load path, ultimately advancing the comprehensive capabilities of 
computational simulations in varied scientific domains. 

It is here that software tools like Netgen/NGSolve and Gmsh become pivotal, providing high-
performance solutions and seamless integrations for analyzing models from solid mechanics to 
electromagnetics [41,49-54]. Netgen/NGSolve is renowned for its flexible Python interface and 
seamless integration from geometric modeling to visualization [55]. In contrast, Gmsh serves as a 3D 
finite element mesh generator, emphasizing a user-friendly and modular approach with efficient 
interactions with Netgen for mesh adaptations [56,57]. Additionally, the CFD General Notation 
System (CGNS) focuses predominantly on compressible viscous flow data, serving as a standard for 
data storage and retrieval in CFD analysis, enabling data exchange and archiving of aerodynamic data 
[58-61]. SALOME, a comprehensive open-source scientific computing environment, integrates 
physics solvers and offers modules accessible through GUI and Python scripts. CalculiX, another 
notable software, provides extensive support and integration options, hosting implicit and explicit 
solvers and offering functionalities analogous to commercial FEM programs like Abaqus [62]. 
Solutions like Overture, specializing in solving partial differential equations (PDEs), and OpenFOAM, 
providing premier open-source mesh tool suitable for varied complexities, contribute to a diversified 
and flexible software development environment for simulating physical processes in intricate moving 
geometries [41,63-68]. Lastly, enGrid, designed specifically for CFD applications, emphasizes mesh 
generation and supports automatic prismatic boundary layer grids for Navier-Stokes simulations [69-
71]. Each tool, with its unique characteristics, contributes to establishing a comprehensive ecosystem 
for CFD and FEA, advancing multiple scientific domains with their open-source nature, versatility, and 
extensive capabilities, thus underlining the importance of the meshing process in the realm of 
computational simulations and mechanics. Figure 5(a) and Figure 5(b) show the OpenFOAM-based 
BlockMesh and MeshLab as open-source grid tools, respectively [72]. 
 

 

 
(a) (b) 

Fig. 5. (a) Meshing of an industrial reactor model in OpenFOAM BlockMesh, (b) Surface normal of 
a model in MeshLab [73,74] 
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4.3 Open-source CFD Solvers 
 

In the realm of CFD modeling, the preliminary steps of preparing the geometry and creating the 
mesh are fundamental. It is paramount to choose the appropriate models to accurately represent 
the problem’s physics, be it through transient or steady-state simulations, based on the flow’s spatial 
or temporal variations. CFD solvers are software tools designed for simulating fluid flow and related 
phenomena using numerical methods and algorithms, mainly solving the Navier-Stokes equations. 
They are capable of addressing a variety of issues like airflow around objects, heat transfer, turbulent 
flows, and fluid-based chemical reactions. The process involves three stages: pre-processing (defining 
the problem and preparing the computational domain), solving (numerical solution of the equations), 
and post-processing (analysis and visualization of results). The effectiveness of a CFD solver is 
influenced by the model's complexity, the discretization methods used (like finite volume or finite 
element), and the available computational resources. Different solvers are tailored for specific types 
of problems, with some being better suited for incompressible flows and others for compressible or 
multiphase flows. The choice of solver depends on the specific needs of the problem, including flow 
regime, geometric complexity, and the required detail in the outcomes. 

CFD software packages are generally categorized into CAD Embedded (SolidWorks Flow 
Simulation, Autodesk CFD, and ANSYS Discovery Live), Open-Source (OpenFOAM, SU2, MFIX and 
SimScale), Semi-Comprehensive (COMSOL CFD, CONVERGE CFD and NUMECA OMNIS), and 
Comprehensive (Simcenter STAR-CCM+ and ANSYS Fluent) shown in Figure 6 [75].  

OpenFOAM is particularly noteworthy as a C++ toolbox, acclaimed for its versatility in solving a 
plethora of continuum mechanics problems, including complex fluid flows involving chemical 
reactions, turbulence, heat transfer, acoustics, solid mechanics, and electromagnetics. This software 
finds extensive application in numerous industries and academic institutions, endorsed by its vast 
user base. Similarly, other open-source software like SU2, Code_Saturne, Gerris, COOLFluiD, 
FreeFEM, OpenFVM, ReFRESCO, and TrioCFD, each with its unique features and capabilities, caters 
to diverse needs in the computational fluid dynamics landscape [76-94]. They range from solving the 
Navier-Stokes equations for various flows in Code_Saturne to providing a powerful component-based 
framework for high-performance computing in COOLFluiD [95]. 
 

