
CLIMATE CHANGE
AND

RENEWABLES
P R O G R E S S I N G  T O W A R D S  A  

G R E E N E R  A N D  C L E A N E R  F U T U R E

SOLAR RESEARCH INSTITUTE (SRI) 2023 ONLINE POSTGRADUATE COLLOQUIUM



CLIMATE CHANGE AND
RENEWABLES

P R O G R E S S I N G  T O W A R D S  A  G R E E N E R  A N D  C L E A N E R  F U T U R E

Semarak Ilmu Publishing
No. 7-G, Jalan Puteri 3A/7

Bandar Puteri Bangi
43000 Kajang, Selangor 

2023

Editors
Nurfadzilah Ahmad

Muhammad Azfar Shamil Abd Aziz



© Solar Research Institute (SRI) 2023 

 
All right reserved, no part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means, mechanical, electronic, photocopying, recording or any 
other way without the permission of Solar Research Institute (SRI), UiTM. 
 
eISBN 978-629-98779-0-5 
 
Published in Malaysia by 
SEMARAK ILMU PUBLISHING 
No. 7-G, Jalan Puteri 3A/7 
Bandar Puteri Bangi 
43000 Kajang, Selangor 
Tel: 017-7541097 
Website:https://semarakilmu.com.my/ 
 
 
 

 

 

  

Project Management 

 

Nurfadzilah Ahmad     Muhammad Azfar Shamil Abd Aziz  

Acquisition Editor     Editor 

 

Nurliyana Baharin     Muhammad Ikram Ahmad 

Paper Author      Paper Author 

 

Nur Fadhilah Jamaludin     Nur Alfarina Pirdaus 

Paper Author      Paper Author 

 

Sharina Safiee      Norhasnelly Anuar 

Paper Author      Paper Author 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

More than three years after the 
declaration of a global 
emergency for Covid-19, the 
World Health Organization 
(WHO) is now saying it is over as 
we enter the endemic phase. 
 
As nations globally learn to live 
with the virus, we see 
businesses and societies set to 
recover to the state they once 
were in. This coupled with the 
increasingly evident 
consequences of climate 
change, have accelerated 
efforts in developing more 
sustainable and renewable 
sources of energy. 
 
Likewise, in Malaysia, the 

Government has stepped up efforts to increase the use of 
renewable energy to decrease its dependency on fossil fuel 
and further commit to its endeavour in becoming a carbon-
neutral nation as early as 2050. 
 
The Solar Research Institute (SRI) of Universiti Teknologi 
MARA (UiTM) has always been in support of these actions 
with constant collaborations, innovations, and research with 
diverse parties and stakeholders.  

Additionally, SRI has always worked closely with the 
university in engaging and nurturing bright young 
talents as we work towards securing a greener 
tomorrow for the nation. 
 
SRI pledges to give its utmost effort and dedication in 
backing the country’s commitment towards achieving 
the UN Sustainable Development Goals (SDGs) and a 
carbon-neutral nation by 2050. 
 
I would like to extend my heartfelt gratitude to all the 
authors, contributors, and researchers whose 
dedication has brought this invaluable resource to 
life. I also extend my appreciation to all the readers 
who share in the vision of a better tomorrow. 
 
May this work serve as a catalyst for positive change 
and inspire us all to be steadfast in our commitment 
to creating a better world through solar power and 
sustainability. 
 
Thank you and happy reading. 

FOREWORD 
by Director of Solar Research Institute (SRI)   

Associate Professor Ir. Dr. Nofri Yenita Dahlan 

Director, Solar Research Institute (SRI) 

Universiti Teknologi MARA (UiTM) 
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Abstract— BEB has a wide range of usage, from short- to 

long distance travel. In 2023, Malaysia's government's 

encouragement towards BEB has supported the projection of 

the transition of diesel buses to electric buses in the National 

Automotive Policy 2020. The aims of this paper are: 1) to review 

the BEB technologies and method to optimize BEB charging 

scheduling and 2) to develop fuzzy logic model to optimize the 

BEB charging scheduling in for BEB as in-campus shuttle. 

Comprehensive overview of relevant literature on BEB 

technology, charging specification and BEB charging 

scheduling. BEB charging scheduling was developed using 

Fuzzy Logic model to determine priority of BEB charging 

through two inputs and one output in Fuzzy Logic model. The 

findings show that the energy demand shows that there is a 

significant spike occur on the load profile due to BEB charging 

loads. Besides, by applying enhanced time-of-use (eToU) tariff, 

there is increment in overall electricity bill for the campus. 

Keywords—BEB, charging scheduling, Fuzzy logic, load 

profile, eToU 

I. INTRODUCTION 

Transport sector is one of the sectors that contributed to 
the air pollution around the world besides the other big sectors 
such as residential, energy, industry, agriculture and from 
windblown dust. By country, North America has the largest 
contributing air pollution by transport sector with 14.8% of 
total air pollution by sector in North America. It is followed 
by Europe with 8.7%, Latin America and Caribbean with 
8.5%, Asia and Pacific 7.4%, West Asia 6.3% and the lowest 
is Africa with 3.6% [1]. Hence, many countries shifted from 
internal combustion engine (ICE) to the zero-emission vehicle 
(ZEV) includes passengers to heavy duty vehicles. Among 
these, battery electric buses (BEB) have emerged as a 
promising solution for reducing emissions in the public 
transportation sector which it is projected that the sales of 
BEB will be increase in 25% from 2022 to 2030 [2]. Over the 
past decade, the adoption of BEB has witnessed substantial 
growth worldwide. According to statistics, as of the most 
recent data available, there are approximately 670,000 electric 
buses operating globally. China has been at the forefront of 
this shift, accounting for most electric bus deployments. In 
fact, China alone represents over 99% of the total electric bus 
fleet, with more than 450,000 electric buses in operation in 
2017. China continues to dominate the electric bus market, 
and new registrations are rising as they have in past years. The 
adoption of plug-in electric buses is not limited to China alone. 
Several other countries have recognized the potential of 
electric buses in achieving sustainable urban transportation. 
Europe has seen significant progress in this area, with 
countries like the Netherlands, Germany, and France leading 
the way. Furthermore, cities such as London, Paris, and 
Amsterdam have implemented policies to phase out diesel 

buses and transition to electric alternatives [3]. Consequently, 
in order to save energy and prevent congestion in the power 
system when charging the BEB from the grid, a proper BEB 
charging schedule needs to be designed. 2. According to 
NAP 2020, government encourage to use EB to replace 
conventional buses [4]. However, electric bus operation has a 
few limitations to consider which BEB typically have a 
limited driving range per charge compared to diesel buses' fuel 
range due to the battery capacity and route, the availability and 
accessibility of charging infrastructure and need high power 
to charge the battery. Therefore, optimum BEB charging 
scheduling need to be considered to achieve optimum BEB 
operations. 4. In Malaysia, there is absence of specific tariff 
scheme for EB charging load in campus facility. The existing 
tariff that available is eToU tariff by TNB applied for campus 
facility is based on commercial tariff for electrical load. The 
effectiveness of the existing eToU tariff in promoting the use 
of EB in the campus is yet to be explored and investigated. 
Therefore, it is critical to formulate an optimum eToU tariff 
that is suitable for both existing campus load and EB charging 
load that can create benefits to both consumers and the power 
utility in Malaysia [5] 

Driven by the motives, BEB charging scheduling has been 
extensively studied in recent years (will be reviewed in the 
next section). Most of the works that are currently in 
existence, in particular, take into account BEB charging 
scheduling outside of campus networks. As a result, this paper 
will highlight the BEB charging scheduling in campus 
network, where BEB serves as on-campus transportation for 
students. The energy demand of the campus will be analysed 
based on a comparison of load profiles and electricity bills 
before and after BEB charging loads are added to the existing 
campus network. The main objective of this paper is to review 
the BEB charging scheduling research and to analyse the 
effect of charging BEB in campus network by using Fuzzy 
Logic model.  

Contributions of this paper are: 1) review on the BEB 
technologies and method to optimize BEB charging 
scheduling and 2) to develop fuzzy logic model to optimize 
the BEB charging scheduling in for BEB as in-campus shuttle. 
The impact of the BEB charging activity on the campus load 
profile and energy cost will be analyzed.  

The rest of this paper is organized as follows. Theory about 
BEB and its technology and related works regarding BEB 
charging scheduling represented in Section II. The proposed 
scheduling algorithm with the fuzzy logic control is described 
in Section III. The assumption used in this work were 
explained in Section IV. In Section V, the simulation results 
of the Fuzzy logic model and the impact of BEB charging to 
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the grid and transformers are provided. Finally, conclusions 
and recommendations are given in Section VI. 

II. RELATED WORKS

This section explained the facts of the electric buses, latest 

BEB charging technologies and related works that 

investigated the BEB charging impact. The BEB charging 

method that was covered by previous researchers will also be 

elaborated in this section.  

A. Electric Buses and BEB Charging Technology

Four types of familiar zero-emission buses that have been
used in road are hybrid electric bus (HEB), plug-in hybrid 
electric bus (PHEB), battery electric bus (BEB) and Fuel Cell 
Electric Buses (FCEB). These varieties differ in the 
technologies used for fuelling, which in turn affects the routes 
and purposes these buses can best serve. Here are some basic 
explanations about all the listed electric buses. A HEB 
typically keeps a diesel engine but uses additional equipment 
to drive the bus when needed. There are many types of hybrid 
system currently in operation called series and parallel HEBs. 
On a hybrid bus when the driver brakes, the hybrid system 
captures kinetic energy and stores for use later when it is 
required for propulsion. The next time the bus accelerates, the 
stored energy is fed back to the driving wheels, this process 
called as regenerative braking system. The diesel is conserved 
by the energy produce from the electric energy produce from 
regenerative braking system. PHEB incorporate the 
advantages of hybrid and battery electric buses. They are 
equipped with an internal combustion engine as a fallback for 
extended range or when the batteries are depleted. PHEBs can 
be charged using either external power sources or regenerative 
braking. BEB, also known as pure electric buses, are driven 
by one electric motor or more electric motors that utilise 
energy from an on-board high voltage battery. A high-voltage 
battery is defined as any voltage with a value of 50 volts and 
above. Usually, BEB battery packs are manufactured between 
400V and 800V.  BEBs are charged by plugging into charging 
stations, and their range is determined by battery capacity. 
They are widely used in urban areas and for short to medium 
distance routes. FCEB use hydrogen fuel cells to generate 
electricity, which is then used to power the electric motor. The 
only byproduct of the fuel cells' conversion of hydrogen and 
oxygen into electricity is water vapour. FCEBs have longer 
ranges and quicker refuelling periods than battery electric 
buses, making them ideal for long-distance routes [6]. 

The charging system for electric buses is a crucial 
component of their operation, allowing their batteries to be 
refuelled and ensuring continuous operation. As technology 
advances, electric bus charging systems continue to evolve 
with improvements in charging speeds, interoperability, and 
smart grid integration. Three main types of electric charging 
systems widely used on the road are plug-in, pantograph, and 
inductive or wireless charging systems. Two of them are 
pantograph and plug-in charging systems, both made by a 
well-known company, ABB. The plug-in charging system 
includes AC and DC fast charging. Plug-in AC charging 
systems use CCS cables that consist of AC and DC power. 
There are two types of pantographs charging designs from 
ABB: pantograph down and pantograph up. The difference 
between these two types of pantographs charging systems is 
the charging connection, where up refers to the pantograph 
coming from the electric bus and down refers to the 
pantograph coming from the charging pole [[7], [8]. ABB also 

provides the design for smart charging for electric bus depots, 
where the buses can be charged in sequence automatically to 
avoid peak demand [9]. Along with these, the charging system 
is also assigned other names, such as plug-in, also called 
overnight charging. Both pantographs up and down can be 
opportunities, and overnight charging depends on where the 
pantograph is installed, either in the depot or on the single pole 
Depot charging refers to the buses being charged while they 
are parked at the depot, typically during off-peak hours. This 
method allows for a longer charging time and can be more 
cost-effective. On the other hand, single pole charging 
involves installing pantographs on individual poles along the 
bus route, allowing for quick and convenient charging during 
regular stops. 

B. BEB Charging Impact and Charging Scheduling

When charging, electric buses use a substantial amount of
power, especially when several buses are doing it at once. The 
high-power demand during the charging process can put 
additional stress on the electrical distribution network [10], 
[11]impacts to both transformers and grids. Normally,
transformer were installed with reserved capacity for future
grid expend however, BEB charging load consume huge
amount of energy which can contributes to several effects such
as overload of transformer [12], increase maintenance cost
[13], increase power loss on transformer [31], shorter the life
of transformer [14], [15], increase temperature on transformer
[16] and additional cost due to new installation of
transformer[17]. BEB charging loads also gave negative effect
to the grid where it can increase peak load demand [18]–[22],
increase power losses [23]–[27], severe voltage drop [21],
decrease reserve margins [28]–[31], degradation of power
efficiency [32], BEB charger can inject more harmonics [25]
, upgrade of distribution system [33] and overload on the
distribution line [34]. Due to these conditions, proper BEB
charging scheduling need to be done.

