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The present study analyzes the velocity distribution for magneto-hydrodynamic (MHD) 
Jeffrey Hamel nanofluid with nanoparticles between two non-parallel planar walls 
divergent and convergent channels the governing equations for this problem are reduced 
to an ordinary differential equation. This is demonstrated through the use of a new 
analytical method called q-homotopy analysis (q-HAM). This new technique is based on 
combining the q-HAM method with the Laplace transform (LT) and the EL-Zaki transform 
(ZT) in the presence of convolution theory in this research. The results proved that the 
improved solutions obtained from this problem were proven to be highly accurate by 
comparing them using Bvp4c, a Maple built-in function. As wall as the impact of emerging 
parameters such as Reynolds number, Hartmann number and open angle is discussed for 
three material Al2O3, TiO2 and Cu. The results show that the increment in velocity 
distribution occurs through growing Hartmann number for both channels, While the 
opposite of the case occurs, which shows a reduce in the velocity distribution with a rise 
in the Reynolds number. 
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1. Introduction 
 

The motion of nanofluids, which are engineered colloidal suspensions made up of a base fluid 
(like water, oil, or ethylene glycol) and nanoparticles that are usually between one and hundred 
nanometers in size, is referred to as nanofluid flow. The high surface area to volume ratio of 
nanoparticles and their molecular interactions with the base fluid give rise to the special 
characteristics of nanofluids. When compared to traditional fluids, these properties may improve 
rheological behavior, heat transfer, and other fluid dynamic properties. Nanofluid flow finds use in a 
number of areas, such as oil recovery procedures, electronic device cooling, biomedical applications, 
and thermal systems with improved heat transfer. To maximize their performance and create 
effective systems, designers must have a thorough understanding of how nanofluids behave under 
flow conditions [1-3]. These nanoparticles are frequently found in nature as non-metallic and metallic 
materials can be described in Figure 1 as follows 
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Fig. 1. The materials of nanoparticles 

 
When constrained fluid flow between two inclined parallel plates is considered, the resulting flow 

is known as Jeffrey Hamel flow. In incompressible viscous fluid flow through converging and diverging 
channels, Jeffrey [4] and Hamel et al., [5], the complex fluid flow phenomenon is represented by the 
magneto-hydrodynamic (MHD) flow system Jeffrey Hamel indicates a continuous and incompressible 
flow in an expanding two-dimensional channel or gradually shrink in one direction. The electrically 
conducting fluid in this case would be liquid metal. In order to account for the effects of the magnetic 
field, this flow configuration is frequently modeled using a combination of Maxwell's equations and 
the Navier-Stokes equations. Despite its importance, the complicated connection between fluid 
dynamics and electromagnetic makes Jeffrey-Hamel flow difficult to theoretically understand, 
numerically simulate, and empirically confirm. Research is still being done in order to better 
comprehend MHD flows, produce more exact modeling approaches, and examine novel applications 
in emerging technology. More research has been done in order to better comprehend MHD flows, 
develop more precise modeling approaches, and study potential applications in emerging 
technologies. As a result, researchers can acquire helpful understanding into the interplay between 
fluid flow, magnetic fields, and the dynamics of nanoparticles inside the system [1,5-9]. The quest for 
analytical solutions, however, remains crucial since they help us understand the system's 
fundamental dynamics and provide significant fresh views on how the system operates. 
Understanding complex physical processes requires the use of approximate analytical solutions, 
which provide simple and intuitive descriptions of the fundamental dynamics. An approximate 
analytical solution is a mathematical formula or statement that describes a system's behavior under 
specific simplification hypotheses. These solutions simplify analysis and interpretation by 
emphasizing the most significant components of the issue while omitting the less important ones. 
When obtaining perfect solutions is difficult or impossible, approximate analytical solutions might 
help. They can serve as benchmarks for experimentation or numerical simulations, providing useful 
information about how a system operates. Although due to the simplification hypotheses, its 
usefulness is typically limited to certain regimes or parameter ranges. In this study, we use the q-
homotopy analysis method to solve nonlinear differential equations without the need for a 
perturbation parameter. The objective of the present work is to improve the q-homotopy analysis 
method and investigate the effect of the angles between the plates, Reynold number, magnetic 
number, and nanoparticles volume fraction on the velocity profile by using some transformations 
such as the Laplace transform and the El-Zaki transform that we see in previous works supported by 
convolution theory as our guide when we propose a new analytical technique to overcome the 
numerical problems that appear in some prioritization methods [10-14]. Furthermore, it proposes a 
new analytical method through which we can overcome the numerical difficulties that appear in 
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some previous methods. According to our limited knowledge and previous research, it has been 
shown that the use of approximate analytical methods combined with integral transformations may 
significantly reduce many difficulties. To show the applicability, validity, and accuracy of this method, 
we have compared it with LTC-q-HAM, ETC-q-HAM, and the numerical method bvp4c in diagrams 
and tables. The basic properties of nano-fluid and nanoparticles can be listed in the following Table 
1: 
 

Table 1 
Properties of nano-fluid and nanoparticles 
Material ρ(kg m3⁄ ) CP(J kgk⁄ ) k(W mk⁄ ) 

Al2O3 3970 765 40 
TiO2 4250 686.2 8.9538 
Cu 8933 385 401 
Fluid phase (water)  997.1 4179 0.613 

 

2. The Problem Statement 
 

The physics problem of Jeffery Hamel describes a two-dimensional flowing incompressible 
nanoparticle under consideration that conducts viscous fluid from a source or sink at the junction 
between two rigid plane walls whose angle is 2𝜑 as shown in Figure 2. In general, the flow depends 
on 𝑟 and 𝜃 that is the magnetic field acts transversely with the flow. The governing equations are 
defined mathematically in polar coordinates as follows [15,16] 
 
�̂�𝑛𝑓

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
= 0,              (1) 

  

𝑢
𝜕𝑢

𝜕𝑟
+

1

�̂�𝑛𝑓

𝜕�̃�

𝜕𝑟
− 𝜗𝑛𝑓 [

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2

𝜕2𝑢

𝜕𝑟2 −
𝑢

𝑟2] +
𝜎𝐶0

2

�̂�𝑛𝑓
𝑢 = 0,        (2) 

 
1

�̂�𝑛𝑓𝑟

𝜕�̃�

𝜕𝜃
−

2𝜗𝑛𝑓

𝑟2

𝜕𝑢

𝜕𝜃
= 0,             (3) 

 
where 𝐶0 electromagnetic induction, 𝑝 is the fluid pressure, 𝑢 is the velocity along the radial 
direction, 𝜎 the conductivity of the fluid, �̂� the fluid density, and 𝜗 the coefficient of kinematic 
viscosity. The nano-fluid are given as 
 

�̂�𝑛𝑓 = �̂�𝑓(1 − 𝑤) + �̂�𝑠𝑤, �̌�𝑛𝑓 =
�̌�𝑓

(1−𝑤)2.5 , 𝜗𝑛𝑓 =
�̌�𝑓

�̂�𝑛𝑓
,        (4) 

 
Here, 𝑤 is the solid volume fraction. Also, by integrating both sides concerning 𝑟 of Eq. (1), yield 
 

𝑓(̅𝜃) = 𝑟𝑢(𝑟, 𝜃),            (5) 
 

From Eq. (5) the dimensionless form of the velocity parameter can be obtained by dividing that 
by its maximum value as follows 
 

𝑓 ̅(𝜏) =
�̅�(𝜃)

�̅�𝑚𝑎𝑥
,   𝜏 =

𝜃

𝜑
,             (6) 

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 32-55 

35 
 

where 𝜑 is the semi-angle between the two inclined walls. The resulting nonlinear ordinary 
differential equation after eliminating the pressure value 𝑝 by differentiating Eq. (2) and Eq. (3) 
concerning 𝜃 and 𝑟 respectively with the dimensionless variables in Eq. (6), is displayed as follows: 
 
𝑑3�̅�

𝑑𝜏3 + 2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅  𝑑�̅�

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑�̅�

𝑑𝜏
= 0,     (7) 

 
with the boundary conductions 
 

𝑓 ̅(0) = 1,   
𝑑�̅�(0)

𝑑𝜏
= 0, 𝑓 ̅(1) = 0,           (8) 

 
The Reynolds number and the Hartmann number can be introduced by 
 

𝑅𝑒 =
�̅�𝑚𝑎𝑥𝜑

𝜗
(

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∶ 𝜑 > 0, 𝑓�̅�𝑎𝑥 > 0

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙: 𝜑 < 0, 𝑓�̅�𝑎𝑥 < 0
) , 𝐻𝑎 = √

𝜎𝐶0
2

�̂�𝜗
,      (9) 

 

 
Fig. 2. Schematic of the problem 

 
3. Fundamental Ideal of q- Homotopy Analysis Method 
 

q-Homotopy Analysis is a method based on the standard perturbation and homotopy in topology. 
This approach produces a power series solution that is close to the exact solution. To illustrate the 
basic concepts of q-HAM, the non-linear differential equation can be represented as follows: 
 

𝐷(𝑓)̅ + 𝑈(𝑓)̅ + 𝑁(𝑓)̅ − 𝑔(𝜏) = 0,   𝜏 ∈ Ω          𝒦(𝑓(̅𝜏),
𝑑�̅�

𝑑𝜏
) = 0 ; 𝜏 ∈ Γ,                (10) 