 
Fig. 6. CFD software packages 

 
Each piece of software serves as a cog in the extensive machinery of computational fluid 

dynamics, contributing to the sophisticated simulation of fluid flows in varied domains. In the realm 
of CFD, over a thousand solvers have been developed by global research entities and laboratories. 
These solvers are predominantly available for non-commercial utilization under the General Public 
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License. For instance, FluidX3D emerges as a distinct CFD software, excelling in lattice Boltzmann 
methods [96-100]. Renowned for its speed and efficient memory usage, it operates on all GPU 
platforms via OpenCL [101]. Created by Moritz Lehmann, FluidX3D is free for non-commercial 
purposes, aligning with educational, research, and amateur applications. Additionally, 
FLOWUnsteady presents itself as an open-source, variable-fidelity framework for unsteady 
aerodynamics and aeroacoustics [102]. It is based on the reformulated vortex particle method 
(rVPM), a brainchild of the FLOW Lab at Brigham Young University [103]. PALABOS, focusing on lattice 
Boltzmann methods, is adept in simulating fluid flows in intricate geometries and multiphase 
conditions [104,105]. Nektar++, a spectral/hp element framework, addresses a broad spectrum of 
scientific and engineering challenges, encompassing fluid dynamics and wave propagation shown in 
Figure 7 [106-108]. FEniCSx, though not solely a CFD solver, offers a comprehensive suite of free 
software for solving partial differential equations (PDEs), inclusive of fluid dynamics challenges [109-
114]. CFDTool, a MATLAB-based toolbox, simplifies the learning of fluid dynamics basics, targeting 
educational and basic commercial applications [115-118]. Elmer, a multi-physics simulation software, 
integrates fluid dynamics with structural mechanics, electromagnetism, and heat transfer, making it 
suitable for coupled multi-physical problems [119-121]. BARAM, an open-source CFD software, is 
designed to streamline the learning process for text-based solvers, featuring a user-friendly graphical 
interface and incorporating OpenFOAM® solvers modified by NEXTFOAM under GPL [122-124]. The 
University of Liverpool’s Solver, also under GPL, serves an educational purpose in CFD, encompassing 
Euler equations, Roe’s solver, Harten’s entropy correction, and other features for both steady and 
unsteady flows [125]. UCNS3D, an open-source solver for compressible flows on unstructured 
meshes, employs high-order methods apt for industrial-scale CFD challenges [126]. The HOS Solvers, 
released under GPLv3, play a pivotal role in naval engineering by facilitating nonlinear irregular wave 
generation in CFD, crucial for assessing loads on offshore structures [127,128]. 
 

 
Fig. 7. Linear stability analyses of two-dimensional flow past a circular cylinder 
at 𝑅𝑒 =  4 in Nectar++ [106] 

 
The compilation from Simon Wenkel’s website adds other notable solvers like deal.II, Gerris, and 

Kratos Multiphysics [129-134]. deal.II, an open-source library, is instrumental in solving PDEs using 
finite element methods, primarily in computational science and engineering. Gerris, a flow solver, is 
recognized for its proficiency in managing complex geometric domains with adaptive mesh 
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refinement. Kratos Multiphysics, an opensource framework, is acclaimed for its adaptability in 
handling diverse physical processes in computational simulations. 

Flowsquare is a two-dimensional CFD software ideal for analyzing both unsteady and 
reactive/nonreactive fluid flows, including subsonic and supersonic flows [135,136]. Flowsquare is 
designed for ease of use and aims to make CFD technology more accessible for academic and 
educational purposes. It does not require expertise in meshing, programming, CAD, or pre/post-
processing, allowing for straightforward simulation setups using bitmap images and text files. 
Flowsquare is used globally by individuals, companies, and educational institutions for various 
purposes. 