BEB charging scheduling refers to the process of 
determining when and how electric buses should be charged 
to ensure they have sufficient battery capacity for their 
scheduled operations. It involves creating a schedule that 
specifies the charging times and durations for individual buses 
within a fleet. The objectives of BEB charging scheduling are 
to minimise operational cost, charging cost, and infrastructure 
cost and fully utilise the charging infrastructure to have 
optimum operations. To optimise BEB charging scheduling, 
two methods were used in previous research: the mathematical 
method and the artificial intelligence method. One of the 
popular mathematical methods is mixed-integer linear 
programming (MILP), which has been extensively used in 
previous research to minimise different kinds of costs 
involved in charging infrastructure and the impact on the grid 
Fast-charging station deployment for battery electric bus 
systems considering electricity demand charges [31], [35]–
[39]. The other mathematical methods used are the general 
modelling system [40] and non-linear programming 
optimisation (NLP) [41]. These mathematical methods have 
proven to be effective in optimising charging infrastructure 
and managing its impact on the grid. Additionally, artificial 
intelligence methods, such as machine learning algorithms, 
have also been employed in previous research to address these 
challenges [42]–[47]. These AI methods have shown 
promising results in predicting charging demand and 
optimising charging schedules to minimise costs and grid 
stress.  
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To analyse the effect of charging costs, previous 
researchers considered the demand response. Time-of-Use 
(ToU) pricing allows for different electricity rates at different 
times of the day, incentivizing users to shift their charging 
demand to off-peak hours when electricity costs are lower. By 
considering the single depot charging infrastructure, research 
has been done to minimise the charging cost using ToU as the 
electricity tariff price   [22], [48]–[51]. Usually, a single depot 
is used for overnight charging systems. Multi depot charging 
infrastructures can usually be applied for opportunity charging 
and overnight charging, which means that beside the main 
depot, the charging system also has on-route charging 
infrastructure. This kind of charging system has been used in 
research [47], [52] to minimise BEB charging costs. There is 
also research using day ahead tariff prices to optimise the 
operating system cost using wireless charging systems [53]. 

III. SYSTEM MODEL

As depicted in Figure 1, the battery electric bus (BEB) 
charging depot discovery employs a beacon signal between 
the charging stations (CS) and BEB, and the beacon signal is 
powered by a local area network (LAN) such as Wi-Fi or 
Bluetooth. Through the discovery of BEB charging depots, the 
CS is aware of the number of BEB in the area, and vice versa. 
BEB and CS transmit data to the centralised control system 
via cellular or wireless network following the discovery of the 
BEB charging depot. The CS data contains the condition of 
charging pads. Consequently, the control system is informed 
of the number of accessible pads that are not occupied by the 
BEB. The information of BEB comprises the state of charge 
(SOC) and charging time of the BEB battery.  The charging 
period indicates the duration of BEB's stay at the CS for 
charging. The BEB provides the specific charging time to the 
CS, and if the charging time expires, the BEB departs the CS. 
As a result, the SOC of the BEB battery and the charging time 
serve as inputs for the fuzzy logic control. Using the data from 
BEB and CS, the control system generates a priority matrix, 
which is the output of fuzzy logic control. The priority matrix 
is utilised by the control system's algorithm for charging 
scheduling. The control system prioritises minimising 
charging wait time and balancing the charging request rate. 

Figure 1: BEB charging scheduling diagram. 

A. BEB and Charging Stations Specifications

BEB model that have been selected in this paper have

energy storage of 330kW and assumed using overnight 

charging system using CCS cable. The battery can be charged 

using 150kW charging stations. Hence, maximum time to 

charge one bus is 2.2 hours but we consider as 3hours because 

the kWh is considering one hour full for the energy usage. 

These specifications will be applied to the case study in 

section IV.  

B. Fuzzy Logic Model for Priority Determination

In this paper, a fuzzy logic control is developed to
determine the BEB charging priority. By considering the 
inputs as state-of-charge (SoC) and stay time (duration of 
charging) while the output is charging priority. To acquire the 
fuzzy charging priority of each electric vehicle, the inputs are 
fuzzified and sent through an inference system with fuzzy 
rules. The fuzzy logic control system can be referred to Figure 
2. 

Figure 2: Fuzzy Logic Model 

The membership functions of the two inputs are used to 
express the fuzziness of the inputs. Table I shows the details 
of both input and output variables of fuzzy inference system. 
The first input is SoC that is defined by triangular and 
trapezium membership functions with five fuzzy states: Very 
Low (VL), Low (L), Medium (M), High (H), and Very High 
(VH). The second input is Stay Time (ST) that is defined by 
triangular and trapezium membership functions with five 
fuzzy states: Very Shirt Duration (VSD), Short Duration (SD), 
Normal Duration (ND), Long Duration (LD) and Very Long 
Duration (VLD). The output of the fuzzy inference system is 
the charging priority which is defined using trapezium 
membership functions with three fuzzy states: Low Priority 
(LP), Medium Priority (MP), and High Priority (HP). 

TABLE I: THE MEMBERSHIP FUNCTION OF FL 

C. Enhanced Time-of-Use Tariff (eToU)

In Peninsular Malaysia, the eToU tariff applicable for the

consumers under commercial and industrial segment. TNB 

introduced enhanced time-of-use (eToU) to improve the ToU 

tariff structure. The enhanced time of use (ETOU) rate is 

available to all commercial and industrial categories 

(including C1, E1, C2, and E3) with three time zones, 

Input Output 

SoC (%) Stay Time Priority 

State Symbol State Symbol State Symbol 

VL 
Very 

Low 
VSD 

Very 

Short 

Duration 

LP 
Low 

Priority 

L Low SD 
Short 

Duration 
MP 

Medium 

Priority 

M Medium ND 
Normal 

Duration 
HP 

High 

Priority 

H High LD 
Long 

Duration 

VL 
Very 

High 
VLD 

Very 

Long 

Duration 
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whereas previous TOU tariffs only have two zones [54]. The 

ETOU tariff also includes six-time segmentations that 

incorporate off-peak, mid-peak, and peak zones, allowing 

consumers greater flexibility in evaluating load management 

options to minimize power consumption costs. Nonetheless, 

as of the end of 2017, this initiative had garnered a negligible 

number of participants, and the goal had not been met [55]. 

EToU electricity price tariff is shown in TABLE II.  

TABLE II: ETOU ELECTRICITY TARIFF PRICE 

Time Zone Time 
Energy Charge (sen/kWh) 

Weekdays Weekend 

off-peak 

0-1 0.281 0.281 

1-2 0.281 0.281 

2-3 0.281 0.281 

3-4 0.281 0.281 

4-5 0.281 0.281 

5-6 0.281 0.281 

6-7 0.281 0.281 

7-8 0.281 0.281 

mid-peak 

8-9 0.357 0.281 

9-10 0.357 0.281 

10-11 0.357 0.281 

peak 11-12 0.584 0.281 

mid-peak 
12-13 0.357 0.281 

13-14 0.357 0.281 

peak 

14-15 0.584 0.281 

15-16 0.584 0.281 

16-17 0.584 0.281 

mid-peak 

17-18 0.357 0.281 

18-19 0.357 0.281 

19-20 0.357 0.281 

20-21 0.357 0.281 

21-22 0.357 0.281 

off-peak 
22-23 0.281 0.281 

23-24 0.281 0.281 

IV. ASSUMPTIONS

The case study in main campus UTeM has been 

selected to become the BEB charging scheduling application. 

Currently, UTeM only provides the services of conventional 

buses as shuttle bus in main campus. However, there is a plan 

to use BEB on campus in future. Hence, it is important to 

investigate the impact of adding new charging loads to the 

existing grid in this campus. To be precise, 20 BEBs and 4 

BEB charging stations are assumed to be installed in a single 

depot in the Development Management Office which is 

nearer to the main incoming substation. By neglecting the 

route of the BEB, the BEB charging scheduling is developed 

based on the fuzzy logic model.  

V. RESULTS AND DISCUSSION 

A. BEB Charging Scheduling

In this section, the output from the fuzzy logic model 

has been used to construct the BEB charging schedule. Table 

III shows the priority determination based on inputs and 

output that has been set in fuzzy logic model. For example, if 

the stay time is 80 and SoC value is 0.2, the priority is 0.373 

fall under low priority category. This means that any BEB 

that has been detected with SoC value 0.2 will have low 

priority. The BEB with high priority will be charged first, 

followed by medium and low priority.  

TABLE III: PRIORITY DETERMINATION USING FL OUTPUT 

In Table IV in Appendix A represented the BEB 

charging scheduling for 20 BEBs using 4 charging stations. 

Overnight charging will start at 1800 and end at 0700 before 

the bus start to reoperates. The first 4 BEB that will be 

charged are Bus 3, 5, 11 and 13 because it has high priority. 

The process is continued with the bus that have medium and 

low priority and repeated until all 20 buses are complete the 

charging process. The last session of charging is done by Bus 

17 at charging station 4 (CS4) at 0400. The reading of the 

energy usage is captured by the metering system installed in 

this campus distribution system.  

B. Impact of BEB charging to Grid

The historical data of the power consumption for the 

main campus network has been used in this work. To see the 

impact of charging BEB to grid, case scenarios were created 

as follows: 

1) Case 1-Night Charging – OppCharge (charging

started 1800) – 2 charging stations (CS – CS1,CS2)

2) Case 2-Night Charging – CCS (charging started

1800) – charging stations (CS– CS1,CS2,CS3,CS4)

3) Case 3-Day Charging - OppCharge (charging

started 0700) - 2 charging stations (CS – CS1,CS2)

4) Case 4-Day Charging - CCS (charging started

0700) - 4 charging stations (CS–

CS1,CS2,CS3,CS4)

Another type of charging station has been added 

which is 2 pantograph charging stations. The charging 

session is also now assumed to be held during the day for 

weekday and weekend.  

Stay 

Time
SoC

Charging 

Time
CCS

80 0.2 2.2 30 0.373 LP

70 0.3 1.98 147 0.5 MP

60 0.4 1.76 114 0.627 HP

50 0.5 1.54 81 0.5 MP

40 0.6 1.32 48 0.627 HP

30 0.7 1.1 15 0.5 MP

20 0.8 0.88 132 0.373 LP

10 0.9 0.66 99 0.153 LP

Priority
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(a) 

(b) 

Figure 3: Electricity Demand (MWh) for weekday. 

From Figure 3 (a), the comparison of the BEB charging Case 

1 and Case 2 has been presented. Case 1 and Case 2 refer to 

Overnight charging where there is peak load started to grow 

from the time BEB start to charge. While in Figure 3(b), the 

load profile comparison for Case 3 and 4 shows that 

additional peak load during day charging. This will affect the 

reserve margin for the energy demand in this campus. The 

same pattern shows for weekend cases as shown in Figure 

4(a) and (b). However, the increment of energy usage for 

weekend is higher compared to weekdays.  

(a) 

(b) 

Figure 4: Electricity Demand (MWh) for weekend. 

TABLE V: ENERGY DEMAND INCREMENT PERCENTAGE 

Pantograph CCS 

Weekdays 24.91% 24.88% 

Weekends 65.51% 65.42% 

As shown in TABLE V, by using the Pantograph charging 

system, the increment of energy demand is 24.91%, 

compared to 24.88% using the CCS charging 

system.  However, the weekend cases show a higher 

percentage increase in energy demand compared to 

weekdays, with 65.51% and 65.42% for the pantograph and 

CCS charging systems, respectively. This suggests that the 

Pantograph charging system is slightly more efficient in 

meeting energy demands compared to the CCS charging 

system. Additionally, the higher percentage increase in 

energy demand on weekends may be attributed to increased 

usage of BEB for recreational purposes or longer trips.  

C. Impact of BEB charging to Energy Cost

There are several costs that should be considered in

developing the BEB charging system, such as BEB cost, BEB 

charging depot cost, and energy cost. However, in this work, 

the energy cost was analyzed based on the eToU tariff set by 

TNB. The energy cost in this paper is the overall electricity 

price before and after BEB charging loads are added to the 

existing loads. TABLE VI indicates the electricity price for 

Cases 1, 2, 3, and 4 for weekends and weekdays. The baseline 

electricity price for weekdays is RM 181,862.19, while for 

weekends it is RM 15,647.93. The prices for Case 1, Case 2, 

Case 3, and Case 4 vary slightly from the baseline in both 

weekday and weekend scenarios. There are distinguishable 

changes in price increments before and after the BEB 

charging system. As illustrated in TABLE VII, the energy 

cost for Case 4 is increased by 18.14% during the weekdays 

and 22.96% on weekends. This indicates that the energy cost 

for charging BEBs is higher on weekends compared to 

weekdays. Additionally, the energy cost for Case 4 remains 

consistent across all four cases, with an increment percentage 

of 65.42%.  

TABLE VI: ELECTRICITY PRICE COMPARISON 

TABLE VII: ELECTRICITY PRICE PERCENTAGE OF 

INCREMENT COMPARISON 

Baseline Case 1 Case 2 Case 3 Case 4

181862.19 214857.43 215400.74 217880.25 223623.19

Baseline Case 1 Case 2 Case 3 Case 4

15647.93 25898.81 25885.32 25898.81 25885.32

WEEKDAY ELECTRICITY PRICE(RM)

WEEKEND ELECTRICITY PRICE(RM)

Case 1 Case 2 Case 3 Case 4

18.14% 18.44% 19.81% 22.96%

Case 1 Case 2 Case 3 Case 4

65.51% 65.42% 65.51% 65.42%

Weekday

Weekend
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VI. CONCLUSIONS AND RECOMMENDATIONS

This paper proposes BEB charging scheduling using a 
fuzzy logic model. A fuzzy logic model has been developed 
for the priority development of the BEB charging system. The 
output of the fuzzy logic model was obtained to build the BEB 
charging schedule. Additional BEB charging loads affect peak 
load demand and energy costs for the UTeM main campus 
network. It is recommended that the BEB charging schedule 
be optimised to minimise peak load demand and energy costs. 
Additionally, further research could explore the potential 
benefits of implementing smart grid technologies to improve 
the efficiency of the BEB charging system. 
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APPENDIX A 

TABLE IV: BEB CHARGING SCHEDULING BASE ON FUZZY LOGIC MODEL 
Priority LP MP HP MP HP MP LP LP LP MP HP MP HP MP LP LP LP MP HP MP

SoC 20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90 20 30 40 50

CS1 CS1 CS1 CS1 CS2 CS2 CS1 CS2 CS2 CS2 CS3 CS3 CS4 CS3 CS3 CS3 CS4 CS4 CS4 CS4

Time Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13 Bus 14 Bus 15 Bus 16 Bus 17 Bus 18 Bus 19 Bus 20

1 150 150 132 147

2 150 150 150

3 30 30 150

4 30

5

6

7

8

9

10

11

12

13

14

15

16

17

18 150 150 150 150

19 114 48 114 48

20 150 150 150 150

21 81 15 15 114

22 150 150 150 150

23 147 147 81 81

24 132 99 99 150
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Abstract—Malaysia is one of the countries that strongly 

dependent on the non-renewable energy such as coal to 

empower electricity industry and it cause decreasing in natural 

reserves and climate change. In Malaysia, solar energy is one of 

the renewable energies that plays a crucial role in reducing 

greenhouse gas emissions and addressing climate change. 