 

where 𝑓 ̅denotes the unknown function, 𝑔(𝜏) is a known analytic function, 𝒦 denote the boundary 
operator. The boundaries of the field Ω is displayed by Γ. 𝐷, 𝑈 refer to the linear differential operator 
such that its order is less than 𝐷, 𝑁 the general non-linear differential operator. The definition of the 

homotopy in the homotopy perturbation technique is 𝑓:̅ ℝ × [0,
1

𝑛
] → ℝ and constructed as 

 

𝐻(𝑓,̅ 𝑞) = (1 − 𝑛𝑞)[𝐷(𝑓(̅𝜏, 𝑞)) − 𝐷(𝑓0̅)] − 𝑞ℎ𝐻(𝜏)[𝐷(𝑓(̅𝜏)) + 𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 
𝑔(𝜏)] = 0,                        (11) 
 

2𝜑 
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where 𝐷 is an appropriate auxiliary linear operator, 𝑞 ∈ [0,
1

𝑛
], 𝑛 ≥ 1 denotes the so-called 

embedded parameter, 𝐻(𝜏) denotes anon-zero auxiliary function, ℎ ≠ 0 is an auxiliary parameter 

and 𝑓0̅ is an initial approximation of Eq. (10) that perfectly satisfies the boundary conditions. The 

general form of the Eq. (11) when substituting for  𝑞 = 0, 𝑞 =
1

𝑛
 an 𝐻(𝜏) = 1 as the following 

 

𝐻(𝑓,̅ 0) = 𝐷 (𝑓(̅𝜏, 0)) − 𝐷(𝑓0̅),                     (12) 

 

𝐻 (𝑓,̅
1

𝑛
) =

ℎ

𝑛
[𝐷(𝑓(̅𝜏,

1

𝑛
) + 𝑈(𝑓(̅𝜏,

1

𝑛
) + +𝑁(𝑓(̅𝜏,

1

𝑛
)) − 𝑔(𝜏)],                 (13) 

 

The deformation of topology is known as 𝑓(̅𝜏, 𝑞) moves from 𝑓0̅(𝜏) to 𝑓(̅𝜏) as moves from 0 to  
1

𝑛
. As wall [𝐷(𝑓(̅𝜏, 𝑞)) − 𝐷(𝑓0̅)] and [𝐷(𝑓(̅𝜏)) + 𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏))] are referred to as homotopic. 

The power series that we obtain after solving Eq. (11) is as follows 
 

𝑓(̅𝜏, 𝑞) = ∑ 𝑓�̅�(𝜏)𝑞𝑚∞
𝑚=0 ,                      (14) 

 

The homotopy deformation equations provide the proper solutions for the coefficients 𝑓�̅�(𝜏) in 
Eq. (14) [17]. Therefore, it is easy to obtain the approximate analytical solution of Eq. (10) as 
 

𝑓(̅𝜏) = lim
𝑞→

1

𝑛

𝑓(̅𝜏, 𝑞) = ∑ 𝑓�̅�(𝜏) (
1

𝑛
)

𝑚

,∞
𝑚=0                     (15) 

 
where 
 

𝑓�̅�(𝜏) =
1

𝑚!

𝑑𝑚�̅�(𝜏,𝑞)

𝑑𝑞𝑚 |
𝑞=0

,                      (16) 

 
Now, the Eq. (11) is derived 𝑚 times with respect to 𝑞 then set 𝑞 = 0 with dividing the results by 

𝑚!. The defining of the vector is 𝑓̅⃗
𝑚(𝜏) = {𝑓0̅(𝜏), 𝑓1̅(𝜏), 𝑓(̅𝜏), … , 𝑓�̅�(𝜏)}. The 𝑚𝑡ℎ order deformation 

equation can be represented as follow [14] 
 

𝑓�̅�(𝜏) = 𝛿𝑚 𝑓�̅�−1(𝜏) + ℎ𝐻(𝜏)𝐷−1[𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏))],                   (17) 

 
where 
 

𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏)) =

1

(𝑚−1)!

𝑑𝑚−1[𝐷(�̅�(𝜏,𝑞))+𝑈(�̅�(𝜏,𝑞))+𝑁(�̅�(𝜏,𝑞)−𝑔(𝜏))]

𝑑𝑞𝑚−1 |
𝑞=0

,                 (18) 

 
and 
 

𝛿𝑚 = {
0               𝑚 ≤ 1    

𝑛           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
,                      (19) 

 

It is important to note that the nonlinear Eq. (17) is given  𝑓�̅�(𝜏) for 𝑚 ≥ 1 in the presence of 
linear boundary conditions for the original equation. The presence of the operator 𝑛 increases the 
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probability of convergence or even allows much faster convergence than a standard HAM. It should 
be mentioned that standard HAM can be reached in the case of 𝑛 = 1 in Eq. (11). 
 
4. The Improvement of q- Homotopy Analysis Method 
 

The main goal of this section is to improve the approximate analytical solutions resulting from q-
HAM. This improvement includes two new techniques using the method imposed by two transforms: 
the Laplace transform and the EL-Zaki transform with the help of the convolution theorem can be 
summarize this improvement as 
 
Hybridization q-Homotopy Analysis by Convolution Laplace Transform 
     

Through this part, it can demonstrate the hybrid approach that combines the q-homotopy 
analysis method and the Laplace transform supported by convolution theory. By rewriting Eq. (10) 

with assume that the defining of the operator is 𝐷 =
𝑑𝑛

𝑑𝜏𝑛 as the following 

  
𝑑𝑛�̅�(𝜏)

𝑑𝜏𝑛
+ 𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 𝑔(𝜏) = 0,                    (20) 

 
Based on the Laplace transforms impact on both sides of Eq. (20), become 
 

ℒ [ 
𝑑𝑛�̅�(𝜏)

𝑑𝜏𝑛 + 𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 𝑔(𝜏) ] = 0,                   (21) 

 
The following results from the Laplace transform's properties for Eq. (21), yield 
 

𝑠𝑛ℒ[𝑓(̅𝜏)] − ∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0) +𝑛−1
𝜔=0  ℒ [𝑈 (𝑓(̅𝜏)) + 𝑁 (𝑓(̅𝜏)) − 𝑔(𝜏)] = 0,               (22) 

 
Rearranging Eq. (22) results in 
 

ℒ[𝑓(̅𝜏)] −
1

𝑠𝑛
∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0) +𝑛−1

𝜔=0
1

𝑠𝑛  ℒ [𝑈 (𝑓(̅𝜏)) + 𝑁 (𝑓(̅𝜏)) − 𝑔(𝜏)] = 0,               (23) 

 

From the Laplace transform properties, we can  put 
1

𝑠𝑛
=

ℒ[𝜏𝑛−1]

(𝑛−1)!
 in Eq. (23), the outcome is 

 

ℒ[𝑓(̅𝜏)] −
1

(𝑛−1)!
ℒ[𝜏𝑛−1] ∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0) +𝑛−1

𝜔=0
1

(𝑛−1)!
ℒ[𝜏𝑛−1] × ℒ [𝑈 (𝑓(̅𝜏)) + 𝑁 (𝑓(̅𝜏)) −

𝑔(𝜏)] = 0,                        (24) 

 
Now, the Eq. (24) can be rewrite as follows 
 

ℒ[𝑓(̅𝜏)] −
1

(𝑛−1)!
ℒ[𝜏𝑛−1] ∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0) +𝑛−1

𝜔=0 ℒ [
𝜏𝑛−1

(𝑛−1)!
∗ (𝑈 (𝑓(̅𝜏)) + 𝑁 (𝑓(̅𝜏)) − 𝑔(𝜏))] = 0 ,               

(25)                                                                                           
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where the operation * is provided by 
 

ℒ[𝑓(̅𝜏) ∗ �̅�(𝜏)] = ℒ[𝑓(̅𝜏) × �̅�(𝜏)],  

𝑓(̅𝜏) ∗ �̅�(𝜏) = ∫ 𝑓(̅𝜏 − 𝜉)�̅�(𝜉)𝑑𝜉
𝜏

0
,  

 
By using the convolution theory concept of Eq. (25), the following outcome can be obtained 
 

ℒ[𝑓(̅𝜏)] −
ℒ[𝜏𝑛−1]

(𝑛−1)!
∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0)𝑛−1

𝜔=0 + ℒ[∫
(𝜏−𝜉)𝑛−1

(𝑛−1)!
(𝑈(𝑓(̅𝜏)) +

𝜏

0
𝑁(𝑓(̅𝜏))  

−𝑔 (𝜏)]|𝜏=𝜉𝑑𝜉 = 0,                       (26) 

 
Now, the nonlinear operator can be display as follow 
 

𝐵[𝑓(̅𝜏, 𝑞)] =  ℒ[𝑓(̅𝜏)] −
ℒ[𝜏𝑛−1]

(𝑛−1)!
∑ 𝑠𝑛−𝜔−1𝑓̅(𝜔)(0)𝑛−1

𝜔=0 + ℒ[∫
(𝜏−𝜉)𝑛−1

(𝑛−1)!
×

𝜏

0
(𝑈 (𝑓(̅𝜏)) +  

𝑁(𝑓(̅𝜏)) − 𝑔 (𝜏))|
𝜏=𝜉

𝑑𝜉 ],                      (27) 

 
Hence, by taking Laplace transform for the first term of the Eq. (17), it results as 
 

ℒ[𝑓�̅�(𝜏) − 𝛿𝑚 𝑓�̅�−1(𝜏)] = ℎ𝑞𝐻(𝜏)[𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏))],                   (28) 

 
After taking the inverse of Laplace transform of the above equation, we can find the following 
 

𝑓�̅�(𝜏) =  𝛿𝑚 𝑓�̅�−1(𝜏) + ℎ𝑞𝐻(𝜏)ℒ−1[𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏))],                  (29) 

 
where 
 

𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏)) =

1

(𝑚−1)!

