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An artery narrowing referred to as atherosclerosis or stenosis causes a reduction in the 
diameter of the artery. When blood flow through an artery consists of stenosis, the 
issue of solute dispersion is more challenging to solve. A mathematical model is 
developed to examine the unsteady solute dispersion in an overlapping stenosed artery 
portraying blood as Bingham fluid model. The governing of the momentum equation 
and the constitutive equation is solved analytically. The generalized dispersion model 
is imposed to solve the convective-diffusion equation and to describe the entire 
dispersion process. The dispersion function at steady-state decreases at the center of 
an artery as the stenosis height increase. A reverse behavior is shown at an unsteady-
state. As the plug core radius, time and stenosis height increase, the dispersion function 
decreases at the center of an artery. There is a high amount of red blood cells at the 
center of the artery but no influences near the wall. Hence, this model is useful in 
transporting the drug or nutrients to the targeted stenosed region in the treatment of 
diseases and in understanding many physiological processes. 
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1. Introduction 
 

The World Health Organization (WHO) reported that coronary artery disease (CAD) is the pioneer 
cause of death with 16% of the world’s estimated deaths [1]. In Malaysia, this is a similar situation as 
CAD is ranked as the first cause of death with 15% of the total population. The major cause of 
cardiovascular disorders is atherosclerosis [2]. Atherosclerosis is a chronic inflammatory process at 
the artery walls which leads to wall thickening, lumen narrowing and blood flow obstruction. The 
irregular and abnormal growth in the arterial wall is caused by stenosis or atherosclerosis due to the 
massive accumulation of cholesterol, fats and abnormal growth of tissue. According to Shah [3] and 
Mishra and Siddiqui [4], when blood flows through an artery consists of stenosis in certain regions, 
the issue of solute dispersion is more difficult to solve. 

Many scholars study extensively the solute dispersion in a solvent as it has many uses in different 
fields of science and engineering [5, 6]. Taylor [7] was the pioneer who investigated solute dispersion 
and showed that, as the solute flows slowly in a straight tube into a solvent, the inclusion combination 
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of molecular diffusion and the velocity variance over the cross-section will eventually lead the solute 
diffusing with molecular diffusivity given 𝐷𝑒𝑓𝑓 = 𝑎2𝑤𝑚

2 48𝐷𝑚⁄ , where 
mD  is the molecular 

diffusivity, 
mw  is the mean axial velocity and a  is the mean axial velocity and a is the radius of the 

tube. Aris [8] executing the method of moments reported that the dispersion theory of Taylor is only 
valid when 𝐷𝑒𝑓𝑓 ≥ 𝐷𝑚 and thereby enhanced the dispersion theory by including the effect of axial 

molecular diffusion 𝐷𝑒𝑓𝑓 = 𝐷𝑚 + 𝑎2𝑤𝑚
2 48𝐷𝑚.⁄   Thereafter, Gill [9] simplified Taylor-Aris’s work by 

suggesting a series expansion on the mean concentration to define the distribution of the local 
concentration which is applicable for all time. Gill and Sankarasubramanian [10] improved the work 
using the generalized dispersion model (GDM) which defines the entire process of dispersion in a 
series solution. Their outcomes also verified Ananthakrishnan [11]'s finding that the concept of 
Taylor-Aris dispersion applies over time surpass 0.5(𝑎2 𝐷𝑚⁄ ). 

Shahzadi and Bilal [12] using a Newtonian fluid through a bifurcated mild stenosed artery used 
copper and its oxide as a drug to minimize the lesions of the atherosclerotic artery. Haghighi et al., 
[13] deduced that increasing the stenosis size effect in decreasing velocity of the blood. Meanwhile, 
Das et al., [14] analyzed the dispersion of solute by considering the blood as Casson fluid using a 
numerical method of IBM-MAC in a mild-shaped stenosed artery. They revealed that in the 
distribution of solute, stenosis plays a significant role. Chakravarty and Mandal [15] identified that 
more cardiovascular diseases are caused by overlapping stenosis instead of mild stenosis. Ahmed and 
Nadeem [16] using a Carreau fluid analyzed a blood flow through an inclined artery with overlapping 
stenosis. Bhatnagar and Srivastav [17] analyzed the influence of time and slip velocity on the flow of 
blood with overlapping stenosis. Hossain and Haque [18] and Freidoonimehr et al., [19] claimed that 
the blockage of a coronary artery with stenosis is highly determined by its shape and degree of 
stenosis. Meanwhile, [20] using a Newtonian fluid ascribed that the size or the severity of the stenosis 
has a great impact on the flow field (velocity distribution) and wall shear stress distribution of 
stenosis. 