Geographical location shows that Malaysia is one of the best 

countries to use solar energy to empowering electricity for the 

country since it can collect high number of energies from Sun. 

Towards the planning of changing direction to the solar 

industry, many challenges had been addressed by Independent 

Power Producers (IPP) such as the uncertainty of output power 

from photovoltaic (PV) due to instability of weather conditions. 

This paper addressed the issues faced by the IPP and UiTM 

50MW LSSPV in Gambang, Pahang has been used as case 

study. Forecasting power generation model of NARX-ANN has 

been developed. This paper can contribute to understand the 

Malaysia’s solar industry. 

Keywords—Artificial Neural Network, Photovoltaic, Large-

Scale Solar, Mean Square Error (MSE), regression. 

I. INTRODUCTION 

Nowadays, the number of demands for energy in Malaysia
had been increased followed by the increasing number of 
populations. Currently, main energy generated from coal 
power plant. Since Malaysia is planning to shift energy 
towards renewable energy, accurate forecasting method 
become a crucial topic to be discussed among the power 
producers. Currently there are numerous types of renewable 
energy had been implemented in Malaysia. Solar energy, wind 
energy, and mini hydro energy are among the most developed 
and popular renewable energy, but all of it have the 
uncertainties issue related on energy produced. Solar energy 
become the most attractive among the renewable energy 
stakeholder since many policies have been initiated to 
minimise the greenhouse gas emission and contribute to less 
severity on climate change [1]. There are two types of 
technology for solar energy which are solar thermal energy 
and solar photovoltaic technology. The most developed 
technology is solar photovoltaic technology which converting 
energy from Sun into energy.  

Currently Malaysia is rapidly developing solar energy 
industry where the cost of installation of PV system becomes 
more affordable. In Australia, government providing two 
incentives scheme aimed to reduce installation cost of small-
scale PV system and large-scale solar PV system. The scheme 
named as Small-scale Renewable Energy Scheme (SRES) and 
Large-scale Renewable Energy Target (LRET) [2].  An 
initiative launched by the Indian government named as Solar 
Alliance in 2015 aimed to provide platform to increase the use 
of solar energy to meet energy demands [3]. In 2019, UK’s 
government has legislated for net zero emission by 2050 due 
to scientific evidence [4]. 

Solar energy found to have great problem due to 
uncertainties in form of producing energy. The dependency on 
weather cost the power producer and grid operator to plan the 
production of solar energy injected into grid. The uncertainty 
of energy produced by solar energy potentially disrupting the 
power grid [5]. Therefore, it is one of the most important 
issues to tackle to ensure stable and efficient energy supplied 
into the electricity grid. It also can protect the power grid 
system from experiencing low supply that does not meet the 
demand energy. Power supply company requires to submit 
their energy generation planning for grid operators. Planning 
from grid operators is important as used to strategize the 
distribution of energy depending on the demand for the 
country [6]. 

Therefore, there are numerous methods had been 
introduced to cater the problem of instability of power 
produced by solar energy. Study in [7] discussed on various 
types of method used to predict solar power which are Back 
Propagation Neural Network (BPNN), Elman Neural Network 
(ENN), Nonlinear Autoregressive Neural Network with 
Exogenous Inputs (NARX-ANN), Random Forest (RF), and 
Support Vector Regression (SVR). From the study, it found 
that NARX-ANN is most superior over other technique due to 
its dynamic feedback mechanism. In [8], study said that main 
important part of forecasting is historical data to train the 
forecast model. The author used neuro-fuzzy based model to 
model short-term load forecasting. Another study in [9] 
discussed on different artificial intelligence method which is 
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StatCast-Solar. that generate short-term predictions of solar 
irradiance using the algorithm. In [10], there are numerous 
techniques had been analysed for the purpose of comparison. 
Results show that method of CNN-LSTM is better technique 
for forecasting compare with other methods. 

This paper will focus on the forecasting model using 
NARX-ANN and comparison with the Multi Linear 
Regression technique using Microsoft Excel. This research 
will benefit the power producer and grid operator in term of 
planning the power dispatch, generated and reserve. It also 
used to determine and forecast the energy and revenue 
produced by solar power plant. 

II. METHODOLOGY

A. Historical Data Acquisition and Filtration

A set of data is taken to be sampled for training purposes.
Historical data is extremely important to training the model of 
forecasting before testing on real data. For this case study at 
UiTM 50MW LSSPV in Gambang, Pahang, 5 weather 
stations had been located suit with the area of the solar farm. 
Figure 2 shows the weather station used to collect raw data of 
weather at Gambang LSS Farm. The data will be recorded 
every minute and uploaded to Google Drive for processing 
purposes. For this paper, the data used as input from the 1st of 
August 2020 until end of July 2021. 

Figure 2: Weather station located at Gambang LSS Farm 

 The data collected from the weather station will be 
considered as input variable data. The input variable data 
includes ambient temperature, wind speed, PV module 
temperature, global irradiance on module plane, total global 
horizontal irradiance, total slope irradiation, and total 
horizontal irradiation while the output variable is AC output 
power collected from the iSolarCloud system which recorded 
every 5 minutes. The numerous sets of data could include 
certain errors where it can interrupt the efficacy of forecasting 
model. Therefore, preprocessing data is extremely necessary 
to minimize the error of the input variable for forecasting 
model. The data also will undergo mathematical analysis to 
obtain an average value for every 30 minutes. The process is 
important since the model is developed using 30 minutes of 
time interval for one year. Before developing the forecasting 
model, each input variables regression was analyzed to 
determine the relationship between the input variables and 
output variable. Figures 3, 4, 5, 6, 7, 8 and 9 show the graph 
of output variables and each input variable.  

Figure 3: Graph of PV Module Temperature and Output Power Generated 

Figure 4: Graph of Total Global Horizontal Irradiance and Output Power 
Generated

Figure 5: Graph of Global Irradiance on Module and Output Power 
Generated
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Figure 6: Graph of Total Horizontal Irradiance and Output Power Generated 

 

 

Figure 7: Graph of Ambient Temperature and Output Power Generated 

 

 

Figure 8: Graph of Total Slope Irradiation and Output Power Generated 

 

 

Figure 9: Graph of Wind Speed and Output Power Generated 

 

TABLE 1:  REGRESSION BETWEEN INPUT VARIABLE AND 

OUTPUT VARIABLE 

Input Variable Regression, R2 

PV Module Temperature 0.8175 

Total Global Horizontal 
Irradiation 

0.8294 

Global Irradiance on Module 0.8299 

Total Horizontal Irradiance 0.0046 

Ambient Temperature 0.4918 

Total Slope Irradiation 0.0045 

Wind Speed 0.2100 

 

 7 input variables had been selected as input variables in 
developing forecasting model. 

B. Design of NARX-ANN Model 

For this paper, NARX-ANN will be developed using 

MATLAB. Initially the NARX-ANN model will experience 

training process, the training input and output variables will 

be defined and normalized to a value between -1 and 1. These 

data need to be normalized to a common scale to increase rate 

of convergence since these data have different range of 

values. Once the data normalization has completed, the type 

of back propagation algorithm will be set for the training 

process. Lavenberg-Marquardt algorithm (trainlm) is chosen 

for the training process since it is proven to have faster rate 

of convergence and widely used in many forecasting studies. 

The ‘trainlm’ algorithm will update the NARX-ANN weight 

and bias at every epoch and its performance will be evaluated 

based on the MSE value. The number of input lags or delays 

is 10 and the number of output lag is 12. 

 

 

Figure 10: Flowchart of NARX-ANN training and testing process 

 

ANN black box can be configured by adjusting the ANN 

learning rate, momentum rate and the number of neurons in 

hidden layer. The process of determining the correct values 

for these parameters to produce precise forecasting model 

will be time consuming as it is a try and error process. The 

‘trainlm’ algorithm and adjusting the NARX-ANN 

parameters do not guarantee the optimum solution can be 

found easily since the NARX-ANN method is well known to 

have its solution trap at the local minima. The trained NARX-

ANN data will be denormalized and saved at the end of the 

training process. 

For the testing process, the testing input and output 

variables are first called out. These data will undergo the 
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same process as in during training process where it will be 

normalized and denormalized at the end of the program. 

During testing, the data will undergo post processing process 

in which it will output the regression value and linear 

equation. The AC forecast data will be evaluated as having a 

strong regression if the testing process has a value 

approximately approaching to 1. 

In this research, series-parallel architecture will be 

implemented since the availability of true past values of time-

series as well as it has higher precision compares with parallel 

architecture. Based on Figure 11 below, series-parallel model 

uses the true values as input feedforward network rather than 

parallel model which use prediction value as input 

feedforward network. 

 

Figure 11: Design architecture of NARX-ANN model 

III. RESULTS 

The analysis comprises of inspection on regression of each 
input variables with the output variables as well as the process 
of preprocessing raw set of data. Total set of data are 52,058 
with 30 minutes of time interval. The results obtained from the 
forecasting model will be compare with the Multi Linear 
Regression method which using Microsoft Excel. The 
performance is evaluated based on the regression value. Less 
value in regression shows a weak correlation between the 
input and output variables. Table 2 below shows the value of 
multiple linear regression for 7 input variables which is 0.9449 
and the value of R2 is 0.8928. 

TABLE 2: REGRESSION STATISTIC OF MLR 

Regression Statistics 

Multiple R 0.944907898 

R Square 0.892850936 

Adjusted R Square 0.892836525 

Standard Error 4760.679889 

Observations 52058 
 

Figure 12 below shows the value of regression for testing 
which is at 0.99451 and the value of R2 is 0.98905. Based on 
these two results obtained, it shows that NARX-ANN have 
better performance compare with MLR.  

 

Figure 12: Regression performance of NARX-ANN 

 

Figure 13: MSE performance of NARX-ANN 

 

Figure 14: Graph of predicted output and actual output 

 

Figure 15: Graph of residual value of actual and predicted value 

 Figure 14 shows the graph of predicted output (green line) 
and the actual output (blue line). The difference of both output 
is called residual as shown in Figure 15. The efficiency of the 
forecasting model is greater if the residual value lesser. 
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IV. CONCLUSIONS

In this paper, NARX-ANN model is being developed to
increase the performance of forecasting model compared to 
MLR. A total 52,058 sets of data are used for training and 
testing of both method of prediction. From the results 
obtained, it shows that NARX-ANN model has better 
performance compared to MLR model in term of regression 
and MSE value.  
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Abstract— Nowadays, the development of different Large-

Scale Solar Photovoltaic (LSSPV) configurations with different 

capacity levels using various software tools to analyse the 

performance of the solar plant has become an interest in 

researchers and solar providers. This increase is attributed to 

the system's dependence on solar radiation, which serves as an 

abundant and environmentally sustainable energy source. 

However, the uncertain characteristics of the LSSPV 

significantly affect the efficiency of the solar system components, 

especially the inverter and transformer that supply power to the 

grid system. Therefore, to overcome this problem, it is crucial to 

develop the calibrated model of the LSSPV to ensure accurate 

and robust pre-analyses are done before replacing the 

malfunctioning components in the plant. In this paper, the 

calibrated model of a 2775 kW LSSPV grid connected based on 

UiTM Solar Park 1 at Gambang, Pahang, is used as a case study. 

The calibrated model is designed using MATLAB and Simulink, 

with power, AC and DC voltage, and power tolerances 

measured and analysed based on the Malaysia Energy 

Commission Standard. 

Keywords—Large-Scale Solar Photovoltaic, Matrix 

Laboratory, Maximum Power Point Tracking, Perturb and 

Observe, Standard Test Condition, Distributed Combiner Box 

I. INTRODUCTION 

Large Scale Solar Photovoltaic (LSSPV) is a solar PV 
plant with a minimum installed power rating of 1 MWAC up to 
a maximum of 50 MWAC connected to either a Transmission 
Network or Distribution Network in Peninsular Malaysia, 
Sabah, or Labuan as approved by the Malaysia Energy 
Commission [1],[2]. The awareness of the government to 
reduce carbon dioxide emissions along with the depletion of 
non-renewable resources became the catalyst for the change 
in energy resources from non-renewable energy resources 
such as oil, coal, and fuel to renewable energy resources such 
as wind, biomass, and solar. 

The location of Malaysia, which is strategically located 
close to the equator, provides a benefit as a potential country 
in Asia for LSS applications. Monthly solar irradiation for 
Malaysia is calculable at 400–600 MJ/ m2 [3]. The irradiation 
is higher throughout the North-East monsoon once the wind 
direction returns from central Asia to the South China Sea 
through Malaysia and eventually to Australia between 
November and March. Lower irradiation occurs during the 
South-West monsoon once the wind direction changes and 
yields from Australia and moves towards Sumatera Island 
before reaching the Straits of Malacca between May and 
September [3]. Generally, Malaysia encompasses a high 
potential for solar generation considering it is hot and humid 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

all year round, with the calculable potential for solar 
generation reaching up to 6500 MW [4]-[5].  