𝑑𝑚−1(𝐵[�̅�(𝜏,𝑞)])]

𝑑𝑞𝑚−1 |
𝑞=0

,  

 
Hybridization q-Homotopy Analysis by Convolution EL- Zaki Transform 
 

The Hybrid approach of the EL-Zaki transform, q-homotopy analysis method and convolution 
theory is presented to find the improvement solutions of q-HAM as following 
 
Taking the EL- Zaki transform on both sides of Eq. (20), become 
 

𝐸 [ 
𝑑𝑛�̅�

𝑑𝜏𝑛 + 𝑈(𝑓)̅ + 𝑁(𝑓)̅ − 𝑔 (𝜏) ] = 0,                    (30) 

 
Implementing in the EL-Zaki transform differentiation property for the equation, can explain the 

following results 
 
𝐸[�̅�(𝜏)]

𝐽𝑛 − ∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +𝑛−1
𝜔=0 𝐸[𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 𝑔(𝜏)] = 0,                (31) 
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Rearranging Eq. (31) results in 
 

𝐸[𝑓(̅𝜏)] − 𝐽𝑛 ∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +𝑛−1
𝜔=0  𝐽𝑛𝐸[𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 𝑔(𝜏)] = 0,               (32) 

 

From The EL-Zaki transform properties, we can substitute 𝐽𝑛+2 =
1

𝑛!
𝐸[𝜏𝑛] in Eq. (32), yield 

 

𝐸[𝑓(̅𝜏)] −
1

𝑛! 𝐽2
𝐸[𝜏𝑛] ∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +

𝑛−1

𝜔=0
 

1

𝑛! 𝐽2
𝐸[𝜏𝑛] × 𝐸[𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 

𝑔(𝜏)] = 0,                        (33) 
 
The Eq. (33) can be introduced by the following form 
 

𝐸[𝑓(̅𝜏)] =
1

𝑛!𝐽2 𝐸[𝜏𝑛] ∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +
1

𝐽

𝑛−1
𝜔=0  𝐸[

1

𝑛!
𝜏𝑛 ∗ (𝑈(𝑓(̅𝜏)) + 𝑁(𝑓(̅𝜏)) − 𝑔(𝜏))],              (34) 

 
where the operation * is provided by 

𝐸[𝑓(̅𝜏) ∗ �̅�(𝜏)] =
1

𝐽
𝐸[𝑓(̅𝜏) × �̅�(𝜏)],  

𝑓(̅𝜏) ∗ �̅�(𝜏) = ∫ 𝑓(̅𝜏 − 𝜉)�̅�(𝜉)𝑑𝜉
𝜏

0
,  

 
Using the concept of convolution theory for the last term of Eq. (34), the following result can be 

obtained 
 

𝐸[𝑓̅(𝜏)] −
𝐸[𝜏𝑛]

𝑛!𝐽2
∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +

1

𝐽
𝑛−1
𝜔=0 𝐸(∫  

𝜏

0
(

(𝜏−𝜉)𝑛

𝑛!
[𝑈(𝑓̅(𝜏)) + 𝑁(𝑓̅(𝜏)) − 𝑔(𝜏)]|

𝜏=𝜉
) 𝑑𝜉) = 0,            (35) 

 
Now, the nonlinear operator can be defined as follows 
 

𝐶[𝑓(̅𝜏, 𝑞)] = 𝐸[𝑓(̅𝜏)] −
1

𝑛! 𝐽2
𝐸[𝜏𝑛] ∑ 𝐽2−𝑛+𝜔𝑓̅(𝜔)(0) +

𝑛−1

𝜔=0

1

𝐽
 𝐸[

1

𝑛!
𝜏𝑛 ∗ (𝑈(𝑓(̅𝜏)) + 

𝑁(𝑓(̅𝜏)) − 𝑔(𝜏))],                       (36) 
 
Hence, by taking EL-Zaki transform for the first term of the Eq. (17), it results as 
 

𝐸[𝑓�̅�(𝜏) − 𝛿𝑚 𝑓�̅�−1(𝜏)] = ℎ𝑞𝐻(𝜏)[𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏))],                   (37) 

 
After taking the inverse of EL-Zaki transform of the above equation, we can find the following 
 

𝑓�̅�(𝜏) =  𝛿𝑚 𝑓�̅�−1(𝜏) + ℎ𝑞𝐻(𝜏)𝐸−1[𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏))],                  (38) 

 
where, 
 

𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏)) =

1

(𝑚−1)!

𝑑𝑚−1(𝐶[�̅�(𝜏,𝑞)])]

𝑑𝑞𝑚−1 |
𝑞=0

, 

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 32-55 

40 
 

Finally, Eq. (29) and Eq. (38) can be solved to find 𝑓�̅�(𝜏), 𝑚 = 1,2,3, ...which is the approximate 
analytical solution, which can be expressed as a series containing the convergence parameters h and 

n. This solution is substituted into the Eq. (15), as the fraction factor (
1

𝑛
)

𝑚

 present in Eq. (15) greatly 

increases the chances of convergence. 
 
5. The Applications of Jeffery-Hamel Nano-Fluid Flow Problem by q-HAM, LTC-q-HAM and ETC-q-
HAM 
 

The implementation of q-HAM with its improvement to the nonlinear ordinary differential Eq. 
(7), to extract the approximate analytical solution. These applications can be explained below 
 
𝑑3�̅�

𝑑𝜏3
+ 2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅ 𝑑�̅�

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑�̅�

𝑑𝜏
= 0,               (39) 

 
The assumption of the initial condition is 
 

𝑓0̅(𝜏) = Γ0 + Γ1𝜏 + Γ2
𝜏2

2!
,                      (40) 

 

where 𝑓(̅0) = Γ0, 𝑓̅′(0) = Γ1, 𝑓̅′′(0) = Γ2. 
 
The components of initial condition are readily found using Eq. (8) and Eq. (40) as follow 
 

𝑓0̅(𝜏) = 1 + Γ2
𝜏2

2!
,                       (41) 

 
According to Adomian polynomials of nonlinear term, a nonlinear operator is defined as follow 
 

 𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏)) =

𝑑3�̅�𝑚−1

𝑑𝜏3 + 2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5 ∑ ∑ 𝑓�̅�

𝑑

𝑑𝜏
𝑓�̅�−1−𝑧

𝑧
𝑠=0

𝑚−1
𝑧=0 +   

(4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑�̅�𝑚−1

𝑑𝜏
,       𝑚 = 1,2, …                   (42) 

 
Eq. (7) can now be solved to obtain 
 

𝑓�̅�(𝜏) = 𝛿𝑚𝑓�̅�−1(𝜏) + ℎ𝐻(𝜏) ∫ ∫ ∫  
𝑑3𝑓�̅�−1

𝑑𝜏3
+ 2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5 

𝜏

0

𝜏

0

𝜏

0

 

∑ ∑ 𝑓�̅�
𝑑

𝑑𝜏
𝑓�̅�−1−𝑧

𝑧
𝑠=0

𝑚−1
𝑧=0 + (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑�̅�𝑚−1

𝑑𝜏
,                  (43) 

 

The iterative approximate solutions with assume that 𝑑 =
1

�̂�𝑓
 for the purpose of simplification as 

follows 
 

 𝑓1̅(𝜏) = (0.166666666𝜑2Γ2ℎ − 0.04166666665𝜑2Γ2(1 − 𝑤)1.25𝐻𝑎ℎ + 0.08333333332 
𝜑𝑅𝑒(1 − 𝑤)2.5Γ2ℎ − 0.08333333332𝜑𝑅𝑒(1 − 𝑤)2.5Γ2𝑤ℎ + 0.08333333332𝜑𝑅𝑒(1 − 𝑤)2.5 
Γ2𝑤�̂�𝑠ℎ𝑑)𝜏4 + (0.008333333333𝜑𝑅𝑒(1 − 𝑤)2.5Γ2

2ℎ − 0.00833333333𝜑𝑅𝑒(1 − 𝑤)2.5𝛤2
2𝑤ℎ + 

0.008333333333𝜑𝑅𝑒(1 − 𝑤)2.5Γ2
2𝑤�̂�𝑠ℎ𝑑)𝜏6, 

𝑓2̅(𝜏) = (−0.003240740741𝜑2𝑅𝑒2Γ2
3𝑤3ℎ2 + 0.003240740741𝜑2𝑅𝑒2Γ2

3𝑤4ℎ2 − 
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0.001944444444𝜑2𝑅𝑒2Γ2
3𝑤5ℎ2 + 0.0006481481482𝜑2𝑅𝑒2Γ2

3𝑤6ℎ2 − 0.00009259259260 
𝜑2𝑅𝑒2Γ2

3𝑤7ℎ2 − 0.0006481481482𝜑2𝑅𝑒
2Γ2

3𝑤ℎ2 + 0.001944444444𝜑2𝑅𝑒
2𝛤2

3𝑤2ℎ2 + 
0.00009259259260𝜑2𝑅𝑒

2Γ2
3ℎ2 + 0.0001851851852𝜑2𝑅𝑒

2𝛤2
3𝑤7�̂�𝑠ℎ2𝑑 − 

0.001111111111𝜑2𝑅𝑒
2Γ2

3𝑤2�̂�𝑠ℎ2𝑑 + ⋯. 
⋮ 

The remaining iterative components 𝑓�̅�(𝜏), 𝑚 = 3,4,5,6, … can be obtained by similarity. The 
expression for the series solution by q-HAM can be expressed as follows 
 