APHROS is a finite volume solver, excels in simulating incompressible multiphase flows with 
surface tension, making it ideal for complex geometries and interactions between immiscible fluids 
[137,138]. hyStrath, another C++ code, is tailored for hypersonic and rarefied gas dynamics and is 
GPL-3.0 licensed [139,140]. FourierFlows.jl utilizes Julia to create adaptable pseudospectral solvers 
for partial differential equations [141,142]. Flow, by NVIDIAGameWorks, is a C-based library for real-
time fluid simulation in sparse grid setups [143,144]. PteraSoftware, a Python package, is designed 
for the analysis of flapping-wing flight, offering speed and ease of use [145,146]. Nalu, leveraging the 
Sierra Toolkit and Trilinos solver stack, is a versatile, unstructured low Mach flow code suitable for a 
range of applications [147-149]. FluidFoam enhances OpenFOAM postprocessing with its Python-
based tools. Incompact3d, developed in Fortran, optimizes Navier-Stokes equation solutions for 
current CPU architectures [150-152]. The 2d-fluidsimulator, implemented in Taichi and Python, 
handles 2D incompressible fluid dynamics. Lastly, MagIC, a high-performance Fortran code, adeptly 
solves magneto-hydrodynamics equations in rotating spherical shells [153]. Each solver has its unique 
strengths and suitability for particular CFD problems, influenced by factors like geometric complexity, 
flow nature, the necessity for multi-physics coupling, and computational resource availability. 
 
4.4 Open-source Post-processors in Computational Simulations 
 

In the process of CFD analyses, post-processors serve as software tools that scrutinize, interpret, 
exhibit, and make sense of simulation outcomes. They transform the extensive data produced by CFD 
simulations into visual formats such as graphs, charts, or thermal mappings, varying with the 
software used. Engineers and scientists can uncover trends, understand fluid flow dynamics, and 
make informed decisions with these post-processing tools. Certain CFD solvers, including 
OpenFOAM, SU2, and Gmsh, are equipped with integral post-processors [75,76,78]. The post-
processor in Gmsh can be augmented with custom plug-ins that modify existing visualizations or 
generate new perspectives based on the existing data. 

ParaView is an open-source application extensively utilized for CFD simulations, founded on the 
Visualization Toolkit (VTK) [39,154-156]. It facilitates Python scripting scripting and batch processing 
for efficient operations as shown in Figure 8 [157]. VisIt offers various visualization techniques, 
including contour plots, volume rendering, 2D and 3D visualization as shown in Figure 9, for 
presenting complex data [158-162]. It handles both time-varying and structured data, allowing users 
to dissect specific areas or time intervals within datasets. VisIt supports numerous data formats used 
in scientific and technical domains, such as VTK, HDF5, NetCDF, and others [163-165]. It can 
immediately read data from experiments or simulations. OpenDX, MayaVi, and GNUplot represent a 
selection of the accessible open-source post-processing software solutions [166-168]. 
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Fig. 8. ParaView visualization of electrostatic interaction and catalytic activity 
of [NiFe] hydrogenases on a planar electrode [169] 

 

 
Fig. 9. A glimpse of the VisIt post-processing tool GUI [170] 

 
Mayavi2 which is part of the Mayavi Project, utilizes Python to display scientific data, offering a 

range of capabilities for 3D scientific data visualization and plotting [171]. On the other hand, the 
highly scriptable GNUplot is a portable, command-line-driven, open-source tool for creating various 
types of charts and graphs, making it versatile for data visualization [172,173]. Open-source tool 
ENigMA implements several capabilities such as Mesh generation, post-processing, STL file 
processing, Smoothed Particle Hydrodynamics (SPH), PDEs, FEM, FVM, FDM, etc [174,175]. 

SimWorks, a complimentary CFD software, incorporates a unified GUI for OpenFOAM, the 
renowned open-source software pivotal for meshing and solving tasks in CFD [176,177]. Its 
capabilities span across multiple CFD analytical stages, encompassing geometry inspection, pre-
processing, meshing, case setup, solving, and post-processing. Concurrently, Cassiopee, an 
innovation by ONERA, emerges as another open-source software that consolidates pre- and post-
processing tools within a singular platform [178]. This integration aims to streamline various CFD 
analytical components, thereby offering a holistic solution that addresses both initial and final stages 
of CFD investigations. Additionally, Octave, as an open-source scientific programming language, 
positions itself as a MATLAB alternative, adept at executing a range of scientific computations, 
including those related to CFD data analysis and visualization [179,180]. 
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4.5 Open-source Post Data Generation and Availability 
 