Previously, various models of LSSPV using different 
software tools to analyse the performance of LSSPV have 
been studied. The calibration of a 1 MW PV system at PV 
array, inverter, and transformer levels based on standard 
irradiance and temperature values of 1000 kW/m2 and 25 °C 
using MATLAB Simulink has been studied in [6]. The 3180 
of the TSM-315pa14a PV module can retain the voltage 
across the boost converter at 1500 V and match the 
transformer value to the grid with varied irradiance and 
temperature. Additionally, another study in [7] investigated 
the performance of the solar model in three different regions 
in Turkey, which are Izmir, Ankara, and Istanbul. The 35,460 
units of PV polycrystalline module with 250 W at a 30° tilt 
solar panel angle and 391 units of GW20K-DTL inverter 
provide efficiency up to 98.4%. The PV module based on the 
monocrystalline type has been proposed in [8] and [9]. In [8], 
the 1428 unit of Sharp PV monocrystalline module of 175Wp 
with the titled angle of 10 ° is used to design a 250 kW grid-
connected solar plant in Iraq. The 10 units of SMA solar 
inverters with the 400 V inverter output produce total annual 
energy up to 346692 kWh. Meanwhile, in [9], the 704 units of 
Sunmodule SW 285 monocrystalline modules with a titled 
angle of 25 ° were used to design a 200 kW solar plant in 
Dubai. The 3 units of Sungrow SG60KTL with a capacity of 
60 kVA, produce a total annual energy of 352.6 MWh. The 
studies in [6],[7], [8] and [9] provide valuable insights into the 
performance of PV systems. But the calibrations in [6],[7], [8] 
and [9] do not comply with the Malaysia Grid Code [1],[2]. 

The studies in [10] and [11] have examined the potential 
of LSSPV systems in Sabah. In the study [10], a total solar 
capacity of 5 MW was achieved using 15,625 units of multi-
crystalline PV modules provided by JA Solar. Furthermore, in 
[11], a total solar capacity of 48 MW was achieved using 24 
units of Huawei WECC dynamic PV inverters. However, 
these studies provide limited discussion on the specific 
parameters and specifications of the inverters and 
transformers used in the design of the LSSPV model. 

It is crucial for the PV system developers, installers, and 
operators to ensure the LSSPV design is in compliance with 
the specific requirements outlined in the Malaysia Grid Code. 
This compliance prevents potential grid disturbances, ensures 
safe operation, and maintains the overall integrity of the power 
supply as the PV systems are in alignment with the required 
technical standards and specifications. Therefore, it is 
important to develop a calibrated model of the LSSPV to 
avoid suboptimal design and false analysis of the LSSPV 
performance. 
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In this research, a 2775 kW LSSPV system is designed 
utilising a PV polycrystalline module from JinKO Solar and 
the Sungrow SG2500 MW solar inverter. The design and 
calibration processes of an LSSPV involve the utilisation of 
MATLAB and Simulink software. The performance of the 
simulation model of an LSSPV at the DC and AC sides is 
calibrated based on Malaysian Standard in [12], [13], [14] and 
[15].  

II. OVERVIEW OF THE 2775 KW LSSPV

The 50 MW UiTM Solar Park 1 located in Gambang, 
Pahang, was used as a case study. It consists of 22 blocks, with 
each block consisting of 88 units of sub-inverters and 22 units 
of transformers. Each block has the capability to generate up 
to 2775 MW. However, in this paper, one block of the PV 
system in UiTM Solar Park 1 is analysed as shown in Figure 
1. 
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90 MVA

132 /33 kV

60 MVA

SSU 1

Aerial Bunded Cable (ABC) 

6 km

DCB

A total 
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DCB
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of 7

DCB DCB
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of 7

DCB DCB
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DCB

0.36 /33 kV

25 MVA

4 Sub 

Inverter

Fig. 1. The single line diagram of 2775 kW LSSPV connected to the grid 

system. 

Figure 1 shows the single line diagram of a 2775 kW 
LSSPV connected to the grid system. Generally, it can be 
divided into DC and AC sides. On the DC side, there are 7 
smart PV DC Combiner Boxes (DCB) with 16 strings in 
parallel, consisting of 20 solar PV modules connected in 
series. This connection is crucial to ensuring the numerous 
outputs from the PV module feed each sub-inverter 
efficiently. On the AC side, it consists of 4 sub-unit inverters 
and 1 unit of transformer. The 7 smart PV DCBs with 16 
strings in parallel connected to each sub-unit inverter 
construct a total of 420 strings in parallel to the PV array. The 
output from the inverter is then stepped up through a 360 
kV/33 kV transformer before the power is delivered to the grid 
connection point. 

III. THE 2775 MW LSSPV DESIGN COMPONENT

The single-line diagram of the 2775 kW LSSPV used in 
this research is shown in Figure 2. 
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Fig. 2. The 2775 kW LSSPV component and control circuit.  

It is shows that LSSPV system consists of a PV array, DC 
filter, three-phase inverter, step-up transformer, and grid 
interconnection point. The PV array is connected to the DC 
filter before the DC output is converted to the AC output. The 
output from the DC filter will then be converted to the AC 
output using a three-phase inverter before being stepped up to 
a 33 kV transformer. The output from the transformer will 
then be delivered to the grid system. The details explanation 
on the parameter, configuration and control system of the 
component used are explained in the section below. 

A. Jinko Solar PV Module

The JKM330PP-72-V PV Panel from Jinko Solar Co., Ltd.
[16] is used as a PV module array in this research. The 72
poly-crystalline cells of solar modules can generate power up
to 330 Wp. The PV array specification for JKM330PP-72-V
is shown in Table I.

TABLE I. THE SYSTEM SPECIFICATION FOR THE 330W OF  

JKM330PP-72-V 

No. Parameter Rating 

1 Maximum Power Voltage (Vmp) 37.8 V 

2 Maximum Power Current (Imp) 8.74 A 

3 Open- Circuit Voltage (Voc) 46.9 V 

4 Short- Circuit Current (Isc) 9.14 A 

5 Module Efficiency STC (%) 46.9 V 

6 Operating Temperature (°C) -40 °C ~ + 85 °C 

In the first stage of PV system design, the PV array is 
constructed by determining the total number of series 
connections for the PV modules, (Ns) and the total number of 
parallel strings, (Np). In this research, 420 parallel strings with 
20 PV modules in series are used to build the PV array. The 
expected PV array voltage and power obtained under Standard 
Test Conditions (STC) for solar irradiance of 1000 W/m2 and 
a temperature of 25 °C can be calculated using eq (1) and (2). 
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From eq (1) and (2) with respect to the data specification 
in Table I, it shows that the expected voltage and power of the 
JKM330PP-72-V with 420 parallel strings and 20 PV modules 
in series are 720 V and 2775 kW at STC level. 

B. Sungrow Medium Voltage Turnkey Station Inverter

In this research, the DC output from the JKM330PP-72-V
will be converted to the AC output using the SG2500-MV 
Inverter from Sungrow Power Supply Co.[17]. The MV 
turnkey station is a comprehensive and fully integrated 
solution that is specifically designed to operate in conjunction 
with the SG2500-MV inverter. It encompasses a range of 
essential components such 4-unit sub inverters integrated with 
one Maximum Power Point Tracking (MPPT), a transformer, 
switchgear, protection devices, monitoring systems and 
control system as shown in Figure 3.  
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Fig. 3. The SG2500 MW inverter with MPPT controller, PQ measurement 

and switching control. 

These elements are combined to ensure the effective and 
efficient functioning of the voltage generation from the PV 
array at the desired voltage level for grid connection. To 
ensure the inverter extracts the maximum available power 
from the PV array under varying irradiance or temperature, the 
MPPT based on the Perturb and Observe (P&O) algorithm 
[18] is implemented as shown in Figure 4.

Fig. 4. The flow diagram of the Perturb and Observe (P&O) algorithm. 

The MPPT system continuously measures the input PV 
array DC voltage, V(k), and current, I(k), to calculate the 
measured output power, P(k), of the PV panel at the current 
duty cycle. The reference power output, P(k-1), obtained from 
previous iterations will be compared with P(k). If P(k) - P(k-
1) is equal to zero, then the algorithm will maintain the duty
cycle since the PV system has reached the MPPT. If P(k) -
P(k-1) is larger than zero, the Vref will decrease by a small
step size to move the voltage towards the MPPT since the
power has increased with the perturbation.Meanwhile, if the
P(k) - P(k-1) is smaller than zero, the Vref will increase by a
small step size to move the voltage towards the MPPT since
the power has decreased with the perturbation.

The iteration of the P&O algorithm will continuously 
measure the input PV array voltage and current, calculate the 
output power, and adjust its operating voltage within the 
MPPT range.  To track the MPP of the PV array, the reference 
voltage, Vref is modified within the voltage range of 520 V to 
850 V. This adjustment allows the algorithm to automatically 
vary the Vdc_ref signal of the inverter to ensure optimal 
operation and power extraction from the PV array. 

The Vdc_ref generated from the MPPT will be compared 
with the Vdc_measured in the voltage regulator to determine 
the active current reference, Id_ref. In addition, the three-
phase grid voltage, Vgrid, and current, Igrid, are measured and 
transformed into an active and reactive voltage, VdVq_prim 
and current, IdVq_prim. Both outputs from the voltage 
regulator and PLL feed to the current regulator to determine 
the required reference voltages for the inverter, VdVq_conv. 
Then, the PWM generator will inject the signal to the IGBT to 
control the flow of current in the inverter circuit and hence 
convert the DC output to AC voltage based on the reference 
generation voltage, Uref. The IGBT will control the switching 
of the inverter to ensure the inverter generates a desired output 
voltage waveform within the AC voltage range. The SG2500 
MW inverter specifications are shown in Table II. 

Ns = Vpv (1) 
Vmp 

20 = Vpv 

37.8 

Vpv = 756 V 

Np 
= Pmax (2) 

Vpv 

Imp 

420 
= 

Pmax 

756 

8.74 

Pmax = 2775 kW 
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TABLE II. THE SYSTEM SPECIFICATIONS FOR THE SUNGROW SG2500 

MW SOLAR INVERTER 

No. Inverter Parameter Rating 

1 

DC 

Maximum PV input voltage 1000 V 

2 Minimum PV input voltage 520 / 540 V 

3 
MPP voltage range for 
nominal power 

520 - 850 V 

6 

AC 

AC output power 2520 kVA at 50 °C 

7 
Maximum inverter output 
current 

4444 A 

8 AC voltage range 6 - 40.5 kV 

9 Adjustable power factor 
> 0.99 / 0.8 leading - 

0.8 lagging 

From Table II, it is shown that the inverter can produce the 
AC voltage output within the range of 6 kV up to 40.5 kV to 
ensure compatibility with the AC grid and compliance with 
applicable harmonic distortion limits standards as stated in 
Engineering Recommendation ER G5/4-1[19]. As depicted in 
Figure 3, the Dy11 transformer integrated with the inverter 
improves the reliability and efficiency of the power 
transmission from the inverter to the grid. The transformer 
enables efficient power transfer and minimises voltage 
mismatches or imbalances by stepping up or stepping down 
the output voltage of the inverter to match the grid voltage 
requirement. Table III shows the detailed specification of the 
transformer integrated with the inverter.  

TABLE III. THE DELTA-WYE TRANSFORMER SPECIFICATION  

No. Parameter Rating 

1 Rated Power 2500 kVA 

2 Primary Voltage  33 ± 2*2.5 % kV 

3 Secondary Voltage 0.36 kV 

4 Impedance Voltage 6.0 % 

Table III indicates that at rated power of 2500 kVA, the 33 
kV delta connection at the primary transformer connected to 
the grid side to handle higher voltage levels varies from 31.35 
kV to 34.65 kV with a voltage tolerance of ±2*2.5%. 
Meanwhile, the inverter will be connected to the 0.36 kV wye 
connection at the secondary transformer with a fixed voltage 
rating. It is important to ensure the plant does not contribute 
zero-sequence current to the grid system during fault 
occurrences [19]. 

C. 132 kV Grid Connected Transformer

The YNd1 transformer from Changzhou XD Transformer
[20] is used at the transmission level as shown in Figure 2. The
transformer used to step up the voltage from 33 kV to 132 kV
to facilitate the connection of the PV system to the high-
voltage grid. The integration of 0.36/33 kV transformers and
the 132/33 kV transformer enables efficient transmission and
distribution of the generated electricity from the PV system to
feed power into the electrical grid at a higher voltage level.
Table IV shows the detailed specification of the 132/33 kV
transformer.

TABLE IV. THE SYSTEM SPECIFICATIONS FOR THE 132/33 KV 

TRANSFORMER  

No. Parameter Rating

1 Transformer Rating 60 MVA 

2 Upper limit on controlled voltage, Vmax 145.23 kV 

3 Lower limit on controlled voltage, Vmin 112.16 kV 

IV. LSSPV CALIBRATED SIMULATION MODEL

IMPLEMENTATION IN MATLAB SIMULINK

In this research, the design model based on MATLAB and 
Simulink is used as shown in Figure 5. 

Fig. 5. The 2775 kW design model using MATLAB and Simulink. 

Using Figure 5, the PV array voltage, power and Total 

Harmonic Distortion (THD) at a nominal temperature of 25 

°C were simulated and analyzed for three distinct irradiance 

levels such as STC, moderate, and low. The 1000 W/m2 

irradiance values indicate the STC irradiance level. It is used 

as the baseline for PV module testing and comparison to 

assess the performance of PV modules under ideal 

temperature and irradiance levels. To analyse the performance 

of the PV module at moderate irradiance levels during normal 

daylight conditions, the 600 W/m2 and 800 W/m2 irradiance 

values are implemented. Meanwhile, the 200 W/m2 and 400 

W/m2 irradiance values are used to analyse the PV module 

performance at the low irradiance level during cloudy or 

partially shaded environments. 