𝑓(̅𝜏, 𝑛; ℎ) ≅ 𝑓�̅�(𝜏, 𝑛; ℎ) = ∑ 𝑢𝑖(𝜏, 𝑛; ℎ) (
1

𝑛
)

𝑖

,𝑚
𝑖=0  𝑛 = 1,2, …                 (44) 

 
The Application of LTC-q-HAM to find the approximate analytical solution by taking the Laplace 

transform to both sides of Eq. (7), become 
 

ℒ[
𝑑3�̅�

𝑑𝜏3] + 2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5ℒ[𝑓̅ 𝑑�̅�

𝑑𝜏
] + (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2ℒ[

𝑑�̅�

𝑑𝜏
] = 0,              (45) 

 
By implementing the initial condition from Eq. (45), and the differentiation property of the 

Laplace transform, yield 
 

ℒ[𝑓̅] − (
𝑠2+Γ2

𝑠3
) +

1

𝑠3
ℒ[2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅ 𝑑𝑓̅

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑𝑓̅

𝑑𝜏
] = 0,         (46) 

 

From the Laplace transform's properties substituting 
1

𝑠3 =
1

2!
ℒ[𝜏2] the following results 

 

ℒ[𝑓]̅ − (
𝑠2 + Γ2

𝑠3
) +

1

2!
ℒ[𝜏2] × ℒ[2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅

𝑑𝑓̅

𝑑𝜏
+ 

(4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑�̅�

𝑑𝜏
] = 0,                     (47) 

 
By utilizing the convolution theory concept on the last term of Eq. (47), the following outcome 

can be obtained 
 

ℒ[𝑓]̅ − (
𝑠2 + Γ2

𝑠3
) + ℒ[

1

2!
𝜏2 ∗ (2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅

𝑑𝑓̅

𝑑𝜏
) + (4 − (1 − 𝑤)1.25𝐻𝑎) 

𝜑2 𝑑�̅�

𝑑𝜏
)] = 0,                        (48) 

 
The following results from taking the inverse Laplace transform of both sides of Eq. (48) and from 

q-HAM we obtain 
 

𝑓�̅�(𝜏) = 𝛿𝑚𝑓�̅�−1(𝜏) + ℎℒ−1(ℒ[𝑓�̅�−1] − (
𝑠2+Γ2

𝑠3 ) (1 −
1

𝑛
𝛿𝑚)) +

ℎ

2!
∫ ((𝜏 − 𝜉)2𝜏

0
[2𝜑𝑅𝑒((1 − 𝑤) +  

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5 ∑ ∑ 𝑓�̅�

𝑑

𝑑𝜏
𝑓�̅�−1−𝑧

𝑧
𝑠=0

𝑚−1
𝑧=0 + (4 − (1 − 𝑤)1.25𝐻𝑎) 𝜑2 𝑑

𝑑𝜉
𝑓�̅�−1]|

𝜏=𝜉
) 𝑑𝜉              (49) 
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𝑓1̅(𝜏) = (0.166666666𝜑2Γ2ℎ − 0.04166666665 𝜑2𝛤2(1 − 𝑤)1.25𝐻𝑎ℎ + 0.08333333330 
𝜑𝑅𝑒(1 − 𝑤)2.5Γ2ℎ − 0.08333333330𝜑 𝑅𝑒(1 − 𝑤)2.5Γ2𝑤ℎ + 0.08333333330𝜑𝑅𝑒(1 − 𝑤)2.5 
Γ2𝑤�̂�𝑠ℎ𝑑)𝜏4 + (0.008333333350𝜑𝑅𝑒(1 − 𝑤)2.5Γ2

2ℎ − 0.00833333350𝜑𝑅𝑒(1 − 𝑤)2.5Γ2
2𝑤ℎ + 

0.008333333350𝜑𝑅𝑒(1 − 𝑤)2.5Γ2
2𝑤�̂�𝑠ℎ𝑑)𝜏6 

 𝑓2̅(𝜏) = (−0.003240740750𝜑2𝑅𝑒
2Γ2

3𝑤3ℎ2 + 0.003240740750𝜑2𝑅𝑒
2Γ2

3𝑤4ℎ2 − 0.001944444500 
𝜑2𝑅𝑒

2Γ2
3𝑤5ℎ2 + 0.0006481481550𝜑2𝑅𝑒

2Γ2
3𝑤6ℎ2 − 0.00009259259350𝜑2𝑅𝑒

2𝛤2
3𝑤7ℎ2 − 

0.0006481481550𝜑2𝑅𝑒
2Γ2

3𝑤ℎ2 + 0.001944444500𝜑2𝑅𝑒
2𝛤2

3𝑤2ℎ2 + 0.00009259259350 
𝜑2𝑅𝑒

2Γ2
3ℎ2 + 0.0001851851850𝜑2𝑅𝑒

2𝛤2
3𝑤7�̂�𝑠ℎ2𝑑 − 0.001111111120𝜑2𝑅𝑒

2𝛤2
3𝑤2�̂�𝑠ℎ2𝑑 + ⋯. 

⋮ 
 

The application of ZTC-q-HAM to find the approximate analytical solution by taking the EL-Zaki 
transform to both sides of Eq. (7), output 
 

𝐸[
𝑑3�̅�

𝑑𝜏3
] + 2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝐸[𝑓̅ 𝑑�̅�

𝑑𝜏
] + (4 − (1 − 𝑤)1.25𝐻𝑎) 𝜑2𝐸[

𝑑�̅�

𝑑𝜏
] = 0,               (50) 

 
by the initial condition from Eq. (50), and the differentiation properties of the EL-Zaki transform, yield 
 

𝐸[𝑓]̅ − (𝐽2 + 𝐽4Γ2) + 𝐽3𝐸[2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅ 𝑑�̅�

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎)  

𝜑2 𝑑�̅�

𝑑𝜏
] = 0,                        (51) 

 
The following results from the EL-Zaki transform properties 
 

𝐸[𝑓]̅ − (𝐽2 + 𝐽4Γ2) + 𝐸[𝜏] × 𝐸[2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅ 𝑑�̅�

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎)  

𝜑2 𝑑�̅�

𝑑𝜏
] = 0,                        (52) 

 
By using the convolution theory concept on the last term of Eq. (52), the following outcome can 

be obtained 
 

𝐸[𝑓]̅ − (𝐽2 + 𝐽4Γ2) + 𝐽𝐸[(𝜏) ∗ (2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5𝑓̅

𝑑𝑓̅

𝑑𝜏
+ (4 − (1 − 𝑤)1.25𝐻𝑎) 

𝜑2 𝑑�̅�

𝑑𝜏
)] = 0 ,                        (53) 

 
The following results from taking the inverse EL-Zaki transform of both sides of Eq. (53) and from 

q-HAM, become 
 

𝑅𝑚(𝑓̅⃗
𝑚−1(𝜏)) = 𝐸[𝑓�̅�−1] − (𝐽2 + 𝐽4Γ2)(1 −

1

𝑛
𝛿𝑚) + 𝐽𝐸[(𝜏) ∗ (2𝜑𝑅𝑒((1 − 𝑤) +

�̂�𝑠

�̂�𝑓
𝑤)(1 −

𝑤)2.5 ∑ ∑ 𝑓�̅�
𝑑�̅�𝑚−1−𝑧

𝑑𝜏
𝑧
𝑠=0

𝑚−1
𝑧=0 + (4 − (1 − 𝑤)1.25𝐻𝑎)𝜑2 𝑑

𝑑𝜏
𝑓�̅�−1,                 (54) 

 
and 
 

𝑓�̅�(𝜏) = 𝛿𝑚𝑓�̅�−1(𝜏) + ℎ𝐸−1(𝐸[𝑓�̅�−1] − (𝐽2 + 𝐽4Γ2)(1 −
1

𝑛
𝛿𝑚) + 𝐽𝐸[(𝜏) ∗ 2𝜑𝑅𝑒((1 − 𝑤) + 
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�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5  + ∑ ∑ 𝑓�̅�

𝑑�̅�𝑚−1−𝑧

𝑑𝜏
𝑧
𝑠=0 (4 − (1 − 𝑤)1.25𝐻𝑎)),𝑚−1

𝑧=0                  (55) 

 
The following is a description of Eq. (55) 
 

𝑓�̅�(𝜏) = 𝛿𝑚𝑓�̅�−1(𝜏) + ℎ𝐸−1(𝐸[𝑓�̅�−1] − (𝐽2 + 𝐽4Γ2)(1 −
1

𝑛
𝛿𝑚)) + ℎ𝐸−1 

[(𝐽𝐸(∫ ((𝜏 − 𝜉) × 2𝜑𝑅𝑒((1 − 𝑤) +
�̂�𝑠

�̂�𝑓
𝑤)(1 − 𝑤)2.5 ∑ ∑ 𝑓�̅�

𝑑

𝑑𝜏
𝑓�̅�−1−𝑧 +𝑧

𝑠=0
𝑚−1
𝑧=0

𝜏

0
  

(4 − (1 − 𝑤)1.25𝐻𝑎) 𝜑2 𝑑

𝑑𝜉
𝑓�̅�−1]|

𝜏=𝜉
) 𝑑𝜉,                    (56) 