Computational Fluid Dynamics (CFD) simulations generate vast amounts of data, and making this 
data available to the scientific community is crucial for collaboration, validation, and further research. 
Commercial software such as ANSYS Fluent, COMSOL Multiphysics, and Siemens STAR-CCM+ are 
widely used for CFD simulations in various industries. These tools offer advanced solvers, pre-
processing, and post-processing capabilities. Open-Source CFD Software like OpenFOAM, SU2, and 
FEniCS are popular open-source CFD software. They provide flexibility and customization, making 
them widely adopted in academic and research settings. Many CFD simulations require significant 
computational resources. HPC clusters and supercomputers are often used to perform large-scale 
simulations. 

The platforms for hosting this massive amount of data are 1. Institutional Repositories: 
Universities and research institutions often have their own data repositories. Institutional 
repositories may use platforms like DSpace, Figshare, or Dataverse to store and share CFD data 2. 
Public Data Repositories: Public repositories such as Zenodo, Dryad, and DataCite accept CFD data 
submissions. These platforms provide Digital Object Identifiers (DOIs) for datasets, ensuring proper 
attribution and citation 3. Collaborative Platforms: Collaborative platforms like GitHub and GitLab 
are commonly used for sharing not only code but also input files, simulation setups, and post-
processing scripts. These platforms facilitate version control and collaborative development 4. 
Domain-Specific Repositories: Some disciplines have specific repositories for CFD data. For example, 
all the subscription and Open-Source CFD International Journal encourages authors to provide data 
along with their publications 5. Journals and Conference Proceedings: CFD data can be published as 
supplementary material in scientific journals or conference proceeding. This allows researchers to 
share the data alongside their findings. 

However, this comes with certain challenges and considerations. For instance, data privacy and 
sensitivity. Depending on the nature of the simulations, there may be privacy or proprietary concerns. 
Care must be taken to anonymize or exclude sensitive information. Another issue is about data 
format and metadata. Standardizing data formats (e.g., HDF5, NetCDF) and providing detailed 
metadata enhance the usability of the shared CFD data. Researchers should specify the licensing 
terms for the shared data, ensuring proper attribution and adherence to copyright policies. Large 
datasets may pose challenges for storage, transfer, and download. Consideration should be given to 
the scalability of hosting platforms. Ensuring long-term accessibility and preservation of CFD data is 
essential. Repositories with sustainable funding and archiving practices are preferable. So, the 
availability of CFD data relies on a combination of suitable tools for simulation and appropriate 
platforms for data hosting. Open-access repositories, collaborative platforms, and domain-specific 
repositories contribute to the dissemination of CFD data, fostering collaboration and advancing 
scientific knowledge in fluid dynamics [181]. 
 
4.6 Reproducibility Problem in CAE Applications 
 

Reproducibility issues in Computer-Aided Engineering (CAE) applications can pose significant 
challenges for researchers and the broader scientific community. These problems often arise due to 
the lack of sharing source code, difficulties in submitting changes to mainstream repositories, and 
the resulting need for researchers to reinvent solutions. Here are some key aspects contributing to 
these challenges: 
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(i) Closed-Source Nature of CAE Software 
 

Many CAE applications are proprietary and closed-source, restricting access to the underlying 
code. This makes it difficult for researchers to understand, modify, or extend the software to address 
specific needs or improve its functionality 
 
(ii) Difficulty in Submissions to Mainstream Repositories 
 

Submitting changes or improvements to mainstream software repositories can be challenging for 
several reasons. The development processes of established software projects may be rigid, making it 
difficult for external contributions to be accepted. Additionally, legal and licensing issues may further 
complicate the integration of external code into existing projects. 
 
(iii) Lack of Documentation 
 

Even when researchers are willing to share their code, the lack of comprehensive documentation 
can hinder reproducibility. Incomplete or unclear documentation makes it difficult for others to 
understand and use the code effectively. 
 
(iv) Funding and Time Constraints 
 

Researchers may face constraints in terms of funding and time, which can limit their ability to 
share code, document their work thoroughly, or contribute to mainstream repositories. These 
constraints contribute to the challenges of reproducibility in the CAE domain. 
 