In the present analysis, a mathematical model is developed to analyze mathematically the 
unsteady solute dispersion in a steady flow of blood represented by the Bingham-Plastic fluid model 
utilizing the method of GDM in an overlapping stenosed artery. The study may be relevant in 
understanding many physiological processes that involve injecting a quantity of solute into the 
bloodstream and dispersion of drugs or nutrients in the circulatory system. The goal is to investigate 
the influence of physical parameters such as stenosis height and plug core radius on the solute 
dispersion in the solvent. This studied extends the validity of the results for a time smaller than 
0.5(𝑎2 𝐷𝑚⁄ ).  
 
2.  Problem Formulation 
 

The solute dispersion in blood flow is assumed to be a steady, laminar, axially symmetrical and 
fully developed uni-directional flow of blood as in Figure 1. The blood flow in the axial direction is 
portrayed as a viscous incompressible fluid. 
 
2.1 Governing Equations 
 

The cylindrical polar coordinates (𝑟̅, 𝜓̅, 𝑧̅) where 𝑟̅ and 𝑧̅  indicates the radial and axial coordinates 

and 𝜓̅  is the azimuthal angle is considered. This works will ignore the fluid velocity in 𝑟̅  direction as 
its magnitude is negligibly small and only accounts in a 𝑧̅ direction. Hence, 𝑢̅𝑟̅ = 𝑢̅𝜓̅ = 0 [21]. Due to 

the axial symmetry, the velocity 𝑢̅𝑧̅ is uniform and independent in both 𝜓̅  and 𝑧̅  directions. Thus, 
the continuity equations can be reduced as 
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0.
u

z


=

  (1) 

 
The motion is a steady flow which means no variation concerning time and the gravitational 

acceleration 𝑔̅𝑟̅ = 𝑔̅𝜓̅ = 𝑔̅𝑧̅ = 0 for the horizontal flow [22]. The simplified form in the axial and 

radial direction of momentum equations can be written as 
 

1
( ),

dp
r

dz r r



= −

  
(2) 

  

0,
dp

dr
=

 
(3) 

 
where 𝑑𝑝̅/𝑑𝑧̅ is the gradient of the stress, 𝑝̅ is the constant pressure and 𝜏̅ is the shear stress. The 
constitutive equation of the Bingham-Plastic plastic fluid model as mentioned by [17] is given as: 
 

( ) ( )
1

,   if  and ,

            0       ,  if  and 0 ,

y y p

B

y p

r r R zdu

dr
r r

   


 


− −   

= 
     

   (4) 

 
where 𝜏𝑦̅ is the yield stress and 𝜂𝐵  is the Bingham-Plastic fluid viscosity coefficient with dimension 

𝑀𝐿−1𝑇−1. Equation (4) displays normal shear flow in the field when 𝜏̅  ≥ 𝜏𝑦̅ while solid-like flow takes 

place when 𝜏̅ < 𝜏𝑦̅. Equations (2) and (4) define the nonlinear system of a differential equation that 

can be solved under the following boundary constraints for undefined shear stress and velocity 
distribution 
 
  is finite at 0,r =  
 

         (5) 

0u =  at ( ).r R z=           (6) 

 
As stated by Rana and Murthy [23], a two-dimensional unsteady convective-diffusion equation is 

as follows 
 

2

2

1
,m

C C C C
u D r

t z r r r z

      
= − + +  

        
(7) 

 

where C  is the local solute concentration, t  is the time variable and mD  is the molecular diffusion 

coefficient. 

Following Gill et al., [10], the initial and boundary constraints with reference concentration, 0C  

are 
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( )
0  if ,  

2
, ,0

 0  if ,  
2

s

s

z
C z

C r z
z

z




= 
 
  

         (8) 

 

( ), , 0,C r t =
 

  (9) 

 

( ) ( )0, , 0 ( ), , ,
C C

z t R z z t
r r

 
= =

   

(10) 

 
where 

sz is the solute length. 