 
The iterations analytical of the solution can be defined by the following 
 

𝑓1̅(𝜏) = (0.1666666667𝜑2Γ2ℎ − 0.04166666668𝜑2𝛤2(1 − 𝑤)1.25𝐻𝑎ℎ + 0.08333333337 
𝜑𝑅𝑒(1 − 𝑤)2.5𝛤12ℎ − 0.08333333337𝜑𝑅𝑒(1 − 𝑤)2.5𝛤2𝑤ℎ + 0.08333333337𝜑𝑅𝑒(1 − 𝑤)2.5 
Γ2𝑤�̂�𝑠ℎ𝑑)𝜏4 + (0.008333333335𝜑𝑅𝑒(1 − 𝑤)2.5Γ2

2ℎ − 0.008333333335𝜑𝑅𝑒(1 − 𝑤)2.5𝛤2
2𝑤ℎ + 

0.008333333335𝜑𝑅𝑒(1 − 𝑤)2.5𝛤2
2𝑤�̂�𝑠ℎ 𝑑)𝜏6, 

𝑓2̅(𝜏) = (−0.003240740744𝜑2𝑅𝑒
2𝛤2

3𝑤3ℎ2 + 0.003240740744𝜑2𝑅𝑒
2𝛤2

3𝑤4ℎ2 − 0.001944444447 
𝜑2𝑅𝑒

2𝛤2
3𝑤5ℎ2 + 0.0006481481484𝜑2𝑅𝑒

2𝛤2
3𝑤6ℎ2 − 0.00009259259268𝜑2𝑅𝑒

2𝛤2
3𝑤7ℎ2 − 

0.0006481481484𝜑2𝑅𝑒
2𝛤2

3𝑤ℎ2 + 0.001944444446𝜑2𝑅𝑒
2𝛤2

3𝑤2ℎ2 + 0.00009259259268 
𝜑2𝑅𝑒

2𝛤2
3ℎ2 + 0.0001851851854𝜑2𝑅𝑒

2𝛤2
3𝑤7�̂�𝑠ℎ2𝑑 − 0.001111111112𝜑2𝑅𝑒

2𝛤2
3𝑤2�̂�𝑠ℎ2𝑑 + ⋯. 

⋮  
 
6. Findings and Discussions 
 

The influence of various flow parameters (Hartmann, nanofluid volume fraction, and Reynold 

numbers) on the velocity profile 𝑓(̅𝜏) is studied for magneto-hydrodynamic Jeffrey-Hamel flow with 
nanoparticles.  Table 2 to Table 7 indicate the convergence of the values of Γ2 which can see these 
values are constant in fourth-order. Between the numerical solution obtained by the bvp4c, method 
and the modified q-HAM method. Next the tables and the figures that show the effect the physical 
parameters of 𝑅𝑒, 𝐻𝑎, and 𝑤 on the velocity as follow will be examined: 
 

Table 2 
The convergence of the value Γ2 for material Al2O3 when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 =

10, 𝜑 = 3°, 𝑤 = 0.01 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM LTC-q-HAM bvp4c 

1 order -2.14978889 -2.14978889 -2.14978550 -2.14978550 -2.14698216 
2 order -2.14700857 -2.14700856 -2.14700529 -2.14700529 -2.14698216 
3 order -2.14695797 -2.14695797 -2.14695470 -2.14695470 -2.14698216 
4 order -2.14696040 -2.14696039 -2.14695715 -2.14695713 -2.14696039 
5 order -2.14696040 -2.14696039 -2.14695715 -2.14695713 -2.14696039 
6 order -2.14696040 -2.14696039 -2.14695715 -2.14695713 -2.14696039 
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Table 3 
The convergence of the value Γ2 for material TiO2 when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 =

10, 𝜑 = 3°, 𝑤 = 0.01 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM  LTC-q-HAM bvp4c 

1 order -2.15021364 -2.15021364 -2.15021331 -2.15021330 -2.14739143 
2 order -2.14741821 -2.14741821 -2.14741788 -2.14741788 -2.14739143 
3 order -2.14736716 -2.14736716 -2.14736684 -2.14736683 -2.14739143 
4 order -2.14736962 -2.14736961 -2.14736930 -2.14736929 -2.14736961 
5 order -2.14736962 -2.14736961 -2.14736930 -2.14736929 -2.14736961 
6 order -2.14736962 -2.14736961 -2.14736930 -2.14736929 -2.14736961 

 
Table 4 
The convergence of the value Γ2 for material Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 =

10, 𝜑 = 3°, 𝑤 = 0.01 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM LTC-q-HAM bvp4c 

1 order -2.15733521 -2.15733521 -2.15733485 -2.15733485 -2.15424749 
2 order -2.15428092 -2.15428092 -2.15428057 -2.15428057 -2.15424749 
3 order -2.15422184 -2.15422184 -2.15422149 -2.15422149 -2.15424749 
4 order -2.15422479 -2.15422478 -2.15422444 -2.15422444 -2.15422477 
5 order -2.15422479 -2.15422478 -2.15422444 -2.15422444 -2.15422477 
6 order -2.15422479 -2.15422478 -2.15422444 -2.15422444 -2.15422477 

 
Table 5 
The convergence of the value Γ2 for material Al2O3 when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 600, 

𝑅𝑒 = 30, 𝜑 = 5°, 𝑤 = 0.02 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM  LTC-q-HAM bvp4c 

1 order -1.96940561 -1.96940561 -1.96940530 -1.96940530 -1.97126566 
2 order -1.97099526 -1.97099526 -1.97099492 -1.97099493 -1.97126566 
3 order -1.97104813 -1.97104814 -1.97104780 -1.97104781 -1.97104783 
4 order -1.97104784 -1.97104784 -1.97104751 -1.97104752 -1.97104783 
5 order -1.97104780 -1.97104780 -1.97104747 -1.97104747 -1.97104779 
6 order -1.97104780 -1.97104780 -1.97104747 -1.97104747 -1.97104779 

 
Table 6 
The convergence of the value Γ2 for material TiO2 when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 600, 

𝑅𝑒 = 30, 𝜑 = 5°, 𝑤 = 0.02 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM  LT-q-HAM bvp4c 

1 order -1.97275132 -1.97275132 -1.97275100 -1.97275100 -1.9748169 
2 order -1.97454546 -1.97454546 -1.97454513 -1.97454513 -1.9748169 
3 order -1.97459954 -1.97459954 -1.97459921 -1.97459921 -1.9745989 
4 order -1.97459901 -1.97459901 -1.97459867 -1.97459867 -1.9745989 
5 order -1.97459896 -1.97459896 -1.97459863 -1.97459862 -1.9745989 
6 order -1.97459896 -1.97459896 -1.97459863 -1.97459862 -1.9745989 

 
Table 7 
The convergence of the value Γ2 for material Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 600, 

𝑅𝑒 = 30, 𝜑 = 5°, 𝑤 = 0.02 
Approximates q-HAM ZT-q-HAM ZTC-q-HAM LTC-q-HAM bvp4c 

1 order -2.02985299 -2.02985299 -2.02985269 -2.02985271 -2.03511598 
2 order -2.03492345 -2.03492345 -2.03492314 -2.03492316 -2.03511598 
3 order -2.03490711 -2.03490712 -2.03490681 -2.03490683 -2.03489830 
4 order -2.03489832 -2.03489832 -2.03489801 -2.03489803 -2.03489830 
5 order -2.03489827 -2.03489826 -2.03489796 -2.03489798 -2.03489827 
6 order -2.03489827 -2.03489826 -2.03489796 -2.03489798 -2.03489827 
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The solutions series of q-HAM, ZT-q-HAM, LTC-q-HAM and ZTC-q-HAM represented tabular in 
Table 8 to Table 12 can be compared with numerical solutions which extracted from bvp4c method,  
other method such as HAM, SHAM, HPM, ADM and RVIM the methods of reference [7,9,18-20]. From 
this comparison can find that the q-HAM method using transformations with torsion theory is closer 
to the numerical solution than the q-HAM method and other methods that were compared and 
referred to 
 

Table 8 

The profile 𝑓̅(𝜏) for Cu when 𝑛 = 1.6, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 50, 𝜑 = 5°, 𝑤 = 0 
𝜏 bvp4c  HPM [18] Motsa et al., [9]  ZTC-q-HAM  LTC-q-HAM 

0.00 1.0000000000 1.000000 1.000000 1.000000000 1.0000000000 
0.25 0.8942690802 0.894960 0.894242 0.8942691500 0.8942691498 
0.50 0.6270207185 0.627220 0.626948 0.6270209668 0.6270209673 
0.75 0.3020638643 0.302001 0.301991 0.3020643594 0.3020643606 
1.00 0.0000000000 0.000000 0.000000 0.000000000 0.0000000000 

  
Table 9 

The profile 𝑓̅(𝜏) for Cu when 𝑛 = 1.6, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 50, 𝜑 = 5°, 𝑤 = 0 
𝜏 bvp4c  q-HAM ZT-q-HAM Ganji et al., [7] SHPM [18] 