A. PV Array Voltage and Power at 25 °C under Varying

Irradiance Conditions

Figure 1 shows the actual PV array voltage, Vpv and
power, Ppv values vary as the irradiance value varies from 200 
W/m2 to 1000 W/m2 at a constant temperature of 25 °C. 

Fig. 6. The actual PV array voltage and power for different irradiance levels 

at 25 °C  
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The actual PV array voltage, Vpv and power, Ppv values 
at the STC irradiance level are 756 V and 2775120 W, which 
approximate the calculated PV array voltage and power values 
in eq. (1) and (2). Figure 6 shows the measured PV array 
voltage and power obtained through the simulation.  

(a) 

(b) 

Fig. 7. The measured output waveform of a PV array for different 

irradiance levels at 25 °C (a) PV array voltage and (b) PV array power. 

The comparison between actual and measured PV array 
voltage and power based on IEC 61727 [12] and the 
manufacture standard at a constant temperature of 25 °C in 
Figures 5 and 6 has also been analysed in Table IV. 

TABLE V.  COMPARISON BETWEEN ACTUAL AND MEASURED PV 

ARRAY VOLTAGE AND POWER BASED ON IEC 61727 AND THE 

MANUFACTURE STANDARD 

Irradiance 

(W/m2) 

PV Array Voltage (V) PV Array Power (kW)

Actual 

Value 

(V) 

Measured 

Value (V) 

Voltage 
Tolerance 

(±1 %)

Actual 
Value 
(kW) 

Measured 
Value 
(kW)

Power 
Tolerance 

(±3 %)

200 752.613 752.882 -0.035 553.094 538.867 2.572 

400 764.251 763.856 0.051 1121.570 1135.69 -0.012 

600 764.629 765.481 -0.111 1682.480 1668.39 0.008 

800 761.31 762.042 -0.09 2230.990 2230.96 0.001 

1000 756 757.246 -0.164 2775.120 2751.57 0.848 

Table III shows that the tolerance of the PV array voltage 

at varying irradiance levels is below ±1% as required in the 

IEC 61727 standard. Meanwhile, the PV array power is below 

the power tolerance of ±3% as specified in the JKM330PP-

72-V datasheet at varying irradiance levels.

B. Grid Connection Point Voltage and  Power At 25 °C

Under Varying Irradiance Level

The calibration of the LSSPV on the AC side has also

been analysed. Figure 8 shows the measured DC voltage, 

Vdc, is aligned with the reference DC voltage, Vdc_ref, by 

maintaining a voltage across the DC link at 756 V. 

Fig. 8. The DC link voltage measure across the DC capacitor at varying 

irradiance level values at 25 °C. 

The alignment of this DC voltage indicates the 
synchronization of the output from the transformer with the 
grid, as shown in Figures (8) and (9). 

Fig. 9. The three-phase voltage at PCC at varying irradiance level values at 

25 °C. 

Fig. 10. The three-phase current (Ipcc) at PCC against Time (s) for varying 

Irradiance levels at 25 °C. 

The alignment and synchronization of the system can be 

visually observed in Figure 10, where the output voltage and 

power waveform display a symmetrical and balanced 

condition with varying irradiation levels. Additionally, the 

alignment and synchronization of the transformer with the 

grid can be assessed by examining the Total Harmonic 

Distortion (THD) of the output voltage at the Point of 

Common Coupling (PCC), as depicted in Figure 11. 

  (a)    (b)  
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  (c)    (d)  

(e) 

Fig. 11. The THD for Three-Phase Outptu Voltage at PCC at 25 °C (a) PV 

array at 1000 W/m2 (b) PV array at 800 W/m2 (c) PV array at 600 W/m2 (d) 
PV array at 400 W/m2 (e) PV array at 200 W/m2 

It can be observed that the THD of the three-phase output 
voltage remains below the permissible limit of 3% at 33 kV, 
as mandated by ERG5/4 [19][21]for varying irradiance levels. 
From Figure 11(a), it is observed that at the highest irradiance 
level of 1000 W/m2, the THD is 0.54%, whereas the THD 
output voltage is 0.19% for the lowest irradiance level of 200 
W/m2. It is crucial to ensure the voltage harmonic is within 
acceptable limits to maintain the quality and reliability of the 
power supply to the grid. 

CONCLUSION 

In this research, a calibration model for a 2755 MW Large-
Scale Solar Photovoltaic (LSSPV) system is developed using 
Matlab and Simulink software. The parameters and 
components utilised in the model are based on UiTM Solar 
Park 1, located in Gambang, Pahang. The analysis in this 
research primarily concentrates on evaluating the performance 
of the DC and AC sides of the LSSPV system under constant 
temperature conditions while varying irradiance levels such as 
output voltage, power, and Total Harmonic Distortion (THD) 
are considered. The obtained results show that the calibrated 
LSSPV system operates within the set parameters and satisfies 
the quality and performance requirements set forth by 
pertinent standards and regulations such as IEC 61727, 
ERG5/4, manufacturing standards, and the Grid Code for 
Peninsular Malaysia. 
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Abstract— Dye-sensitized solar cell (DSSC) has attracted 

great deal of interest in the recent years due to its easy and low-

cost fabrication process compared to silicon solar cells. TiO2 is 

a transparent to visible light n-type wide band gap 

semiconductor. The DSSC convert visible light into electrical 

energy through charge separation in sensitizer dyes adsorbed on 

a wide band gap semiconductor. TiO2 paste in this study were 

prepared using TiO2 powder synthesised by the sol-gel method 

and commercial powder. The comparison study on the 

structural, morphological and optical characterisations of the 

TiO2 were carried out using X-ray diffraction (XRD), FESEM, 

and UV–vis spectroscopy in this study. The XRD pattern detects 

the formation of the amorphous phase of TiO2 structured thin 

films for both thin films when TiO2 supposed to be highly 

crystalline either in anatase or rutile phase. FESEM images 

show that TiO2 synthesis by sol-gel consist more uniform 

morphology compared to commercial TiO2 which consists 

highly agglomerated and uneven shape of particles. The 

bandgap energy of the TiO2 thin films were calculated based on 

the UV–visible absorbance spectra of TiO2 thin films were 2.16 

eV and 3.05 eV for sol-gel synthesised and commercial TiO2 

respectively. The results obtained suggest improvement on the 

coating for better optimisation for DSSC application. 

Keywords—TiO2, sol-gel, commercial TiO2, DSSC, solar cell 

I. INTRODUCTION

The third generation of solar cells, known as dye-
sensitized solar cells (DSSC), were created in 1991 by 
O'Regan and Gratzel. Due to its remarkable effectiveness, 
affordable cost of production, lighter weight and low toxicity, 
DSSC have attracted a lot of interest [1]. Although they are 
still regarded as having lesser efficiency than crystalline solar 
cells, these solar cell forms are more efficient than other thin 
films [2]. Previously, large semiconductor materials like CdS, 
Si, or GaAs were used to make photoanodes for the older 
generation of solar cells. The disadvantage of these 
photoanodes is that they become electrochemically unstable 
due to photo-corrosion when exposed to light. The broad 
bandgap of the sensitised semiconductors (such ZnO, TiO2, 
and SnO2) is around 3 eV. They provide a chemically stable 
cell when used in the creation of DSSC because they are 
resilient to the photo-corrosion [3]. In DSSC, wide bandgap 
semiconductors are sensitised which that sensitization then 
use to convert visible light into electricity [4].  

As a result of their huge surface area for dye anchoring, 
nanostructured metal oxide coatings are particularly appealing 
for DSSCs. The semiconductor component which makes up 
the core of a photoelectrode (PE) must be chemically stable 
and undisturbed by electrolyte species. It should be existent in 
nanostructure form by a factor of a thousand to optimise the 
effective surface area for dye adsorption, hence enhancing the 
effectiveness of sunlight harvesting, and its lattice structure 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

should be suitable for dye bonding. It should have a 
conduction band that is just below the dye's LUMO level to 
facilitate electron injection [5]. TiO2 is usually used as the 
photo-anode (working electrode) material and I- or I3- as the 
redox couple in the most common and basic DSSC. [6]. 

 Mesoporous TiO2 nanoparticles with surface areas 
ranging from 50 to 250 m2/g are the most commonly 
employed in DSSC fabrication. Transparent conductive oxide 
(TCO) glass's conductive side is covered with a TiO2 coating. 
The most common TiO2 coating techniques are screen 
printing, the doctor blade method, spin coating, 
electrophoretic deposition, and tape casting, followed by a 
high temperature heat treatment to remove organic binders 
and obtain a pure TiO2 film, as well as to enhance the inter-
particle between TiO2 nanoparticles [3]. Within known 
synthesis methods, the sol-gel method is preferable for 
producing nanomaterials since it does not require complicated 
preparations and the synthesis process only require ambient 
temperature and pressure. The hydrolysis or condensation of 
a titanium precursor produces a sol and then a gel in sol-gel 
synthesis. Immediately after solvent evaporation, a xerogel is 
formed, which is milled and heat treated to yield highly 
crystalline TiO2 nanopowders [7]. 

Nanoporous TiO2 electrode with huge surface area per 
projected area was employed to maximise effective light 
absorption [8]. TiO2 is found in three polymorphisms: rutile, 
anatase, and brookite. The rutile structure is the most 
thermodynamically stable of the three, whereas the other two 
are metastable. TiO2 from the anatase phase has a larger 
energy band gap of 3.2 eV than TiO2 from the rutile phase, 
which has a band gap of 3.0 eV, which improves photoactivity 
and makes it ideal for DSSC applications [9]. 

Considering its non-toxic nature, good optical and 
electrical capabilities, and great stability in DSSC and 
photocatalytic applications, titanium dioxide (TiO2) is a 
promising material for diverse applications among the 
numerous semiconducting metal oxide nanomaterials. 
Anatase-TiO2 is employed as a photoanode in DSSC and as a 
photocatalyst for organic molecule degradation because it is 
an effective charge separator of photoexcited charge carriers. 
The efficacy of DSSC and photocatalytic applications is 
primarily determined by the amount of dye molecules 
adsorbed on TiO2 surfaces, the number of photons absorbed 
by the dye molecules for efficient electron harvesting, and the 
number of electron-hole pair recombinations. Several 
approaches have been used by researchers to move TiO2 
absorption into the visible area [10]. 
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II. METHODOLOGY

A. Preparation of TiO2 Nanoparticles by Sol-Gel Method

The chemicals used are all analytical grade and have not
been further refined. In order to prepare the sol-gel 
synthesised TiO2, 50 ml of titanium (IV) butoxide was mixed 
in absolute 50 ml of ethanol and agitated for an hour. After 
that, the solution was gradually diluted with 25 ml of 
deionised water. The resultant gel formed nearly 
instantaneously and was agitated for a few minutes more. 
After 24 hours, the solution will be filtered. It will then spend 
the next 12 hours in an oven set to 100°C, evaporating any 
remaining water and organic material. After drying, the 
material was processed into a fine powder. 

B. Preparation of TiO2-Coated Thin Film

To prepare TiO2 paste from the prepared powder, 2 g of
TiO2 powder was mixed with 100 ml ethyl alcohol for 30 
minutes until a homogeneous paste was produced. Keep the 
solution in the dark prior to use. 

Prior to coating, the glass substrate was cleaned in the 
sonicator for 15 minutes with ethanol and deionised water 
alternately. After cleaning and drying, the substrate was 
placed on the spin coater holder and 10 drops of TiO2 solution 
were dropped with 3000 rpm speed onto the cleaned glass 
substrates for 1 layer coating. After dispersing TiO2 particles 
throughout the glass substrate, it was annealed at 100°C for 10 
minutes. The coating procedure was repeated for the second 
layer. The final coating was annealed for 30 minutes at 500°C. 
The method was used for both paste using commercial and 
sol-gel synthesised TiO2 powder. 

C. Characterisation

X-ray diffraction (XRD) was used to determine the phase

of the thin film spin coated with different layers. FESEM was 

used to study the surface morphology of the TiO2. UV-

Visible spectrometer was used to analyse the transmittance 

and bandgap energy of both type of TiO2 in the range of 300 

nm to 800 nm. 

III. RESULTS AND DISCUSSION

The photocatalytic property of titania is affected by 
various variables, including crystallinity, surface area, phase 
state, and bandgap [3]. To identify the phase composition of 
the TiO2 anode for both commercial (C-TiO2) and sol-gel 
synthesised TiO2 (SG-TiO2), XRD characterisations were 
carried out, and the resulting diffraction pattern was plotted as 
shown in Figure 1 with measurement ranges ranging from 10◦ 
to 90◦. The XRD pattern detects the formation of the 
amorphous (non-crystalline phase) of TiO2 structured thin 
films for both thin films when TiO2 supposed to be highly 
crystalline either in anatase or rutile phase. However, 
tendency peak of anatase can be seen at 25◦ for both samples 
which shown that anatase supposed to be the dominant phase 
for both samples. This is due to the properties of anatase phase 
which exhibit a preferred orientation. Improvisation on the 
sample preparation (sol-gel and coating) should be done to 
avoid any impurities which lead to a reduction in the intensity 
of certain diffraction peaks or even their complete absence. 

According to prior research, anatase phase was frequently 
observed in TiO2 thin films used for photocatalysis. The 
observed anatase peaks occur at 25.24, 37.78, 48.12, 53.94, 
and 55.15, which are assigned to the (101), (004), (200), (15), 
and (211) planes, and are in good agreement with the standard 

spectrum. (JCPDS NO.: 88–1175 and 84–1286) [11] [12]. In 
fact, it has been demonstrated that anatase functions as an 
indirect semiconductor, and hence electron desexcitation from 
the conduction band to the valence band is prohibited by 
selection criteria. As a result, anatase has a higher electron-
hole lifetime than rutile, which works as a direct 
semiconductor with a shorter carrier lifetime [7]. 