 
2.2 Geometry of Stenosis 
 

The dimensional geometry of an overlapping stenosed artery is given by 
 

3 2 2

0 0

0 04 3 4
0 0

0

11( ) 47( )3
,         ,

( ) 2 72( ) 36( )

                           ,                                        Otherwise,

z d l z d l
R d z d l

R z l z d l z d

R

  − − −
−   +  

= + − − −   

  

(11) 

 

where 
0R  is the arterial radius,   is the stenosis height, 0l  is the stenosis length, z  is the longitudinal 

(axial) distance, d  is the distance of the stenosis from the inlet and ( )R z  is the stenotic artery radius. 

Figure 1 indicates the geometry of an overlapping stenosed artery that shows the maximum stenosis 

height exists at 0 3d l+  and 02 3d l+ and L  is the length of the artery. 
 

 
Fig.1. The geometry of an overlapping stenosed artery 

 
2.3 Non-dimensional Variables 
 

Introduce some of the non-dimensional variables 
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(12) 

 
where 𝑢̅0 is the fluid characteristics velocity, 𝐶 is the solute concentration, 𝑢 is the velocity, 𝑢+, 𝑢− 
is the outer and plug flow velocity, 𝑢𝑚 is the average velocity, 𝑟 is the transverse (radial) distance, 𝑟𝑝 

is the radius of the plug core field, 𝑧 is the longitudinal (axial) distance, 𝑧𝑠 is the length of solute, 𝑡 is 
the time, and 𝛿 is the stenosis height. Using non-dimensional variables in Eq. (12), the corresponding 
equations and boundary constraints from Eq. (1) until Eq. (11) are as follows, respectively 
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(23) 

 
2.4.  Method of Solution 
 

Integrating Eq. (2) with respect to under boundary constraint (5) the expression attained for shear 
stress is 
 

2

r dp
.

dz
 = −

 
(24) 

 
Substituting Eq. (24) into the Eq. (4) and integrate with respect to r with boundary constraints (6) 
yields the velocity of the outer and plug flow fields in non-dimensional forms as follows 
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2
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The non-dimensional form of the mean velocity, 𝑢𝑚 is 
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4

4

1 2 1

2 3 6

p p
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According to Gill [9] the solution of Eq. (19) with the constraints (20), (21) and (22) is formulated 

as a series expansion involving   about the mean concentration to describe the local concentration 
and is displayed as 
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i

m

m i i
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C z t
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 (28) 

 

where 𝐶𝑚(𝑧1, 𝑡) = 2 ∫ 𝐶(𝑟, 𝑧, 𝑡)𝑟𝑑𝑟
𝑅(𝑧)

0
 is the mean concentration, 𝑓𝑖(𝑟, 𝑡) is the dispersion function 

and 
1  mz z u t= −  is a new axial coordinate moves with the average velocity. Gill et al., [10] mentioned 

that the process of distributing ( ),mC z t  is diffusive from the beginning of time and hence, the 

generalized dispersion model as suitable functions of time t  is 
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m m
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where ( )1K t  is the coefficient of longitudinal convection and ( )2K t  is the coefficient of longitudinal 

diffusion. Since, ( )2K t expresses the whole dispersion process in terms of the simple diffusion 

process in axial direction 
1z  , it is also called as effective longitudinal diffusivity. The initial and 

boundary constraints 
if  can be obtained from eq. (20)-(22) and (28) as follows 

 

( ),0 0,if r =
 

 

(30) 

( ) ( )( )0, 0 , .i if f
t R z t

r r

 
= =

   
(31) 

 
The solvability condition is 
 

( )

0

  0.

R z

if r dr =
 

(32) 

  

Jaafar et al., [24] stated that the function 
1f  in the Eq. (28) is prominent to measure ( ), , .C r z t    The 

solution to the non-homogenous parabolic differential equations can be separated into two following 
parts 
 

( ) ( ) ( )1 1 1, , ,s tf r t f r f r t= +
 

(33) 

 

where ( )1sf r  is the dispersion function in the steady-state and ( )1 ,tf r t  is the dispersion function in 

the transient state which exemplified the time-dependent nature of the solute dispersion. By 

substituting Eq. (33) into the constraints (30) and (31) then grouping ( )1sf r  and ( )1 , ,tf r t the initial 

constraints of ( )1 ,tf r t  is 

 

( ) ( )1 1,0t sf r f r= −
 

(34) 

 

and the boundary constraints of ( )1sf r  and ( )1 ,tf r t  are 
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The differential equation of dispersion function at the steady-state in a plug flow field is 
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and in the outer flow field becomes 
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Solving Eq. (37) numerically subject to the boundary constraint (35), the steady dispersion function 
in the plug flow field 
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where 

1S  is delineated as 
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The dispersion function in the transient state, ( )1 ,tf r t   can be solved using the method of separation 

of variable and Bessel function subject to the boundary constraints (34) and (36). The solution ( )1 ,tf r t    

is computed numerically using Simpson’s 3/8 rule and is obtained as 
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(43) 

 

and the eigenvalues m  are the roots of the equation ( )1 0.J r =  0J and 1J  denotes Bessel’s functions 

of the first kind of order zero and one respectively. 
 