(v) Limited Code Sharing 
 

In the CAE community, there is often a lack of culture surrounding the sharing of source code. 
Researchers may be hesitant to share their code due to concerns about intellectual property, 
competition, or simply because they have not prioritized making their code publicly available. 
 
(vi) Versioning and Compatibility Issues 
 

CAE applications often involve complex dependencies on hardware, libraries, and other software 
components. This can lead to versioning and compatibility issues, making it challenging to reproduce 
results when different versions of the same software or its dependencies are used. 
 
(vii) High Computational Requirements 
 

CAE simulations often require significant computational resources, including specialized 
hardware and software configurations. This makes it difficult for researchers with limited resources 
to replicate and validate the results obtained by others. 
 

To address these issues, fostering a culture of openness, collaboration, and code sharing within 
the CAE community is crucial. Encouraging researchers to provide clear documentation, use open-
source licensing, and actively contribute to relevant repositories can significantly enhance the 
reproducibility and transparency of CAE research. Additionally, efforts to develop community-driven 
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standards for code sharing and integration could help streamline the process of submitting changes 
to mainstream repositories [182]. 
 
4.7 Advantages and Disadvantages of OS Software 
 

Open-source CFD software has gained popularity due to its accessibility, flexibility, and 
collaborative nature. However, like any technology, it comes with its own set of advantages and 
disadvantages from a user perspective. Table 2 below shows the advantages and disadvantages of 
open source software. 
 

Table 2 
Pros and cons of open-source entities and their details 
Advantages Disadvantages 
Cost: 
One of the most significant advantages is cost savings. 
Open-source software is typically free to download and 
use, making it an attractive option for individuals, 
academic institutions, and small businesses with 
limited budgets. 

Limited User Interface and Documentation: 
Open-source CFD software may lack a user-friendly 
interface compared to commercial counterparts. 
Additionally, documentation may not be as 
comprehensive or accessible, which can steepen the 
learning curve for new users. 

Flexibility and Customization: 
Users have the freedom to modify and customize the 
source code according to their specific needs. This level 
of flexibility is particularly beneficial for researchers 
and developers who want to tailor the software to 
their unique requirements. 

Support and Training: 
While there is a community for support, it may not be 
as responsive or comprehensive as dedicated customer 
support from a commercial software vendor. Users 
may find it challenging to get timely assistance for 
specific issues. 

Community Support: 
Open-source CFD software often has a large and active 
community of users and developers. This community 
support can be invaluable when seeking help, 
troubleshooting issues, or collaborating on the 
improvement of the software. 

Integration Challenges: 
Integrating open-source CFD software into existing 
workflows or with other software tools may pose 
challenges. Compatibility issues and the need for 
additional customization can require extra effort. 

Continuous Development and Updates: 
With a large community contributing to the software, 
updates and improvements are frequent. Users can 
benefit from the latest features, bug fixes, and 
enhancements without relying solely on the 
development roadmap of a commercial vendor. 

Commercial Code Features: 
Some advanced features found in commercial CFD 
software may not be available in open-source 
alternatives. Users with specific requirements may find 
that certain capabilities are only provided by 
proprietary solutions. 

Transparency: 
The open nature of the source code provides 
transparency, allowing users to understand how the 
algorithms work. This transparency is essential for 
research purposes and for building trust in the 
accuracy and reliability of the simulations. 

Stability and Validation: 
Open-source software may undergo rapid 
development, leading to potential instability in certain 
releases. Additionally, the lack of strict validation 
processes compared to commercial software may raise 
concerns about the accuracy of results in critical 
applications. 

 
5. Role of AI-ML-DL and High-performance Computing in CFD using Open-source Tools 
 

Traditional computational fluid dynamics (CFD) methods involve solving partial differential 
equations governing fluid flow behavior using numerical techniques. However, these methods 
encounter difficulties in handling complexities such as intricate geometries, turbulent flows, and 
multi-physics interactions. The integration of Artificial Intelligence (AI), Machine Learning (ML), and 
Deep Learning (DL) techniques into CFD workflows offers promising solutions to these challenges, 
unlocking new capabilities in fluid dynamics simulations. Open-source tools and software platforms 
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provide accessible and customizable environments for implementing and experimenting with AI-
driven approaches in CFD simulations. 

