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The theme of this model is to examine the characteristics of heat and mass transfer 
flow through stretching sheet along with magnetic field and thermal radiation utilizing 
Al2O3+CuO/SA Williamson hybrid nanofluid. The transformed partial differential 
equations are solved by Keller-Box method. The numerical outcomes of physical 
quantities are revealed by graphs and tables. The Nusselt number, skin friction, velocity 
and temperature are displayed with support of bar diagram. The study depicted that 
an increase in the Weissenberg number, radiation, and magnetic parameter surges in 
fluid temperature, results in an improvement in the thermal boundary layer, this effect 
reduces the fluid velocity and skin friction coefficient. Excellent correctness of the 
current results has been acquired as compared thru the previous results.  
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1. Introduction 
 

The Williamson fluid is a significant example of a non-Newtonian fluid; Williamson [1]  presents 
model equations to describe the flow of pseudoplastic fluids and gives experimental proof of the 
conclusions in (1929). It has several potential uses, including in the photographic film emulsion 
coating and liquid film condensation processes. In addition, this non-Newtonian fluid has several 
industrial uses, particularly in the realm of pseudoplastic fluid behavior. Measuring mass and heat 
transport across the arteries in blood and hemodialysis is very crucial in the field of biological 
engineering [2]. Radiative Williamson fluid was investigated for its response to a magnetic field by 
Subbarayudu et al., [3]. For their study, Sucharitha et al., [4] examined how slip affected the 
peristaltic motion of a Williamson fluid. Dawar et al., [5] provided an illustration of the flow of a 
Williamson nanofluid through a cone under non-isosolutal and non-isothermal circumstances. Two-
dimensional Williamson nanofluid flow in stretchy sheets was investigated using Darcy's law by Kiyani 
et al., [6]. Qureshi [7] looked at how thermal radiation affected Williamson nanofluid's heat 
transport. Recent studies related to Williamson nanofluid are presented in the Refs [8-11]. 
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The study of nanofluids is highly regarded in the scientific community. Nanomaterials with 
exceptional thermal characteristics may be used in a wide range of fields, from medicine and energy 
generation to heat exchange and electronic cooling systems. Due to its superior thermal conductivity, 
nanofluid has replaced base fluid as the preferred working fluid in many modern applications. Choi 
and Eastman [12] are credited with discovering nanofluids in the first place. Nanofluids are fluids that 
contain nanoparticles floating inside of them. Lee et al., [13] verified that nanofluids exhibit superior 
heat transfer properties compared to those of basic liquids. Chemically stable oxides (SiO2, CuO, 
Al2O3, TiO2), carbides (SiC), metals (Au, Cu, Fe, Al, Ag), non-metals (carbon nanotubes, graphite), 
nitrides (AlN, SiN) are commonly proposed for the nanoparticles, and the base fluid is typically a 
conductive fluid such as water, oils (and further lubricants), propylene-gly Numerous researchers [14-
17] have since shown that the nanofluids exhibit superior thermo-physical properties and heat-
transport behavior compared to their base fluid counterparts. Adding copper nanoparticles to oil or 
ethylene glycol at a volume fraction of less than one percent, as determined by Eastman et al., [14], 
increases thermal conductivity by 40 %. As Aybaret et al., [15] noted, several nanofluids have 
improved their heat conductivity. Increasing the number of nanoparticles in a liquid, they found, 
increases its thermal conductivity. Nanofluids have several uses, including the administration of 
nano-drugs, the rapid transfer of heat, the cooling of a microchannel, and the prevention of clogging. 
Afify and Bazid [16] studied the effects of viscous dissipation and changing viscosity on the heat 
transfer and boundary layer flow on a rotating porous surface immersed in nanofluids. The effects of 
the particle model and thermal radiation on the heat transmission and Marangoni boundary sheet 
flow of a nanofluid moving through an exponential temperature were demonstrated by Lin et al., 
[17].In recent times ِ , A number of studies [18-23] examined the flow of a (MHD) Casson nanofluid by 
a stretching sheet, solid sphere and horizontal circular cylinder. 