3. Results and Discussions 
 

The effect of varying stenosis height and plug core radius on the steady dispersion function, 
unsteady dispersion function, dispersion function, normalized velocity and mean velocity is analyzed. 
The range of values of parameters used in this study are as follows: 𝑟𝑝: 0-0.2, 𝛿: 0.01-0.3, 𝑙0: 3, 𝑑: 2 

and 𝑧: 4 [20, 24, 25]. In this study, Mathematica software is used to generate the results and data for 
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validation and comparison purposes. The present results of Bingham fluid with the impact of the 
stenosis height and plug core radius on the solute dispersion problem are validated with [26, 27]. The 
validation of steady dispersion function 𝑓1𝑠, unsteady dispersion function 𝑓1𝑡 and dispersion function 
𝑓1 when 𝛿 = 0, 𝑡 = 0.1 and 𝑟𝑝 = 0.1 are illustrated in Figure 2 and Figure 3. It is elucidated that the 

aforesaid figures are in good agreement with [26, 27].  In the present study, the geometry of the 
stenosed artery R(z) and n is equal to one in the absence of stenosis and the special case for Herschel-
Bulkley fluid artery 𝑅(𝑧) and 𝑛 is equal to one in the absence of stenosis and the special case for 
Herschel-Bulkley fluid when 𝑛 = 1 ascribed for Bingham fluid model are used for validation. It can be 
seen that 𝑓1𝑠 and 𝑓1 decreases at the center of an artery meanwhile 𝑓1𝑡 delineates a reverse behavior. 
As observed by Patel and Sirs [28], one of the factors that influence the dispersion of solutes in blood 
flow is the flexing of red blood cells and their migration to the core. 
 

 
(a)                                                                                (b) 

Fig. 2.  Validation of (a) steady dispersion function and (b) unsteady dispersion function with a 
radius r  when 𝛿 = 0, 𝑅(𝑧) = 1,  𝑛 = 1, 𝑟𝑝 = 0.1  and 𝑡 = 0.1. 

 

 
Fig. 3. Validation of dispersion function with a 
radius r when 𝛿 = 0, 𝑅(𝑧) = 1,  𝑛 = 1, 𝑟𝑝 = 0.1  

and 𝑡 = 0.1.     

 
Figure 4 described the variation of steady and unsteady dispersion function with a radius r for 

different values of stenosis height,  𝛿 when 𝑙0 = 3, 𝑑 = 2, 𝑧 = 4 and 𝑟𝑝 = 0.1. The effect of stenosis 

height is prominent to determine the size of stenosis. As the stenosis height increase, the stenosed 
artery becomes narrower and affects the normal flow of blood to the artery. It can be seen that when 
the stenosis height increases in the range 𝛿 = 0.01,0.02,0.03,0.04 and 0.05, the steady dispersion 
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function 𝑓1𝑠 of the solute decreases. A reverse behavior is displayed for the dispersion function at 
the unsteady-state for aforesaid rheological parameters. When the stenosis height increases, the 
unsteady dispersion function 𝑓1𝑡 of the solute also increases. 
 

 
(a)                                                                          (b) 

Fig. 4. Variation of (a) steady dispersion function and (b) unsteady dispersion function with a radius 

r for different values of stenosis height,   when 
0 3, 2,  4l d z= = = and 0.1.pr =  

 
Figure 5 depicts the variation of dispersion function with a radius r  for different values of stenosis 

height, 𝛿 when 𝑙0 = 3, 𝑑 = 2, 𝑧 = 4 and 𝑟𝑝 = 0.1.  It shows that as the stenosis height increase, the 

radius of the stenosed artery decreases in the range 𝑅(𝑧) = 0.99,0.98,0.97,0.96 and 0.95. The 
dispersion function inhibits the same pattern as steady dispersion function whereby an increase in 
the stenosis height indicates a decrease in the dispersion function. As mentioned by Dash et al., [29], 

1f   is aimed to mitigate the concentration at the plug core and also to magnify it close to the wall. 