In relation to the less-constrained molecular construction 
of anatase compared to rutile, the initial phase formation of 
crystalline TiO2 in the synthesis of TiO2 is generally anatase 
phase, and thus the short-range ordered TiO6 octahedra can be 
easily arranged into long range anatase structure. In other 
words, because of its less limited structure and hence 
improved formation kinetics, anatase is the favoured phase 
production during TiO2 synthesis. The sol-gel process is 
commonly used to convert kinetically stable anatase to 
thermodynamically stable rutile at increased temperatures 
ranging from 500°C to 700°C [13]. 

In general, the sol-gel generated precipitates in the sol gel 
technique are amorphous in nature. As a result, additional heat 
treatment is needed for crystallisation. To cause the transition 
from amorphous to anatase phase, an annealing temperature 
more than 300°C is usually necessary, resulting in a 
substantial increase in particle size. Titania's photocatalytic 
activity, on the other hand, is affected by particle size as well 
as crystallinity [14]. 

Fig. 1. XRD spectra of sol-gel synthesised and commercial TiO2 

FESEM images in Figure 2 and 3 show that TiO2 
synthesised by sol-gel consist more uniform morphology 
compared to commercial TiO2 which consists highly 
agglomerated and irregular shape of particles. It appeared 
that both samples had porous morphology, but there was a 
significant particle size difference between them. The particle 
size of the two samples was measured using Image J software, 
and their average was determined to be 586 nm and 327 nm 
for SG-TiO2 and C-TiO2 respectively. 

The irregular particle agglomerates and aggregates that are 
mainly because of the high surface energy of the materials, 
which tend to cluster and clump together to minimise their 
surface energy [15]. The particle size of TiO2 synthesized by 
sol-gel method were about the same size as the commercial 
but the nanoparticles agglomerated as colonies [16]. 

Previous research suggested that the particle size of SG-
TiO2 was approximately 60% smaller than that of C-TiO2, 
which can be attributed to the hydrolysis of Ti(OBu)4 in an 
ethanol-water mixture, where water-immiscible byproducts 
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such as butanol functioned as a capping agent for the as-
formed TiO2 particles. The presence of nanoparticle 
agglomeration was apparent in both samples, which could be 
resulting to the usage of ethanol. Larger TiO2 particle sizes 
result in poor photon diffusion towards the inner region of the 
TiO2 layer. This decreases the amount of photogenerated 
carriers, resulting in a negligible contribution to the 
photocurrent. Furthermore, larger particle size increases the 
rate of electron-hole pair recombination. The quantity of 
charge carriers drops substantially when more electrons and 
holes recombine, resulting in reduced photocurrent detection. 
To account for the combination of these properties, SG-TiO2 
has a low photocurrent profile. [11]. The ideal nanoparticle 
size for TiO2 paste synthesised is less than 20 nm to be 
deposited on a transparent conductive oxide (TCO) substrate. 
[17]. 

Fig. 2. FESEM images of commercial TiO2. Images 1 (5,000x 

magnification, bar = 1μm), Image 2 (10,000x magnification, bar = 
1μm), Image 3 (30,000x magnification, bar 200nm) and Image 4 

(50,000x magnification. bar =200nm). 

Fig. 3. FESEM images of sol-gel synthesised TiO2. Images 1 (5,000x 

magnification, bar = 1μm), Image 2 (10,000x magnification, bar = 

1μm), Image 3 (30,000x magnification, bar 100nm) and Image 4 

(50,000x magnification. bar =100nm). 

The transmittance of C-TiO2 and SG-TiO2 has been 
reported to increase as a function of wavelength ranging from 
300-800 nm, as illustrated in Fig. 4 . However, both have low
transmittance values of 10-40% (C-TiO2) and 50-60% (SG-
TiO2). High transmittance (>85%) for the sample is crucial in
solar cell applications because energy requires being
transported from one particle to another in the sample to
achieve high efficiency [18].

Based on the absorbance spectra obtained from UV-Vis 
characterisation and using Beer’s law, the optical band gap 
energy (Eg) was estimated using Tauc’s model by using this 
following equation: 

αhν = A(hν − Eg)n  (1) 

where α is the absorption coefficient, Eg is the 
nanoparticle band gap value, hν is energy of photon and A is 
the constant associated with the effective masses of the bonds; 
n indicates the transition nature; n = 2 indicates allowed 
indirect transitions. It was estimated by extrapolating the 
linear portion of (αhν)2 vs photon energy curve to the photon 
energy axis respectively [19].  

The bandgap energy of the TiO2 thin films measured were 
2.16 eV and 3.05 eV for sol-gel synthesised and commercial 
TiO2 respectively. According to the previous study, the energy 
band gap of the commercial TiO2 obtained was larger than 
TiO2 synthesised via sol-gel [15]. The rise in band gap is 
related to the decrease in crystallite size, which determines 
quantum size. Lowering the pH resulted in a noticeable drop 
in crystallite size, which can be associated with an increase in 
the band gap [20]. The transmittance value also reduces as the 
annealing temperature rises. This reduction in crystallite size 
and particle aggregation reduces light dispersion and hence 
increases transmittance [19]. The bandgap energy for TiO2 
basically decreases if modification of TiO2 (for example 
doping) is done. 

Narrowing the band gap allows visible light to be 
absorbed, promoting solar photon energy conversion. The 
fundamental reason for band-gap narrowing is increased 
interfacial Ti-Ti electronic bonding as packing density 
increases. The newly produced TiO2's reduced band gap can 
employ a greater fraction of solar energy, and light absorption 
can be extended to the visible range (approximately 40% of 
the solar spectrum), making it more efficient for solar energy 
conversion. [19]. Meanwhile, the rise in band gap can be 
attributed to the reduction in crystallite size, which determines 
the quantum size impact and causes a blue shift in the 
absorption edge in optical reflectance. Lowering the pH 
resulted in an evident drop in crystallite size, which can be 
associated with an increase in the band gap [20]. 

Fig. 4. Transmittance spectra of sol-gel synthesised and commercial TiO2 
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Fig. 5. Tauc plot of sol-gel synthesised and commercial TiO2 

IV. CONCLUSION

Theoretically, the sol-gel process has numerous 
advantages, including its low crystallisation temperature and 
high yield, as well as its cost-effectiveness and outstanding 
compositional control over the arrangement of the atoms. 
Many factors influence nanoparticle qualities, including basic 
shape, surface area, porosity, etc. Based on the obtained 
results, improvisation needed in the sample preparation prior 
to characterisation to obtain desirable results for DSSC 
application. 
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Abstract— As climate change poses significant 

environmental and societal challenges, there is a growing need 

for innovative building automation and energy management 

solutions. This chapter examines the role of the KNX system in 

combating climate change by increasing energy efficiency, 

advocating sustainable practices, and adapting to shifting 

environmental conditions. The beginning of the chapter 

emphasizes the significance of energy efficiency in preventing 

climate change. Integrating sensors, actuators, and controllers 

demonstrates how the KNX system optimizes energy 

consumption and reduces carbon emissions. By facilitating 

precise control and automation, the KNX system reduces energy 

waste and supports the operation of green buildings. In addition, 

the chapter examines the KNX system's ability to contribute to 

sustainable practices. The chapter also explores how the KNX 

system facilitates the surveillance and analysis of energy 

consumption, thereby providing valuable insights for 

identifying energy-saving opportunities and optimizing building 

performance. This chapter concludes by emphasizing the 

importance of the KNX system in addressing the challenges of 

climate change. Its ability to increase energy efficiency, promote 

sustainable practices, and adapt to changing environmental 

conditions makes it a valuable tool for building automation and 

energy management strategies to mitigate climate change 

impacts. 

Keywords— KNX System, Climate Change, Building 

Automation System, Energy saving 

I. INTRODUCTION 

Climate change is considered one of the 21st century's 
most significant threats [1]. A total of 195 states agreed to 
reduce their greenhouse gas (GHG) emissions to prevent 
irreversible impacts of global warming after the 21st Meeting 
of the Parties to the United Nations Framework Conference 
on Climate Change (UNFCCC) convened in Paris [2]. 
Electricity and heat generation account for a fifth of the overall 
worldwide GHG emissions [3], which is one of the reasons 
countries worldwide are trying to make their electricity 
networks more sustainable. 

Energy-efficient activities will help to minimise 
greenhouse emissions and climate change impacts. In line 
with the report in [2], Malaysia’s Government is 
implementing various energy efficiency (EE) programs and 
initiatives. Among them is the National Energy Efficiency 
Action Plan (NEEAP), where the Government targets to save 
8% of energy, that is, 52,223 GWh over a 10-year period from 

2016-2025 [4]. Hailing the latest technology elements in the 
new era will accelerate the EE potential. The presence of an 
automation system, such as a Building Automation System 
(BAS), is an essential prerequisite for engaging in a demand 
response (DR) program. It can also substantially minimise 
energy usage [5]. 

BAS consists of a control system to monitor and tracks 
building facilities for heating, cooling, ventilation, air 
conditioning, illumination, shading, security and warning [6]. 
BAS is used to automate the control process of electrical load 
in domestic or office buildings. As well-built and run, BAS 
provides comprehensive capabilities to maximise energy 
efficiency in numerous systems [7]. There are extensive 
domestic demands to build smart BAS with the required 
versatility and adaptability at an affordable cost reduction to 
recover investment in energy efficiency while retaining the 
desired level of comfort and consumer demands [8]. 
Integrating the new technology will drive the optimal output 
to the greatest extent. BAS technology includes BACnet, 
KNX, LonWorks [9], Modbus [6], ZigBee or EnOcean, X10, 
and Z-Wave [10]. The authors in [11] suggest that BAS, 
machine learning, IoT and significant data innovations are 
alternatives that aim to increase energy efficiency.  

This paper aims to investigate how the KNX system can 
play a part in mitigating the effects of climate change by 
increasing energy efficiency, fostering more environmentally 
friendly practices, and better adapting to shifting 
environmental conditions regarding the critical benefits of 
KNX Automation [12].  

Fig. 1. Key Benefits of KNX Automation for Buildings [12]. 

29



II. KNX SYSTEM IN CLIMATE CHANGE MITIGATION AND 

ENERGY EFFICIENCY 

A. Optimisation Of Energy Consumption

In modern times, when climate change is getting more
drastic, and issues like CO2 emission and energy efficiency 
are becoming increasingly important, it is necessary to find 
possible energy savings in every area. To achieve these 
possible savings in the residential area, it is essential to 
establish Intelligent Building Automation in residential 
buildings. The importance of energy efficiency in climate 
change mitigation demonstrates how the KNX system 
optimises energy consumption by integrating sensors, 
actuators, and controllers. By providing efficient control and 
automation, the KNX system reduces energy waste and 
carbon emissions, contributing to sustainability. 

Building automation and control systems (BACS), like 
KNX, are one new strategy [13] proposed for improving 
building energy efficiency. Therefore, [14] designed a lighting 
control network to decrease the energy consumption of a 
commercial building, using the KNX system to calculate an 
82.33% reduction in energy consumption. Similarly, carbon 
dioxide (CO2) emissions, one of the leading greenhouse gases 
contributing to climate change, were 85% lower. With these 
results, we acquire economic and environmental benefits; as a 
result, the same procedure is proposed for the control of air 
conditioning systems, whose operation accounts for 32.8% of 
an establishment's total energy consumption. Even [15] 
proposed passive wireless communication as a cutting-edge 
new technology extensively used in energy-efficient green 
buildings. Passive wireless lighting switch, a human body 
infrared sensor, a light sensor, and access to the KNX bus 
system, saving 40% of lighting transformation costs and 80% 
of the building's 31 km of cable. In a hotel chain in Germany 
with 25 hotels (5000 rooms), the regular operation of the air 
conditioning system for the modification reduces air 
conditioning energy consumption by 20%. In just two years, 
the renovation investment is recouped by energy savings.  

The KNX and Digital Addressable Interface (DALI) 
systems were implemented on a megaship, resulting in an 80% 
decrease in illumination power consumption from 12,935.2 to 
2830.3Wh [16]. Therefore, reducing carbon dioxide emissions 
associated with decreased power generation is possible by 
implementing an intelligent illumination system on ships and 

optimising the power required for lighting. This initiative can 
impact ship operations positively regarding environmental 
protection and climate change response. The KNX/DALI 
protocol is anticipated to play a significant role in researching 
intelligent ships for automated sailing. 

As an Intelligent Building Automation system, the KNX 
system incorporates sensors, actuators, and controllers to 
optimise energy consumption and reduce carbon emissions in 
residential and commercial structures in achieving energy 
savings. The illustrated examples of how KNX-based control 
networks for lighting and air conditioning systems result in 
substantial energy and cost reductions. Moreover, 
implementing KNX and DALI systems on a megaship 
significantly reduced illumination power consumption, which 
may affect environmental protection and climate change 
response in the maritime industry. Numerous recent studies by 
BAS researchers demonstrate that the KNX system 
considerably impacts energy consumption. Table 3 
summarises the KNX system's applicability in various 
building types, control strategies, and savings results. 