0.00 1.0000000000 1.0000000000 1.0000000000 1.000000 1.000000 
0.25 0.8942690802 .8942691505 0.8942691494 0.894243 0.894242 
0.50 0.6270207185 0.6270209660 0.6270209669 0.626953 0.626948 
0.75 0.3020638643 0.3020643597 0.3020643587 0.301998 0.301990 
1.00 0.0000000000 0.0000000000 0.0000000000 0.000000 0.000000 

 
Table 10 

The profile of 𝑓̅(𝜏) for Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 750, 𝑅𝑒 = 10, 𝜑 = −5°, 𝑤 =
0.05 
𝜏 q-HAM ZT-q-HAM  ZTC-q-HAM  LTC-q-HAM Collocation 

method [19] 

0.00 1.000000000 1.000000000 1.0000000000 1.0000000000 1.000000000 
0.10 0.9942694612 0.9942694613 0.9942694612 0.9942694612 0.994278317 
0.20 0.9766480441 0.9766480442 0.9766480439 0.9766480439 0.976670165 
0.30 0.9458186628 0.9458186630 0.9458186622 0.9458186622 0.945855446 
0.40 0.8994935422 0.8994935425 0.8994935413 0.8994935413 0.899546175 
0.50 0.8342745286 0.8342745292 0.8342745274 0.8342745274 0.834341990 
0.60 0.7454579170 0.7454579178 0.7454579154 0.7454579154 0.745536091 
0.70 0.6267890703 0.6267890713 0.6267890684 0.6267890683 0.626869073 
0.80 0.4701816709 0.4701816723 0.4701816693 0.4701816691 0.470248162 
0.90 0.2654336979 0.2654336997 0.2654336969 0.2654336970 0.265469361 
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.000000000 
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Table 11 

The profile 𝑓̅(𝜏) for Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 25, 𝜑 = 5°, 𝑤 = 0 
𝜏 q-HAM ZT-q-HAM ZTC-q-HAM LTC-q-HAM bvp4c 

0.00 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 
0.10 0.9866705485 0.9866705482 0.9866705481 0.9866705482 0.9866705482 
0.20 0.9472577634 0.9472577637 0.9472577630 0.9472577637 0.9472577634 
0.30 0.8834189782 0.8834189775 0.8834189773 0.8834189786 0.8834189781 
0.40 0.7976973677 0.7976973687 0.7976973682 0.7976973679 0.7976973689 
0.50 0.6932327502 0.6932327506 0.6932327507 0.6932327505 0.6932327508 
0.60 0.5734244590 0.5734244593 .05734244594 0.5734244595 0.5734244599 
0.70 0.4415925507 0.4415925518 0.4415925513 0.4415925528 0.4415925527 
0.80 0.3006744137 0.3006744139 0.3006744136 0.3006744155 0.3006744156 
0.90 0.1529785214 0.1529785219 0.1529785219 0.152978520 0.1529785231 
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

 
Table 12 

The profile 𝑓̅(𝜏) for Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 25, 𝜑 = 5°, 𝑤 = 0 
𝜏 ADM [20] RVIM [20] bvp4c 

0.00 1.000000 1.000000000 1.0000000000 
0.10 0.986637 0.986669331 0.9866705482 
0.20 0.947127 0.947253132 0.9472577634 
0.30 0.883146 0.883409402 0.8834189781 
0.40 0.797259 0.797682307 0.7976973689 
0.50 0.692638 0.693212823 0.6932327508 
0.60 0.572716 0.573401458 0.5734244599 
0.70 0.44085 0.441569310 0.4415925527 
0.80 0.300013 0.3006545894 0.3006744156 
0.90 0.152552 0.152966340 0.1529785231 
1.00 0.000000 0.000000000 0.0000000000 

 
As wall as, in Table 13 to Table 17 can be seen that an improvement in the solutions obtained by 

the standard method (q-HAM) with the improved solutions using transformations and convolution 
theory by comparing them with the solutions obtained from the numerical method (bvp4c). Through 
these tables, the absolute error was extracted and it was found ZT-q HAM, LTC-q-HAM and ZTC-q-
HAM, be more accurate than q-HAM. The outcome can be represented graphical as follow 
 

Table 13 

The comparison of 𝑓̅(𝜏) between q-HAM, Zq-HAM, ZTC-q-HAM and LTC-q-HAM for Cu when 𝑛 = 1.5, ℎ =

−1.5, 𝐻𝑎 = 600, 𝑅𝑒 = 30, 𝜑 = 5°, 𝑤 = 0.02 
𝜏 q-HAM ZT-q-HAM ZTC-q-HAM  LTC-q-HAM bvp4c 

0.00 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 1.000000000000000 
0.10 0. 9898368266122 0.9898368266222 0.9898368268609 0.9898368268609 0.989836826859735 
0.20 0.9594781365329 0.9594781365728 0.9594781375245 0.9594781375245 0. 959478137520687 
0.30 0. 9092794408976 0.9092794409869 0.9092794431179 0.9092794431179 0. 909279443109950 
0.40 0. 8397124787543 0.8397124789122 0.8397124826841 0.8397124826831 0.839712482668596 
0.50 0. 7511914970770 0.7511914973223 0.7511915031910 0.7511915031910 0.751191503169716 
0.60 0.6438406610775 0.6438406614291 0.6438406699767 0.6438406699777 0.643840669944824 
0.70 0.5172038064203 0.5172038068976 0.5172038199121 0. 5172038199121 0.517203819867471 
0.80 0.3698855760532 0.3698855766771 0.3698856011103 0. 3698856011103 0. 369885601047807 
0.90 0.1990915906856 0.1990915914799 0.1990916372593 0.1990916372603 0.199091637163935 
1.00 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 0.000000000000000 
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Table 14 

The comparison of the errors of 𝑓̅(𝜏) between q-HAM, ZT-q-HAM, ZTC-q-HAM and 

LTC-q- HAM for Cu when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 600, 𝑅𝑒 = 30, 𝜑 = 5°, 𝑤 = 0.02 
𝜏 Absolute error  

q-HAM 
Absolute error ZT-
q-HAM 

Absolute error 
ZTC-q-HAM 

Absolute error 
LTC-q-HAM 

0.00 0.000000000 0.000000000 0.000000000 0.000000000 
0.10 2.47 × 10−10 2.37 × 10−10 1.16 × 10−12 1.16 × 10−12 
0.20 9.87 × 10−10 9.47 × 10−10 3.81 × 10−12 3.81 × 10−12 
0.30 2.21 × 10−9 2.12 × 10−9 7.94 × 10−12 7.94 × 10−12 
0.40 3.91 × 10−9 3.75 × 10−9 1.55 × 10−11 1.45 × 10−11 
0.50 6.09 × 10−9 5.84 × 10−9 2.12 × 10−11 2.12 × 10−11 
0.60 8.86 × 10−9 8.51 × 10−9 3.18 × 10−11 3.28 × 10−11 
0.70 1.34 × 10−8 1.29 × 10−8 4.46 × 10−11 4.46 × 10−11 
0.80 2.49 × 10−8 2.43 × 10−8 6.24 × 10−11 6.24 × 10−11 
0.90 4.64× 10−8 4.56 × 10−8 9.53 × 10−11 9.63 × 10−11 
1.00 0.000000000 0.000000000 0.000000000 0.000000000 

 
Table 15 

The comparison of 𝑓̅(𝜏) between q-HAM, ZT-q-HAM, ZTC-q-HAM and LTC-q-HAM for Al2O3 when 𝑛 =

1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 = 0.01 
𝜏 q-HAM ZT-q-HAM ZTC-q-HAM  LTC-q-HAM bvp4c 

0.00 1.0000000000000 1.0000000000000 1.000000000000 1.0000000000000 1.0000000000000 
0.10 0.9892746754293 0.9892746754293 0.9892746755100 0.9892746755100 0.9892746755094 
0.20 0.9572113071006 0.9572113071006 0.9572113074190 0.9572113074190 0.9572113074203 
0.30 0.9041393496163 0.9041393496163 0.9041393503310 0.9041393503310 0.9041393503325 
0.40 0.8305804759233 0.8305804759233 0.8305804771860 0.8305804771850 0.8305804771885 
0.50 0.7372089741221 0.7372089741223 0.7372089760800 0.7372089760780 0.7372089760819 
0.60 0.6247991280628 0.6247991280633 0.6247991308320 0.6247991308270 0.6247991308340 
0.70 0.4941619169730 0.4941619169743 0.4941619205260 0.4941619205150 0.4941619205253 
0.80 0.3460734065680 0.3460734065711 0.3460734103460 0.3460734103230 0.3460734103420 
0.90 0.1811968726728 0.1811968726793 0.1811968750510 0.1811968750100 0.1811968750453 
1.00 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 

 
Table 16 

The comparison of the errors of 𝑓̅(𝜏) between q-HAM, ZT-q-HAM, ZTC-q-HAM and LTC-q-HAM 

for Al2O3 when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 = 0.01 
𝜏 Absolute error 

q-HAM 
Absolute error 
ZT-q-HAM 

Absolute error 
 ZTC-q-HAM  

Absolute error 
 LTC-q-HAM 

0.00 0.000000000 0.00000000 0.00000000 0.00000000 
0.10 8.01 × 10−11 8.01 × 10−11 5.69 × 10−13 5.69 × 10−13 
0.20 3.19 × 10−10 3.19 × 10−10 1.34 × 10−12 1.34 × 10−12 
0.30 7.16 × 10−10 7.16 × 10−10 1.56 × 10−12 1.56 × 10−12 
0.40 1.26 × 10−9 1.26 × 10−9 2.50 × 10−12 3.50 × 10−12 
0.50 1.95 × 10−9 1.95 × 10−9 1.99 × 10−12 3.99 × 10−12 
0.60 2.77 × 10−9 2.77 × 10−9 2.03 × 10−12 7.03 × 10−12 
0.70 3.55 × 10−9 3.55 × 10−9 6.33 × 10−13 1.03 × 10−11 
0.80 3.77 × 10−9 3.77 × 10−9 4.00 × 10−12 1.89 × 10−11 
0.90 2.37 × 10−9 2.36 × 10−9 5.65 × 10−12 3.53 × 10−11 
1.00 0.00000000 0.000000000 0.000000000 0.000000000 
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Table 17 