 

 
Fig. 5. Variation of dispersion function with a 
radius r for different values of stenosis height, 

  when 
0 3, 2,  4l d z= = = and 0.1.pr =  

 
The effect of varying time t  on the dispersion function with a radius r  when 00.01, 3,l = =    

2,  4d z= =  and ( ) 0.99R z =  at (a) 0pr =  (b) 0.05pr =  (c) 0.1pr = and (d) 0.2pr =  is ascribed in Figure 

6. It is portrayed that the dispersion function 
1f  decreases as the plug core radius pr  and time t  

increase in the range of 0.65 to 0.65r r=− =  and displayed an opposite behavior in the rest of the 
range because 

1f  is independent of t  at the center. There is a high amount of red blood cells at the 
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center of the artery but no influences near the wall. As time t   increases from 𝑡 = 0.05, 0.1, 0.15, 0.2 
and 0.5, 1f  approaches its steady-state value 1sf  at 𝑡 = 0.5. When the plug core radius 0,pr =  the 

dispersion function corresponds to the Newtonian fluid and the magnitude 1f  is maximum which is 

in agreement with the observation of [10]. It can be remarked from these figures that the dispersion 
function 1f  passes through a common point for all time t  and all values of the plug core radius .pr  

 

 
(a)                                                                             (b) 

 
(c)                                                                               (d) 

Fig. 6. Variation of dispersion function with a radius r  for different values of time t  when 𝛿 =
0.01, 𝑙0 = 3, 𝑑 = 2, 𝑧 = 4 and 𝑅(𝑧) = 0.99 at (a) 𝑟𝑝 = 0 (b) 𝑟𝑝 = 0.05  (c) 𝑟𝑝 = 0.1  and (d) 𝑟𝑝 =

0.2.  
 

The estimates of normalized velocity and mean velocity in the dispersion of solutes when 𝑙0 =
3, 𝑑 = 2, 𝑧 = 4 and 𝑟𝑝 = 0.1 for the canine vascular systems are delineated in Table 1. The 

physiological data for different types of arteries is ascribed by [25]. It is depicted that as stenosis 
height increases, the normalized velocity profiles and mean velocity decrease marginally. The 
normalized velocity decreases due to the diffusion of solute to the wall of the artery. It can be seen 
that arteriole having diameter   has the highest normalized velocity and mean velocity however as 
the stenosis height increase, the normalized velocity and mean velocity monotonically decrease. 
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Table 1 
Estimates of normalized velocity and mean velocity in the dispersion of solutes when

00.01,  3,  2pr l d= = =  and 4z = for the canine vascular systems 

Artery type Radius  

( )210 m−
 

Normalized velocity Mean velocity 

0.1 =  0.2 =  0.3 =  0.1 =  0.2 =  0.3 =  

Aorta 1.0 1.986 1.983 1.981 0.493 0.492 0.490 
Femoral 0.5 1.967 1.956 1.934 0.483 0.478 0.467 
Carotid 0.4 1.956 1.934 1.810 0.478 0.467 0.433 
Coronary 0.15 1.744 1.673 1.590 0.367 0.334 0.307 
Arteriole 0.008 2.147 2.070 2.046 0.572 0.535 0.523 

 
4. Conclusion 
 

The current study aims to examine the impact of non-Newtonian blood rheology and stenosis 
height on the solute dispersion process in the cardiovascular system. Some of the significant findings 
are summarized below 

i. The steady dispersion function decreases at the center of the artery as the stenosis height 
increase from 𝛿 = 0.01,0.02,0.03,0.04 and 0.05, however, a reverse behavior is shown 
for the unsteady dispersion function.  

ii. It is noted that there is a high amount of red blood cells at the center of the artery but no 
influences near the wall hence, the dispersion function decreases at the center of the 
artery with an increase in the plug core radius when 𝑟𝑝 = 0, 0.05, 0.1, 0.2 and time, 𝑡 =

0.05, 0.1, 0.15, 0.2 and 0.5. 
iii. The non-Newtonian fluid behavior which is the yield stress is related to the non-

Newtonian nature of the fluid and with an increase in the yield stress, the viscosity of the 
blood increases. The non-Newtonian fluid behavior and stenosis height affect significantly 
the dispersion of solutes in a solvent (blood). 
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