B. Adaptive Climate Control

Adaptive Climate Control (ACC) is the dynamic
adjustment of cooling, heating, and ventilation systems in 
response to environmental factors like temperature, humidity, 
and occupancy variations. Adaptation is the capacity of a 
human or natural system to respond to climate change 
(including climate variability and extremes) by mitigating 
potential damages, exploiting opportunities, or managing the 
consequences [17]. ACC, also called methods, are used to 
resolve the challenges and uncertainties associated with 
building climate dynamics, such as unmodeled dynamics and 
unknown perturbations [18]. Adaptive climate control 
methods contribute to effective building energy management 
and reducing carbon emissions. It enables the control system 
to continuously adapt and adjust its strategies based on real-
time conditions and feedback, improving the overall 
performance and energy efficiency of HVAC systems [19]. 

This control strategy was first investigated in 1979 for use 
in greenhouses [20] and Computer-Aided Cultivation [21]. 
ACC optimises energy economy, occupant comfort, and 
climate management by considering surrounding zone 
interactions [18].  The KNX system can adapt to fluctuating 

TABLE I. A SUMMARY OF THE KNX SYSTEM'S APPLICABILITY IN VARIOUS BUILDING TYPES AND CONTROL STRATEGIES  

Author 
Method/Load/ Control 

Mechanism 
Application of BAS Building Type Saving/ Result 

[13]  
Retrofit sensor and control 

network 

Enocean, KNX, BACnet, and m-bus for sensing 

and automation 
Campus building 

Exhibit similar characteristics; 

control behaviour differently 

[14] Lighting control KNX Green building 
Energy consumption: 82.33% 

Co2 emissions: 85% 

[15] 
Passive wireless 
communication 

KNX 
Commercial 

building 
Lighting cost: 40% 

Cable cost: 80% 

[16]  Lighting control 
KNX/digital addressable lighting interface 

protocol 
Ship Power consumption: ≥80% 

[22] 
Heating & lighting control 

4-Channel-Pt1000 interfaces & M-bus heat meter 
Dimming actuators & light sensors 

Educational 
Building 

50% 

[23]  
KNX-Zigbee Integration (wired 

& wireless HAS) 
KNX-Zigbee gateway Domestic Integration enabled 

[24]  
Lighting, heating/cooling 

system & motorised opening 
KNX- Raspberry Pi Resident building 30% 

[25] 
Solar energy-powered lighting 

system 
KNX Smart building 

Energy consumption: 50% 
Co2 reduction: 0.56 tons 

Roi: 11.13 years 
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environmental conditions caused by climate change. For 
example, it can monitor outdoor temperature, humidity, and 
weather data to adjust HVAC systems accordingly. This 
adaptive climate control helps maintain a comfortable interior. 
The KNX actuator regulates each heating circuit's valves 
independently for heating control. The indoor temperature is 
essential for determining when the valve opens and closes. For 
this purpose, room temperature sensors record the room 
temperature [26]–[29]. Figure 2 shows the configuration for 
space heating in an apartment using the KNX system [27].  

Fig. 2. System configuration for space heating in an apartment using the 

KNX system [27] 

Additionally, [24] investigates the integration of 
Raspberry Pi in home automation systems utilising the KNX 
protocol to facilitate the installation and configuration of 
smart home components, resulting in promising 
communication between components and a 15% reduction in 
energy usage. Overall, the ACC enables systems to respond to 
variations and extremes in the climate, mitigating potential 
damages and managing consequences. This strategy resolves 
challenges in building climate dynamics, resulting in efficient 
energy management and decreased carbon emissions. The 
KNX system can adapt to changing environmental conditions 
resulting from climate change, monitoring outdoor data to 
modify HVAC systems and maintain a comfortable interior. 

C. Integration With Renewable Energy

The latest integration combines an enhanced energy
storage management technique with KNX building control 
and automation systems for demand-side management in a 
microgrid [30]. yields a KNX system with renewable energy. 
KNX devices are programmable and can regulate the 
electrical energy consumption of consumers after being 
installed at the low-voltage portion of the grid. Integrating 
KNX into the microgrid significantly enhances the microgrid's 
power supply reliability. 

In [31], the LAMBDA MG LAB integrates the KNX 
system and renewable energy to accomplish energy savings 
and control. The KNX protocol is utilised for smart 
department objectives such as illumination, presence, HVAC, 
and energy-consuming device control. Integration of 
additional renewable energy sources, such as wind or 
hydropower, could be investigated to improve the microgrid's 
sustainability and efficacy further. 

The KNX system and renewable energy integration in [32] 
were carried out using the KNX system to control and 

administer the heating system in intelligent buildings that 
employ hybrid renewable energy sources. Future research 
could focus on integrating additional renewable energy 
sources, such as geothermal or wind energy, with the KNX 
system in intelligent structures. These additional renewable 
energy sources would enable a more comprehensive and 
diverse approach to using renewable energy. In addition, 
investigating the potential of energy storage technologies, 
such as batteries or hydrogen storage, in conjunction with the 
management system could improve the system's overall 
efficacy and dependability. 

 According to a previous study by [33], using energy 
management systems and renewable energy sources in smart 
home installations can result in significant energy savings and 
less reliance on external energy infrastructure. The study 
found that implementing energy management strategies, such 
as cost-effective or comfort strategies, can result in savings 
ranging from 11 to 31% and a reduction in energy demand of 
up to 60%. Photovoltaic installations and other renewable 
energy sources can help with these energy reductions. While 
[25] reported that the installation of a solar energy system in
an intelligent building with the KNX system in Malaysia
resulted in a 50% energy reduction for the lighting system,
[26] found that the installation of a solar energy system
resulted in a 25% energy reduction for the lighting system.
The annual energy consumption of lighting systems fell from
1600 kW to 800 kW. The installation's estimated return on
investment (ROI) is approximately 11.13 years. However, the
investment costs of implementing such systems must be
carefully considered, and the usability must be evaluated
based on the energy management strategy adopted.

In [34], integrating the KNX system with renewable 
energy is discussed in the context of intelligent building 
management. Figure 3 shows that The KNX protocol controls 
responsive/non-responsive devices and renewable 
photovoltaic resources in an intelligent building. 
Incorporating additional renewable energy sources, such as 
wind power, into the energy management paradigm for 
intelligent structures would increase the use of renewable 
energy and decrease dependence on the grid. 

Fig. 3. KNX protocol and renewable photovoltaic resources in the smart 

building [34] 
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Ultimately, the integration of KNX and renewable energy 
highlights how this integration enables efficient management 
of renewable energy production and consumption within 
buildings, thereby reducing reliance on fossil fuels and 
fostering a sustainable energy composition. 

D. Supporting Demand Respond Strategy

Load shedding is one demand response (DR) strategy
available via building automation systems. This strategy 
involves reducing energy consumption during peak periods to 
prevent grid instability. During periods of high demand, 
building automation systems can autonomously adjust energy 
consumption by turning off or reducing non-critical building 
systems such as lighting and HVAC [35]. The KNX system is 
employed in [36] for building automation, which includes 
HVAC control, sensors, security, and illumination. It is 
projected that DR will reduce peak demand and increase 
the load factor. The KNX system plays a role in implementing 
demand response measures, such as controlling and altering 
the operation of various building systems to optimise energy 
consumption and reduce peak demand. 

The KNX system facilitates effective demand response 
and energy management in microgrid systems. The KNX 
system enables the coordination of multiple production and 
storage systems to maintain a demand-supply equilibrium. In 
[37], the KNX system is utilised as a technological platform 
for home automation to regulate the load/energy consumption 
of the microgrid testbed. The KNX system enables simple 
access and compatibility with energy production and 
consumption data maintained by a server with a web interface. 
This study devised an algorithm for demand response that 
combines with the Building Automation System (BAS) using 
the KNX protocol to accomplish efficient energy management 
from renewable energy sources and energy storage systems. 
[38] emphasises the excessive fragmentation of protocols and
standards in Building Management Systems (BMS) and
building-to-grid communications, which poses a challenge for
achieving interoperability, such as KNX. KNX is regarded as
more established and is supported by a small number of
standards for demand response.

[39] uses the KNX system to facilitate demand response in
district heating circuits. Individual heating system 
components, including sensors and actuators, are linked using 
the KNX protocol, which enables decentralised, distributed 
control. The data from the local control systems are then sent 
to the data management system (DMS) using the MQTT 
protocol, which works on top of TCP/IP at the Internet 
Protocol Suite's application layer. The article uses the KNX 
system and MQTT protocol to show the potential for 
controlling heating demand and achieving energy savings in 
district heating systems. 

Furthermore, [40] promotes the KNX system's support for 
demand response strategies, which permit capacity shedding 
or shifting during peak demand periods. The system reduces 
strain on the electrical infrastructure by stabilising the power 
grid. Hence, KNX is a crucial technological platform for 
effective demand response and energy management in 
building automation, microgrid systems, and district heating 
circuits. It facilitates coordinating and controlling multiple 
production and storage systems, optimising energy 
consumption during peak periods, and incorporating 
renewable energy sources. Interoperability with other 
protocols is a concern despite its benefits, highlighting the 
need for standardisation in Building Management Systems 

and building-to-grid communications. KNX is an established 
and dependable solution for demand response and energy 
management strategies. 

III. SUMMARY

In conclusion, the article emphasises the significance of 
the KNX system in mitigating climate change by promoting 
energy efficiency, environmentally favourable practices, and 
adaptability to altering environmental conditions. By 
integrating sensors, actuators, and controllers, the KNX 
system optimises energy consumption, thereby reducing 
energy waste and carbon emissions. In addition, it enables 
adaptive climate control, which dynamically adjusts HVAC 
systems in response to environmental factors, resulting in 
effective building energy management and decreased carbon 
emissions. In addition, integrating the KNX system with 
renewable energy sources improves the microgrid's power 
supply reliability and promotes a sustainable energy 
composition. In addition, the KNX system facilitates demand 
response strategies, which reduce stress on the electrical 
infrastructure during periods of peak demand. 

Overall, the KNX system emerges as a crucial 
technological platform that considerably contributes to 
climate change mitigation efforts by providing effective 
energy management solutions and nurturing a greener, more 
sustainable future. In Building Management Systems and 
building-to-grid communications, interoperability issues with 
other protocols must be addressed through standardisation 
efforts despite their benefits. Despite this, the KNX system 
remains a well-established and reliable means of attaining 
energy efficiency and effective demand response strategies in 
various applications. 
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Abstract— As the world transitions to renewable energy, 
solar photovoltaic (PV) installations play a dominant role. To 
ensure optimal performance and minimize losses, solar plant 
monitoring and forecasting are crucial. Numerous articles have 
previously discussed a variety of monitoring and forecasting 
activities intended for solar plants. Literature suggests that a 
crucial step in data pre-processing is the classification of 
weather patterns. A 50MWp UiTM's Solar Park I (USP I) 
located in Gambang, Pahang, Malaysia is used as the case study. 
Four type of weather parameters for this study and electrical 
parameter are obtained from this plant. The correlation analysis 
between the weather parameters and electrical parameter is 
performed to identify highly correlated weather parameters, 
which will then be further clustered using Fuzzy C-Means to 
uncover the seasonal patterns. According to correlation 
analysis, Global Horizontal Irradiance (GHI) is the most highly 
correlated variable. Fuzzy C-Means clustering of GHI revealed 
three seasonal patterns. This research highlights the importance 
of weather parameter behavior in solar plant management and 
performance analysis. 

Keywords—Fuzzy C-Means, Correlation Analysis, Seasonal 
Patterns, Solar Energy Management, Large Scale Solar Plant, 
Global Horizontal Irradiance 

I. INTRODUCTION

Solar energy has emerged as a prominent renewable 
energy source, offering sustainable and environmentally 
friendly solutions to meet the increasing global energy 
demand. The production of solar energy is also increasing 
because of cost reductions and the solar photovoltaic (PV) 
industry's rapid growth [1],[2]. Malaysia has joined and 
demonstrated interest in the development of solar PV. 
Furthermore, due to its abundance of sunlight and land, 
Malaysia is considered to have high potential for solar energy 
generation. In 2015, Malaysia signed the Paris Agreement 
pledging to fight climate change alongside the rest of the 
world. Under the third theme of the most recently announced 
12th Malaysia Plan, the government has proposed several 
initiatives to promote green development and energy 
sustainability. The energy sector's key highlights include 
reducing greenhouse gas emissions by 45 percent by 2030 
and a clean energy target of 31 percent by 2025.  

Solar farms play an important part in generating 
renewable energy, and their performance is highly dependent 
on the weather [3],[4]. This study aims to discover the 
correlation between the weather parameters and the generated 

AC power. By recognizing the specific weather patterns that 
are strongly correlated with variations in the AC power, 
operators and analysts can make informed decisions and take 
proactive steps to increase the solar farm's performance and 
production.  This information can result in more precise 
performance forecasts, efficient maintenance scheduling, and 
optimized energy production, thereby maximizing the solar 
farm's productivity and economic viability.  

Numerous studies have investigated the correlation 
between meteorological parameters and electrical 
parameters.  Sharma et al. [3] studied the correlation between 
weather parameters and solar intensity. They found that sky 
cover, relative humidity, and precipitation were highly 
correlated with solar intensity, while temperature, dew point, 
and wind speed showed partial correlations. The study 
provided insights into how weather metrics affect solar 
energy harvesting. Using feature clustering and a Markov 
transition probability matrix, Fu et al. [5] proposed a 
simulation approach for solar irradiance data. The algorithm 
utilized K-Means and Markov modelling to generate 
simulated solar irradiance data. An example simulation with 
NREL one-minute data was provided, and the results were 
analyzed and evaluated. Previous research has extensively 
examined the relationship between weather parameters and 
electrical parameters in various contexts. Several studies 
have investigated the correlation between solar irradiance, 
temperature, wind speed, and other weather variables, and 
their impact on electrical parameters such as power output, 
current, and voltage in solar farms [6], [7], [8], [9]. 