Comparison of computed errors of 𝑓̅(𝜏) between q-HAM, ZTC-q-HAM and 

LTC-q-HAM when 𝑛 = 1.5, ℎ = −1.5, 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 =
0.01, Al2O3 = 3970 
error q-HAM Zq-HAM ZTC-q-HAM LTC-q-HAM 

𝐿1 7.52 × 10−11 7.52 × 10−11 1.52 × 10−11 1.32 × 10−13 
𝐿2 8.67 × 10−6 8.67 × 10−6 3.90 × 10−6 3.64 × 10−7 
𝐿∞ 1.51 × 10−5 1.51 × 10−5 9.41 × 10−6 6.28 × 10−7 

 
Material Al2O3 
 

Figure 3 proves the effect Hartmann number for divergent and convergent channel on the 
velocity profiles. The findings indicate that a rise in Hartmann number causes the velocity profiles of 
divergent and convergent channels to increase. Therefore, increasing the Hartmann number shows 
that there hasn't been any backflow in either of the channels. Figure 4 illustrates that when channel 
is divergent, the fluid velocity decreases with Reynolds numbers, but when channel is convergent, 
the fluid velocity increases with Reynolds numbers. Most notably, as Figure 5 illustrates, when the 
nanofluid volume fraction rises, the fluid velocity increases in the case of convergent channels but 
falls in the case of divergent channels. 
 

  
Fig. 3. Ha changed to Re = 100, 𝑤 = 0.05 for Al2O3 
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Fig. 4. Re changed to Ha = 50, 𝑤 = 0.05 for Al2O3 

 

  
Fig. 5. 𝑤 changed to Re = 100, Ha = 50 for Al2O3 

 
Material TiO2 
 

In divergent and convergent channels, the velocity profiles with increasing Hartmann numbers 
are displayed in Figure 6. As a result, the velocity profiles become smaller. Accordingly, no backflow 
occurs in both channels as the Hartmann number increases. As the Reynolds number increases in 
both divergent and convergent channels, Figure 7 illustrates how the fluid velocity drops. According 
to Figure 8, when the nanofluid volume fraction increases, the fluid velocity falls in the case of 
divergent channel but increases with the nanofluid volume fraction in the case of convergent 
channel. 
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Fig. 6. Ha changed to Re = 100, 𝑤 = 0.05 for TiO2 

 

  
Fig. 7. Re changed to Ha = 50, 𝑤 = 0.05 for TiO2 

 

  
Fig. 8. 𝑤 changed to Re = 100, Ha = 50 for TiO2 
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Material Cu 
 

Figure 9 displays the effect of the Hartmann number on the velocity profiles. From this figure 
note that the growing of Hartmann number lead to reduces the velocity profile for diverging and 
converging channels. Furthermore, by raising the Hartmann number in both channels, it is evident 
that there has been no backflow. The fluid velocity increases with the Reynolds number for the 
converging channel, while it occurs in the opposite direction for the divergent channel, as shown in 
Figure 10.  Figure 11 illustrates the fluid velocity decreases as the nanofluid volume fraction increases 
for divergent channel, while in case convergent channel, the fluid velocity increases. 
 

  
Fig. 9. Ha changed to Re = 100, 𝑤 = 0.05 for Cu 

 

  
Fig. 10. Re changed to Ha = 50, 𝑤 = 0.05 for Cu 
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Fig. 11. 𝑤 changed to Re = 100, Ha = 50 for Cu 

 
Physically, the greater viscosity at the border causes resistance and, as a result, an increase in the 

momentum boundary layer, which is why the Reynolds number affects the velocity distribution. The 
relationship between velocity and nanofluid volume fraction is demonstrated, with a consistent 
decline in the velocity profile as the nanofluid volume fraction increases. The fluid is moved down 
the channel with no nanofluid volume percentage when 𝑤 = 0 in this plot. The nanofluid volume 
fraction affects the fluid and reduces the thickness of the momentum barrier layer because of the 
large energy exchange rate that occurs when fluid molecules move through the nonparallel channel. 
The divergent-convergent plates response to channel opening angles. Open channel angles are 
relatively wide in order to stop fluid backflow. In the diverging channel, backflow is possible but not 
problematic in the converging channel. A high Reynolds number in the presence of strong magnetic 
field strength prevents back flow. As demonstrated, a significant decrease in the velocity profile is 
obtained through a quantitative increase in the channel angle. The intensity of the magnetic field and 
the decrease in fluid flow through the nonparallel channel indicate how the magnetic field affects 
flow. Plotting indicates that the absolute velocity drops. Physically speaking, this can be explained by 
the presence of resistive forces at the channel's edge due to an increase in boundary layer thickness, 
which retards the velocity field. The present study's objective is to look at.The improved analytical 
approach for magneto-hydrodynamic flow between two non-parallel walls. We aim to investigate 
the impact of the semi-angle formed by two walls on the velocity profile in this section. Additionally, 
we wish to verify the validity and correctness of the acquired findings compared to the numerical 
solution. Figure 3, Figure 4, Figure 6, Figure 7, Figure 9, Figure 10 and Figure 11 show the effect of 
semi-angle on the velocity profiles for diverging and converging channels. The velocity curves show 
that the wall transmission rate is more effective in the velocity profile for both convergent 𝜑 < 0 and 
divergent 𝜑 > 0 cases. As can be seen in Figure 5 and Figure 8, there are good agreements. 
 
7. The Analysis of Convergence for q-HAM, LTC-q-HAM and ZTC-q-HAM 
 

Here, the convergence of the analysis of the approximate analytical solution that outcome form 
implementation q-HAM, LTC-q-HAM and ZTC-q-HAM to solve the nonlinear ordinary differential 
equation. Also, the deriving and analyzing the convergence condition for testing these solutions in 
the following manner: 
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Definition 7.1: Let Λ be the Banach space, 𝐷 a nonlinear mapping defined by 𝐷: Λ → ℝ and ℝ is the 
real number. Then, the series of solutions of q-HAM, LTC-q-HAM and ZTC-q-HAM can be expressed 
in the following form 
 

�̅�𝑖 = ∑ 𝑓�̅� ,   𝑖 = 1,2,3,4, …,    �̅�𝑖+1 = D(�̅�𝑖).
𝑖

𝑗=0
 

 
Definition 7.2: The nonlinear mapping Τ satisfies the Lipschitz condition for Π ∈ 𝑅 and,0 < Π < 1, 
yield 
 
‖𝐷(�̅�𝑖+1) − 𝐷(�̅�𝑖)‖ ≤ Π‖�̅�𝑖+1 − �̅�𝑖‖. 
 

Theorem 7.1.[11] The series of the approximate analytical solution �̅� = ∑ 𝑓�̅�
∞
𝑖=0  of q-HAM, q-HAM, 

LTC-q-HAM and ZTC-q-HAM is converges. If the condition is satisfied 
 

‖�̅�𝑖 − �̅�𝑗‖ → 0 as 𝑗 → ∞, 0 < Π < 1,  

 
To achieve convergence, from Definition (7.1), Definition (7.2) and Theorem (7.1) parameter 

values Π𝑖  can be extracted by using the relationship below 
 

Π𝑖 = {

‖𝐹𝑖+1‖

‖𝐹𝑖‖
,        ‖�̅�𝑖‖ ≠ 0,

      0,            ‖�̅�𝑖‖ = 0,
   𝑖 = 0,1,2, …  

 
The  areas convergence of the values parameters ℎ are provided in Table 18 that shows the 

convergence values for this parameter. Furthermore, from Table 19 and Table 20 can be seen that 

the value of Π𝑖  between 0 and 1. These tables indicate that the powers of Π found by applying ZTC-
q-HAM and LTC-q-HAM convergence to zero faster than the powers of Π that were found based on 
q-HAM. Finally, we can say that ZTC-q-HAM and LTC-q-HAM represent a better convergence than q-
HAM. 
 