In addition to software like SimScale based on cloud computing (with free access for limited hours 
nearly one time 3000 computational hours and 500 GB storage) compared to commercial options 
like Ansys, open-source high-fidelity codes have been utilized for various applications ranging from 
reconfigurable systems to intricate problems like insect aerodynamics, flow topology and bird 
flapping kinematics and aerodynamics [183-188]. AI and ML algorithms play a crucial role in 
enhancing turbulence modelling by leveraging large datasets of experimental or high-fidelity 
simulation results. Techniques such as neural networks excel in capturing complex flow features, 
leading to more accurate turbulence closure models [189]. 

DL-based surrogate models offer an alternative to computationally expensive CFD simulations for 
tasks such as parameter optimization, sensitivity analysis, and uncertainty quantification. These 
surrogate models provide faster evaluations while maintaining acceptable accuracy levels. AI 
algorithms automate complex geometries and meshing processes, reducing manual intervention and 
enhancing efficiency. DL methods, like generative adversarial networks (GANs), can generate realistic 
geometries based on specified design criteria [189]. ML techniques enable real-time flow control and 
optimization by learning from simulation data and adjusting control strategies accordingly. 
Reinforcement learning algorithms optimize parameters to achieve desired flow characteristics or 
performance metrics. AI-driven approaches detect anomalies in CFD simulations and rectify errors to 
enhance reliability and robustness. ML models trained on historical simulation data can identify 
discrepancies and propose corrective actions during runtime [190]. Various open-source tools and 
software platforms facilitate the integration of AI, ML, and DL techniques into CFD simulations. For 
example, using dynamic mode decomposition which is a machine learning based reduced order 
modeling technique or using neural networks and sparse algorithms for accelerated CFD [190]. 
OpenFOAM, for instance, supports customization and extension for implementing AI-driven 
algorithms. TensorFlow, PyTorch, scikit-learn, and Keras are popular frameworks for building and 
training neural networks and machine learning models in Python. Additionally, SU2 and other high-
fidelity open-source CFD codes offer capabilities for adjoint-based optimization and uncertainty 
quantification, compatible with ML integration. Some of these open source codes for complex 
problems need high computational facility like GPU platforms to get excellent results as shown in 
Figure 10 [191]. Thus, the integration of AI, ML, and DL techniques revolutionizes the field of 
computational fluid dynamics, addressing challenges and unlocking new possibilities for simulation 
accuracy, efficiency, and automation. Open-source tools and software platforms democratize access 
to these advanced techniques, fostering collaboration and innovation in the CFD community. The era 
of relying on conventional methods for tackling straightforward tasks, for example like MHD stream 
based analysis or modified shape FSI is behind us [192,193]. Now, with open-source tools readily 
available, even the most intricate problems can be effortlessly addressed, devoid of concerns about 
commercial constraints. 
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(a) 

   
(b) 

Fig. 10. Scalability calculated across three tested grids (S, M, L). (a) PCG-DIC (CPU) vs. AMG-PCG (GPU) and 
(b) GAMG (CPU) vs. AMG-PCG (GPU) [191] 

 
6. Conclusions 
 

This article has conducted a thorough review of the myriads of open-source tools available for 
Computational Fluid Dynamics (CFD) and their significant role in propelling research in fluid dynamics. 
These tools, which range from advanced geometry modeling to sophisticated post-processing 
software, are not just alternatives to their commercial counterparts but are pivotal in democratizing 
advanced computational capabilities. By providing cost-effective, customizable, and transparent 
solutions, open-source tools are reshaping the CFD landscape, making it more accessible to a broader 
audience. They facilitate a culture of openness and collaboration, encouraging innovation and 
knowledge-sharing among researchers and practitioners. This is in line with the growing global 
movement towards open science, where transparency, reproducibility, and communal progress are 
at the forefront. As CFD continues to evolve, the adoption of open-source tools will undoubtedly play 
a crucial role in the sustainability and expansion of this field, ensuring that the scientific community 
can collectively tackle more complex and nuanced fluid dynamics challenges. This paper is exclusively 
focused on the analysis of incompressible open-source software, excluding considerations for 
compressible counterparts. It is important to note that there exist open-source codes designed to 
handle compressible flow scenarios as well. However, we intend to explicitly highlight the inherent 
incompressibility of the software under examination, providing a clearer understanding of their 
capabilities. 
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