Wu et al. [10] focused on the classification of weather 
patterns as a crucial data preprocessing method. Weather 
patterns were categorized by utilizing the K-Means 
algorithm, Self-Organising maps, and Pearson correlation 
coefficient to establish specific prediction models for each 
category. Various methods were explored, including typical 
clustering classification, season-based classification, time-
based classification, and classification based on the 
amplitude and variance of the data. The result shows the 
accuracy of solar power forecasting could be significantly 
improved. The study by Lyu et.al [11] introduced a new 
framework to predict solar irradiance accurately by 
dynamically identifying optimal features. It combined feature 
extraction, clustering techniques, and deep reinforcement 
learning (DRL) to determine the minimum set of features 
needed for precise forecasting. The framework adapted to 
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different weather conditions and adjusted the selected 
features accordingly. Real-world case studies confirmed that 
this approach significantly reduced the data required for 
accurate irradiance prediction across various weather 
patterns. Overall, the framework improved solar generation 
forecasts despite limited and inconsistent data availability. 
Omar et. al addressed the seasonality-related uncertainty in 
weather data to improve forecasting accuracy. To achieve 
this, the study utilized layering and stacking of weather data 
clusters. Adding high-dimensional heterogeneous weather 
data to training datasets was crucial for enhancing accuracy. 
However, traditional forecasting models like long short-term 
memory (LSTM) were not effective when transitioning from 
univariate to multivariate analyses, leading to decreased 
performance [12]. A paper by Lopez-Lorente et al. [4] aimed 
to analyze the impact of temporal variability in solar 
irradiance on solar energy integration and intra-day 
forecasting models. The study investigated a classification 
approach for day types in solar energy applications and 
assessed its effect on intra-day solar generation forecasting. 
The proposed approach utilized unsupervised learning, 
combining self-organized maps and mean-shift clustering 
with six location-independent metrics related to irradiance 
variability and energy yield. 

Additionally, several methods have been applied to do the 
clustering of the weather patterns to uncover the underlying 
variations such as Spectral clustering [13] and Long-Short 
Term Memory (LSTM) [12]. It is also worth noting that these 
studies utilized various statistical methods, such as 
correlation coefficients and regression analysis, to quantify 
the relationship between weather parameters and electrical 
parameters. Overall, previous research provides a solid 
foundation for understanding the correlation between 
weather parameters and electrical parameters in solar plant. 
However, there is still a need for further investigation, 
particularly in the context of specific solar farms in a specific 
environment to gain a more comprehensive understanding of 
this relationship and its implications for optimizing energy 
generation and efficiency. 

II. METHODOLOGY

A. Data Collection
Weather data was collected from Solar Park I, a 50 MWp

solar power plant located in Gambang, Pahang, Malaysia. The 
data collection period covered one year, from May 2020 to 
April 2021, during which measurements were recorded at 
regular 5-minute intervals, specifically from 7 am to 7 pm. 
The dataset comprised four essential weather parameters 
which are the Global Horizontal Irradiance (GHI), PV module 
temperature, ambient temperature and wind speed along with 
data on generated AC power. Weather parameters play a 
crucial role in determining the solar plant's overall efficiency 
and power generation capacity under varying weather 
conditions. 

B. Correlation Analysis
A fundamental step in the study involved performing a

correlation analysis to understand the relationships between 
the collected weather parameters and the generated AC power. 
In this study, the method used for correlation analysis is the 
Pearson correlation coefficient. The Pearson correlation 
coefficient measures the linear correlation between two 

variables and provides a value between -1 and 1 where value 
1 indicates high correlation. By evaluating the degree of 
correlation, either positive or negative, between each weather 
parameter and the AC power, the most influential factors 
affecting the solar plant's performance were identified. 
Parameter with the highest correlation coefficients were 
considered as key indicator of the solar plant's sensitivity to 
certain weather conditions. 

C. Fuzzy C-Means Clustering
To unveil the underlying weather patterns, the Fuzzy C-

Means (FCM) clustering algorithm was employed. FCM is a 
soft clustering technique that assigns data points to clusters 
based on their degrees of membership, allowing for the 
flexibility of partial belonging. In this context, FCM enabled 
the discovery of multiple weather patterns that affect the AC 
power output of the solar plant. Each data point was assigned 
to one or more clusters, reflecting its similarity to different 
weather patterns. 

D. Optimal Cluster Selection
To determine the optimal number of clusters for FCM

clustering, the elbow method using silhouette analysis was 
utilized. The silhouette analysis measured the compactness 
and separation of data points within each cluster for different 
numbers of clusters. By plotting the silhouette scores against 
the number of clusters, the "elbow point," which represents 
the optimal number of clusters, was identified. The elbow 
point corresponds to the highest average silhouette score, 
indicating the most meaningful clustering solution for the 
dataset. Determining the optimal number of clusters was 
essential to avoid overfitting or underfitting the data during 
the clustering process.  

Following the FCM clustering, each cluster was 
interpreted and characterized to understand the unique 
weather patterns it represented. A detailed analysis of the 
weather parameters associated with each cluster was 
conducted to identify specific meteorological conditions 
leading to variations in the solar plant's AC power output. This 
interpretation provided valuable insights into the diverse range 
of weather scenarios affecting solar energy generation. 

III. RESULT AND DISCUSSION

A. Correlation Analysis
The correlation analysis was conducted to investigate the 
relationship between weather parameters and the generated 
AC power at Solar Park I, located in Gambang, Pahang, 
Malaysia. The study aimed to identify the most influential 
weather factors impacting solar energy generation. Figure 1 
presents the correlation coefficients between various weather 
parameters and the generated AC power at Solar Park I. The 
correlation analysis aimed to investigate the relationship 
between weather conditions and solar energy generation. The 
weather parameters considered in the analysis are Global 
Horizontal Irradiance, PV module temperature, ambient 
temperature and wind speed. AC power represents the actual 
electricity generation from the solar park. The correlation 
coefficients range from -1 to 1, where a positive value 
indicates a positive correlation, a negative value indicates a 
negative correlation. A value close to 0 suggests a weak or no 
correlation. Table 1 provides a summary of the correlation 
coefficients between each weather parameter and the AC 
power generated at Solar Park I. The correlation values 
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quantify the strength and direction of the relationship 
between the weather parameter and solar energy generation. 

Fig. 1. Weather Parameter and Correlation with Generated AC Power 

TABLE I. PARAMETER AND CORRELATION WITH
GENERATED AC POWER

Weather Parameter Correlation 

Global Horizontal Irradiance 0.92 

PV Module Temperature 0.81 

Ambient Temperature 0.56 

Wind Speed 0.41 

Higher GHI levels on sunny days result in increased power 
generation, while lower GHI levels on cloudy days lead to 
decreased power generation. The temperature of PV modules 
demonstrated a significant positive correlation of 0.81 with 
AC power. As the temperature of the PV modules increases, 
the efficiency of the solar cells decreases, resulting in a 
decrease in power output. Managing the temperature of PV 
modules is essential for optimising energy production. On the 
other hand, there was a moderately positive correlation of 0.56 
between ambient temperature and AC power. Higher ambient 
temperatures can affect the effectiveness of various solar 
power plant components, thereby affecting overall energy 
production. Temperature control measures may be beneficial 
for optimising facility operation. Lastly, wind speed 
demonstrated a moderate positive correlation of 0.41 with AC 
power. Wind speed may not be the most important factor 
influencing solar energy production, but it can still have an 
effect, particularly in strong winds conditions. It may be 

relevant to consider wind-induced movement or cooling 
effects on solar panels. 

 The correlation analysis highlights the crucial impact of 
Global Horizontal Irradiance (GHI) on the AC power output 
at Solar Park I. Understanding these relationships is of utmost 
importance for optimizing solar energy generation and 
enhancing the overall performance of the solar power plant. 
To gain deeper insights into GHI's influence, the weather 
parameter is further subjected to Fuzzy C-Means (FCM) 
clustering analysis. Through FCM clustering, this study aim 
to uncover underlying patterns in GHI data that significantly 
impact Solar Park I's energy production. This will enable us to 
identify distinct weather conditions or trends that influence the 
plant's efficiency and guide informed decision-making for 
effective energy operation and maintenance.  

B. Optimal Cluster Selection
Clustering is an essential unsupervised learning technique 
used to group similar data points into distinct clusters. The 
challenge lies in determining the appropriate number of 
clusters, as it directly impacts the interpretability and 
effectiveness of the analysis. The optimal number of clusters 
in the dataset is determined by using the Elbow method. The 
analysis was conducted to identify the ideal number of 
clusters required to capture meaningful patterns in the data. 
The Elbow method involves plotting the within-cluster sum 
of squares (WCSS) against the number of clusters. WCSS 
quantifies the compactness of the clusters, and the goal is to 
minimize this value. The Elbow method seeks to find the 
"elbow point" on the plot, which represents the optimal 
number of clusters, where adding more clusters does not lead 
to a significant reduction in WCSS. Figure 2 demonstrate the 
application of the Elbow method to the dataset to identify the 
optimal number of clusters. Based on the Elbow method 
analysis, the optimal number of clusters for the dataset was 
determined to be three. At this point, adding more clusters 
would not result in a substantial gain in clustering accuracy, 
while a smaller number of clusters could lead to a loss of 
significant patterns in the data. 

Fig. 2. Silhouette Score - Optimal Number of Cluster Selection 

C. FCM Clustering
Having identified the significant impact of Global

Horizontal Irradiance (GHI) on the AC power output at Solar 
Park I, the study endeavors to gain deeper insights into the 
underlying patterns of this crucial weather parameter. To 
achieve this, the Fuzzy C-Means (FCM) clustering analysis 
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was employed. FCM clustering aims to partition data points 
into distinct clusters based on their similarities to each other. 
Unlike traditional hard clustering algorithms, FCM allows 
data points to belong to multiple clusters with varying 
degrees of membership, reflecting the fuzzy nature of data 
distribution. This soft clustering approach enables us to 
discover subtle patterns and associations within the GHI data. 

The clustering analysis of the GHI data collected over one 
year from May 2020 to April 2021, with 5-minute intervals 
between 7 am and 7 pm, revealed three distinct weather 
patterns significantly influencing solar irradiance. Figure 3 
presents the time series plot depicting the average Global 
Horizontal Irradiance (GHI) values for each of the three 
identified clusters. The time series plot showcases the distinct 
patterns observed for Cluster 1(blue line), Cluster 2 (yellow 
line), and Cluster 3 (green line). 

Fig. 3. Time series plot for average GHI for Cluster 1,2 and 3 

Additionally, Table 2 provides a summary of the minimum 
and maximum average GHI values for each cluster. 

Cluster Min GHI Average 
Value (W/m2) 

Max GHI Average 
Value (W/m2) 

Cluster 1 4.4 422.05 

Cluster 2 4.4 901.94 

Cluster 3 4.9 758.17 

Among the three clusters identified in the clustering analysis, 
Cluster 1 exhibits the lowest average value of GHI as shown 
in Figure 4. This cluster is associated with heavy cloud cover 
and potential rain, resulting in GHI levels ranging from a 
minimum average value of 4.4 W/m2 to a maximum average 
value of 422.05 W/m2. These values represent the lowest solar 
irradiance levels observed during the analyzed period. 
Identifying this pattern can aid in predicting periods of 
reduced solar energy production and help plan for necessary 
adjustments to compensate for energy shortfalls. 

Fig. 4. Time series plot for GHI - Cluster 1 

Cluster 2 is shown in Figure 5 and demonstrates the highest 
average value of GHI. This cluster is characterized by 
favourable weather conditions, including clear skies and 
minimal cloud cover, resulting in GHI levels ranging from a 
minimum average value of 4.4 W/m2 to a maximum average 
value of 901.94 W/m2. These values indicate the highest solar 
irradiance levels observed during the analysed period, making 
this weather pattern highly suitable for optimizing solar 
energy generation and scheduling. 

Fig. 5. Time series plot for GHI - Cluster 2 

Cluster 3 represents a weather pattern with moderate cloud 
cover and intermittent sun, resulting in moderate fluctuations 
of GHI as observed in Figure 6. The GHI levels in this cluster 
range from a minimum average value of 4.9 W/m2 to a 
maximum average value of 758.17 W/m2. This pattern 
indicates varying solar irradiance levels throughout the day, 
making it crucial for predicting fluctuations in solar energy 
generation and implementing strategies to maintain a stable 
power supply during changing weather conditions. 

Fig. 6. Time series plot for GHI - Cluster 3 

The identified weather patterns provide valuable insights for 
various applications in the renewable energy sector. 
Developing predictive models based on historical weather 
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patterns and GHI data can enable accurate forecasting of solar 
energy generation, optimizing grid management, and 
scheduling. Integrating energy storage systems to mitigate the 
impact of fluctuating GHI levels resulting from different 
weather patterns can enhance the reliability and stability of 
solar energy as a viable power source. Furthermore, 
understanding the long-term trends of the identified weather 
patterns is crucial for assessing potential shifts in solar 
irradiance due to climate change. Analyzing these trends will 
aid in long-term planning in the renewable energy sector and 
contribute to sustainable power generation strategies. 

IV. CONCLUSION

In conclusion, the clustering analysis of GHI data into three 
distinct patterns offers valuable insights into the underlying 
weather dynamics influencing solar irradiance. These 
findings open opportunities for more efficient solar energy 
management and utilization, contributing to the development 
of sustainable and environmentally friendly power generation 
systems. As research in this area progresses, the knowledge 
gained from this study will be essential in advancing 
renewable energy technologies and addressing the challenges 
of climate change. To generalize the findings, replicating this 
study in different regions with similar data collection setups 
can identify region-specific weather patterns and optimize 
solar energy utilization on a broader scale. Additionally, 
incorporating other meteorological variables, such as 
temperature, humidity, and wind speed, will provide a more 
comprehensive understanding of the complex interactions 
between various weather factors and solar irradiance. 
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