Table 18 

The regions of the values ℎ for 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 = 0.01 
M Al2O3 TiO2 Cu 

1 −1.1 ≤ ℎ ≤ −1 −1.1 ≤ ℎ ≤ −0.9 −1.1 ≤ ℎ ≤ −0.9 
2 −2.2 ≤ ℎ ≤ −1.7 −2.2 ≤ ℎ ≤ −1.8 −2.2 ≤ ℎ ≤ −1.8 
3 −3.3 ≤ ℎ ≤ −2.7 −3.4 ≤ ℎ ≤ −2.6 −3.2 ≤ ℎ ≤ −2.6 
4 −4.2 ≤ ℎ ≤ −3.4 −4.4 ≤ ℎ ≤ −3.4 −4.3 ≤ ℎ ≤ −3.5 
5 −5.4 ≤ ℎ ≤ −4.3 −5.4 ≤ ℎ ≤ −4.3 −5.5 ≤ ℎ ≤ −4.3 
6 −6.6 ≤ ℎ ≤ −5.2 −6.5 ≤ ℎ ≤ −5.2 −6.9 ≤ ℎ ≤ −5.2 
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Table 19 
The values of Π for the 𝐿∞-norm when 𝑛 = 1.5, ℎ = −1.5, �̂�𝑠 =

3970, 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 = 0.01 
Π𝑖  q-HAM ZTC-q-HAM LTC-q-HAM  

Π0 0.06624371960 0.09174755180 0.06624371870 
Π1 0.00797892526 0.00797893373 0.00797892373 
Π2 0.00524494921 0.00524344513 0.00524344513 
Π3 0.00407958071 0.00004219893 0.00005495325 
⋮ ⋮ ⋮ ⋮ 

 
Table 20 
The values of Π for the  𝐿2- norm when 𝑛 = 1.5, ℎ = −1.5, �̂�𝑠 =

3970, 𝐻𝑎 = 0, 𝑅𝑒 = 10, 𝜑 = 3°, 𝑤 = 0.01 
Π𝑖  q-HAM  ZTC-q-HAM LTC-q-HAM  

Π0 0.04827327593 0.04827327541 0.04827327541 
Π1 0.00711729651 0.00711730469 0.00711729469 
Π2 0.00470190564 0.00470045003 0.00470045003 
Π3 0.00370704567 0.00004759753 0.00006198738 
⋮ ⋮ ⋮ ⋮ 

 
8. Conclusion 
 

The magneto-hydrodynamic Jeffrey-Hamel nano-fluid flow with nanoparticles between two non-
parallel plane walls for divergent and convergent channels was studied. The governing equations 
were transformed into nonlinear differential equation and resolved by q-homotopy analysis method. 
Also, the results solution of the q-homotopy analysis method was improved by the Laplace transform 
and the EL-Zaki transform through the intervention of the convolution theory. These solutions are 
more accurate than the solutions of the q-homotopy analysis method for selected values of the 
governing physical parameters. Consequently, it is close to the standard method to the numerical 
solution bvp4c.  It can be said that the improved method is better than the standard method for 
solving non-linear ordinary differential equations. The improved method has high accuracy in solving 
nonlinear problems such as Jeffrey Hamel's flow nanofluid, and the results obtained were accurate 
by comparing them with the results of previous studies [7,9,18-20]. The increasing of the Hartmann 
number will not result in an increase in reverse flow at larger angles because an increase in the 
Reynolds number causes a decrease in the velocity profile and eliminates reverse flow in the 
converging channel. The importance of this study has a large and important role in many applications, 
especially in the fields of engineering, medical technologies, science, and natural processes. 
 
References 
[1] Khidir, Ahmed A. "A new spectral‐homotopy perturbation method and its application to Jeffery‐Hamel nanofluid 

flow with high magnetic field." Journal of Computational Methods in Physics 2013, no. 1 (2013): 939143. 
https://doi.org/10.1155/2013/939143  

[2] Abdulridah, Saja I., and Abeer M. Jasim. "Semi-Analytical Assessment of Magneto-Hydrodynamic Nano-Fluid Flow 
Jeffrey-Hamel Problem." Baghdad Science Journal 21, no. 1 (2024): 0161-0161. 
https://doi.org/10.21123/bsj.2023.7955  

[3] Jasim, Abeer Majeed. "New Analytical Study for Nanofluid between Two Non-Parallel Plane Walls (Jeffery-Hamel 
Flow)." Journal of Applied and Computational Mechanics 7, no. 1 (2021): 213-224. 

[4] Jeffery, G. B. "The two-dimensional steady motion of a viscous fluid." Russian Journal of Nonlinear Dynamics 5, no. 
1 (2009): 101-109. https://doi.org/10.20537/nd0901013  

[5] Hamel, G., Bewgungen Spiralformige, and Flussigkeiten Zaher. "Dersdeutschen jahresbericht." Math. Ver 25 (1916): 
34-60. 

https://doi.org/10.1155/2013/939143
https://doi.org/10.21123/bsj.2023.7955
https://doi.org/10.20537/nd0901013


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 32-55 

55 
 

[6] Moghimi, S. M., Davood Domiri Ganji, H. Bararnia, M. Hosseini, and M. Jalaal. "Homotopy perturbation method for 
nonlinear MHD Jeffery-Hamel problem." Computers & Mathematics with Applications 61, no. 8 (2011): 2213-2216. 
https://doi.org/10.1016/j.camwa.2010.09.018  

[7] Ganji, Z. Z., Davood Domiri Ganji, and Mehdi Esmaeilpour. "Study on nonlinear Jeffery-Hamel flow by He's semi-
analytical methods and comparison with numerical results." Computers & Mathematics with Applications 58, no. 
11-12 (2009): 2107-2116. https://doi.org/10.1016/j.camwa.2009.03.044  

[8] Azimi, Mohammadreza, and Alireza Azimi. "Study on effect of semi-angle between non-parallel walls on magneto 
hydro dynamic Jeffery Hamel flow using semi-analytical approach." Journal of Chemical Engineering and Materials 
4, no. 5 (2013): 67-71. https://doi.org/10.5897/JCEMS2013.0153  

[9] Motsa, S. S., P. Sibanda, F. G. Awad, and S. Shateyi. "A new spectral-homotopy analysis method for the MHD Jeffery-
Hamel problem." Computers & Fluids 39, no. 7 (2010): 1219-1225. 
https://doi.org/10.1016/j.compfluid.2010.03.004  

[10] Hasan, Maysoon H., and Abdul-Sattar J Ali Al-Saif. "Applications of q-Homotopy analysis with Laplace Transform 
and Pade' approximate method for Solving Magneto Hydrodynamic boundary-layer equations." Journal of 
Computational Applied Mechanics 54, no. 2 (2023): 204-218. 

[11] Akinyemi, Lanre, and Shaheed N. Huseen. "A powerful approach to study the new modified coupled Korteweg-de 
Vries system." Mathematics and Computers in Simulation 177 (2020): 556-567. 
https://doi.org/10.1016/j.matcom.2020.05.021  

[12] Bhadane, Prem Kiran G., and V. H. Pradhan. "Elzaki transform homotopy perturbation method for solving gas 
dynamics equation." International Journal of Research in Engineering and Technology 2, no. 12 (2013): 260-264. 
https://doi.org/10.15623/ijret.2013.0212045  

[13] Halil, A. N. A. Ç., Mehmet Merdan, and Tülay Kesemen. "Homotopy perturbation Elzaki transform method for 
obtaining the approximate solutions of the random partial differential equations." Gazi University Journal of Science 
(2022): 1-1. 

[14] Bhadane, Prem Kiran G., and V. H. Pradhan. "Elzaki transform homotopy perturbation method for solving gas 
dynamics equation." International Journal of Research in Engineering and Technology 2, no. 12 (2013): 260-264. 
https://doi.org/10.15623/ijret.2013.0212045  

[15] Moghimi, S. M., G. Domairry, Soheil Soleimani, E. Ghasemi, and H. Bararnia. "Application of homotopy analysis 
method to solve MHD Jeffery-Hamel flows in non-parallel walls." Advances in Engineering Software 42, no. 3 (2011): 
108-113. https://doi.org/10.1016/j.advengsoft.2010.12.007  

[16] Ganji, Davood Domiri, and Mohammadreza Azimi. "Application of DTM on MHD Jeffery Hamel problem with 
nanoparticle." UPB Scientific Bulletin Series D 75, no. 1 (2013): 223-230. 

[17] El-Tawil, M. A., and S. N. Huseen. "The q-homotopy analysis method (q-HAM)." International Journal of Applied 
Mathematics and Mechanics 8, no. 15 (2012): 51-75. 

[18] Esmaeilpour, Mehdi, and Davood Domiri Ganji. "Solution of the Jeffery-Hamel flow problem by optimal homotopy 
asymptotic method." Computers & Mathematics with Applications 59, no. 11 (2010): 3405-3411. 
https://doi.org/10.1016/j.camwa.2010.03.024  

[19] Hamadiche, Mahmoud, Julian Scott, and Denis Jeandel. "Temporal stability of Jeffery-Hamel flow." Journal of Fluid 
Mechanics 268 (1994): 71-88. https://doi.org/10.1017/S0022112094001266  

[20] Imani, A. A., Y. Rostamian, D. D. Ganji, and H. B. Rokni. "Analytical investigation of jeffery-hamel flow with high 
magnetic field and nano particle by RVIM." Intnernational Journal of Engineering 25, no. 3 (2012): 249-256. 
https://doi.org/10.5829/idosi.ije.2012.25.03c.09  

 

 
 
 

https://doi.org/10.1016/j.camwa.2010.09.018
https://doi.org/10.1016/j.camwa.2009.03.044
https://doi.org/10.5897/JCEMS2013.0153
https://doi.org/10.1016/j.compfluid.2010.03.004
https://doi.org/10.1016/j.matcom.2020.05.021
https://doi.org/10.15623/ijret.2013.0212045
https://doi.org/10.15623/ijret.2013.0212045
https://doi.org/10.1016/j.advengsoft.2010.12.007
https://doi.org/10.1016/j.camwa.2010.03.024
https://doi.org/10.1017/S0022112094001266
https://doi.org/10.5829/idosi.ije.2012.25.03c.09