A hybrid nanofluid (HNF) is created by mixing two and more different nanoparticles in the same 
base fluid in order to create a (HNF). Most of the applications of this fluid are in the field of industry 
and manufacturing, such as: coolant for electronic devices,  solar energy,  automotive generators,  
transformers, industry, and nuclear systems and so on [24] . In recent years, hybrid nanofluids have 
become the first choice over conventional fluids because of this several reasons. They possess 
properties such as electrical conductivity and permeability [25], they are more efficient at 
transferring heat [26], and Some of the combinations of two nanoparticles make the HNF moreluid 
become more stable [27]. Yahya et al., [28] discussed the Runge-Kutta method was utilized to 
examine thermal dissipation, heat source, and magnetic field in ordinate engine oil using the novel 
hybridization of MoS2+ZnO.The investigation of heat sources and their impact on heat transport is 
crucial in light of a wide variety of physical issues. Heat source effects on hybrid nanofluid using the 
headline method were documented by Alsaberyet et al., [29]. There are recent additions to the field 
that consider hybrid and conventional nanofluids with heat and mass transfer under a variety of 
physical conditions [30-39]. 

Recently, the subject of magnetic field for Newtonian and non–Newtonian fluid flows engrossed 
many researchers, because of its widespread applications in different fields. The magnetic field 
treated as an external agent to develop the thermal conductivity and thermophysical attributes of 
fluid flow. The flows consist of magnetic field mostly used in the problems which are related to 
geophysical and astrophysical mechanism, but recently magnetohydrodynamics flows are used in 
cancer treatment, fusion power, plasma studies, MRI, generators, heat exchanger process etc. 
Sarpakaya [40] first time surveyed the non-Newtonian fluid flow by means of magnetic field. 
Hussanan et al., [41] studies the magnetohydrodynamic (MHD) flow of a Casson fluid and the heat 
transfer to a nonlinearly stretching sheet with Newtonian heating. Alkasasbeh [42] deliberated the 
mixed convective MHD flow of micropolar Casson fluid across a solid sphere. The effects of varying 
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viscosity on the flow of axisymmetric nanofluids subjected to unsteady magnetohydrodynamics 
(MHD) with thermal diffusion were studied by Bagh et al., [43]. Tlili et al., [44] evaluated 
computational studies of MHD dissipative flow through a stretched sheet. The slip effects of MHD 
micropolar nanofluids were explored by Sohaib et al., [45]. The effects of a heat source on MHD flow 
of nanofluid employing a stretched sheet were studied by Abbas et al., [46].Some recent studies 
about MHD fluid flow are seen in the Refs [47-52]. 

In consideration of the afore-mentioned development and research applications in nanofluids, 
our key objective is to inspect in it in contemporary work, we have MHD of Williamson hybrid 
nanofluid of boundary layer stream over a stretching sheet in the company of thermal radiation. The 
governing boundary layer equations are altered to nonlinear ODEs via similarity transformation 
which are formerly determined numerically using Keller box methods. The consequence of numerous 
parameters via velocity, temperature, and concentration distribution are inspected graphically. The 
skin friction and Nusselt number are also observed by tabulated data. Furthermore, a comparison of 
the present article has been presented with previous literature. 
 
2. Mathematical Model  
 

Here, we consider 2D, incompressible, free convection boundary layer flow of Williamson hybrid 
nanofluid by the influence of MHD and thermal radiation over stretching sheet. In the present 
investigation the boundary constant wall temperature are also taken. To the analysis of transport of 
mass and heat, the thermal radiation and thermophoretic impacts are considered. Two perpendicular 
coordinate systems (x, y) are chosen since sheet motion follows the x-axis and the wall is non-
compressible (vw = 0) (see in Figure 1). With the usage of boundary layer approximation and above 
assumption the emerging equations are stated as, Ref [18, 28, 30]. 

 

 
Fig. 1. Physical sketch of the model 

 
Continuity equation 
 
𝜕𝑢

𝜕x
+

𝜕𝑣

𝜕y
= 0                                                                                             (1) 

 
Momentum equation 
 



CFD Letters 

Volume 15, Issue 4 (2023) 92-105 

95 
 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑉ℎ𝑛𝑓

𝜕𝑢

𝜕𝑦2
−

𝜎ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
𝛽0

2𝑢 + √2Ω𝑣𝑓
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
                                                                                   (2) 

 
Thermal energy equation 
 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2
−

1

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
                                                                           (3) 

 
For above equations boundary conditions are inscribed as: 
 

𝑢 = 𝑈𝑤 = 𝑐𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥) 𝑎𝑡 𝑦 = 0   
                                                                                                                                                                              (4) 
𝑢 → 0, 𝑇 → 𝑇∞ as 𝑦 → ∞ 
 

By considering Roseland approximation, the radiative heat flux at this point 
 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
;                                                                                                                                         (5) 

 
Here 𝜎∗, 𝑞𝑟, 𝑘∗ are representative correspondingly as the Boltzmann constant, absorption 

coefficient and the radiative heat flux. Assuming a minor temperature alteration in flow, the Taylor 
series estimate for 𝑇4 in expressions of 𝑇∞ is as acquire 

 
𝑇4 ≅ 4𝑇𝑇∞

3 − 3𝑇∞
3                                                                                                                                   (6) 

 
𝜕𝑞𝑟

𝜕𝑦
=

16𝜎∗𝑇∞
3

3𝑘∗𝑣𝑓(𝜌𝐶𝑝)𝑓

𝜕2𝑇

∂𝑦2                                                                                                                                  (7) 

 
Table 1 
Thermo-physical properties of hybrid nanofluid and nanoparticles  
Properties  Nanofluid   Hybrid nanofluid  

𝜇 Viscosity  𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
 𝜇ℎ𝑛𝑓 =

𝜇𝑓

(1 − 𝜙1)2.5(1 − 𝜙2)2.5
 

𝜌 Density   𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠 𝜌ℎ𝑛𝑓 = [(1 − 𝜙2){(1 − 𝜙1)𝜌𝑓 + 𝜙1𝜌𝑠1}] + 𝜙2𝜌𝑠2 

𝜌𝐶𝑃 Heat 
capacity   

(𝜌𝐶𝑝)
𝑛𝑓

= (1 − 𝜙)(𝜌𝐶𝑝)
𝑓

+ 𝜙(𝜌𝐶𝑝)
𝑠
 (𝜌𝐶𝑝)

ℎ𝑛𝑓
= [(𝜌𝐶𝑝)

𝑓
(1 − 𝜙2) ((1−𝜙1) +

𝜙1(𝜌𝐶𝑝)
𝑠1

(𝜌𝐶𝑝)
𝑓

) + 𝜙2(𝜌𝐶𝑝)
𝑠2

] 

𝐾 Thermal 
conductivit
y  

𝐾𝑛𝑓

𝐾𝑓

=
𝐾𝑠 + (𝑠𝑓 − 1)𝐾𝑓 − (𝑠𝑓 − 1)𝜙(𝐾𝑓 − 𝐾𝑠)

𝐾𝑠 + (𝑠𝑓 − 1)𝐾𝑓 + 𝜙(𝐾𝑓 − 𝐾𝑠)
 

 

𝐾ℎ𝑛𝑓

𝐾𝑓

=
(𝐾𝑠2 + 2𝐾𝑏𝑓) − 2𝜙2(𝐾𝑏𝑓 − 𝐾𝑠2)

(𝐾𝑠2 + 2𝐾𝑏𝑓) + 𝜙2(𝐾𝑏𝑓 − 𝐾𝑠2)
 

where
𝜅𝑏𝑓

𝜅𝑓

= [
(𝜅𝑠1 + 2𝜅𝑓) − 2𝜙1(𝜅𝑓 − 𝜅𝑠1)

(𝜅𝑠1 + 2𝜅𝑓) + 𝜙1(𝜅𝑓 − 𝜅𝑠1)
] 

𝜎 Electrical 
conductivit
y  

𝜎𝑛𝑓

𝜎𝑓

= 1 +
3(𝜎 − 1)𝜙

(𝜎 + 2) − (𝜎 − 1)𝜙
 

𝜎ℎ𝑛𝑓

𝜎𝑏𝑓

=  [1 +
3𝜙1 (𝜎1𝜙1 + 𝜎2𝜙2 − 𝜎𝑏𝑓(𝜙1 + 𝜙2))

(𝜎1𝜙1 + 𝜎2𝜙2 + 2𝜙𝜎𝑏𝑓) − 𝜙𝜎𝑏𝑓 ((𝜎1𝜙1 + 𝜎2𝜙2) − 𝜎𝑏𝑓(𝜙1 + 𝜙2))
] 

 
The variables of similarity for the problem are given as [18] 
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𝜓 = (𝑐𝑣)1/2𝑥𝑓(𝜂), 𝜂 = (𝑐𝑣)1/2𝑦, 𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞

                                                                                      (8) 

Here, stream function is defined in term of velocity components 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
 

By using similarity transformations, stream function and Table 1 in Eqs. (1)-(4) the PDEs are 
transformed into following ordinary equations: 

 

𝑓′′′ − 𝐴1(𝑓′2
− 𝑓𝑓′′) − 𝐴2𝑀𝑓′ + 𝐴1𝑊𝑒𝑓′′𝑓′′′ = 0                                                            (9) 

 

𝜃′′ [1 +
1

A4
Pr𝑁𝑟] +

A3

A4
Pr𝑓𝜃′ = 0                                                                                (10) 

 
The nondimensionalized form of the boundary conditions are, 

 
𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1 at 𝜂 = 0

𝑓′(𝜂) → 0, 𝜃(𝜂) → 0as  𝜂 → ∞
                                                                       (11) 

 
The dimensionless parameters that are used in above equations are stated as: 
 

where Pr =
𝑣𝑓(𝜌𝐶𝑝)𝑓

𝑘𝑓
 the Prandtl number, 𝑀 =

𝜎𝐵0
2

𝜌f𝑐
the magnetic field parameter, 𝑁𝑟 =

16

3

𝜎∗

𝑘∗

𝑇∞
3

𝑣𝑓(𝜌𝐶𝑝)𝑓
 

the radiation parameter and 𝑊𝑒 = 𝑥√2Ω√
𝑐3

𝑣𝑓
 the Weissenberg number 

Also, 
 

𝐴1 = (1 − 𝜙1)2.5(1 − 𝜙2)2.5 [(1 − 𝜙2) {(1 − 𝜙1) + 𝜙1

𝜌s1

𝜌𝑓
} + 𝜙2

𝜌s2

𝜌f
] 

 

𝐴2 = (1 − 𝜙2) {(1 − 𝜙1) + 𝜙1

𝜌s1

𝜌f
} + 𝜙2

𝜌s2

𝜌f
 

 

𝐴3 = (1 − 𝜙2) {(1 − 𝜙1) + 𝜙1

(𝜌𝐶𝑝)
𝑝1

(𝜌𝐶𝑝)
𝑓

} + 𝜙2

(𝜌𝐶𝑝)
𝑝2

(𝜌𝐶𝑝)
𝑓

,  

 

𝐴4 = [
(𝜅𝑠2

+ 2𝜅𝑓) − 2𝜙2(𝜅𝑓 − 𝜅𝑠2
)

(𝜅𝑠2
+ 2𝜅𝑓) + 𝜙2(𝜅𝑓 − 𝜅𝑝2

)
] [

(𝜅𝑠1
+ 2𝜅𝑓) + 𝜙1(𝜅𝑓 − 𝜅𝑠1

)

(𝜅𝑠1
+ 2𝜅𝑓) − 2𝜙1(𝜅𝑓 − 𝜅𝑠1

)
] 

 
𝐴4 = (1 − 𝜙1)2.5(1 − 𝜙2)2.5 
 

The non-dimensional physical quantities in this problematic are the Nusselt  numbers, Nu and 
skin friction coefficient Cf distinct as:(see Refs. [28, 42]): 

 

𝑁𝑢 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤−𝑇∞)
 , 𝐶𝑓 =

𝜏𝑤

𝜌𝑓𝑈𝑤
2                                                                                                                    (12) 

 
Here 𝜏𝑤, 𝑞𝑤 represents the wall shear stress and heat flux correspondingly expressed as: 
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𝑞𝑤 = 𝑘ℎ𝑛𝑓
𝜕𝑇

𝜕𝑦
, 𝜏𝑤 = 𝜇ℎ𝑛𝑓 (

𝜕𝑢

𝜕𝑦
+

Ω

√2
(

𝜕𝑢

𝜕𝑦
)

2

) 𝑎𝑡   𝑦 = 0                                                                          (13) 

 
Finally, by placing the value of 𝜏𝑤 and 𝑞𝑤 in the previous equation of skin friction and Nusselt 

number, converted as: 
 

𝐶𝑓𝑅𝑒
1

2 =
1

𝐴5
[𝑓′′(0) + 𝑊𝑒𝑓′′(0)2]                                                                                                            (14) 

𝑁𝑢𝑅𝑒−
1

2 = −
𝑘ℎ𝑛𝑓

𝑘𝑓
(1 + 𝑁𝑟)𝜃′(0)                                                                                (15) 

 

where 𝑅𝑒 =
𝑥𝑈𝑤

𝑣𝑓
 denotes Reynolds number 

 
3. Numerical Solution 

 
A Keller-box method was first proposed by Keller and Bramble [53] in 1971. Jones [54] solved 

boundary layer problems using this method about a decade later and also solved boundary layer 
problems using this method about a decade later. Keller-box procedure is discussed in detail in Cebeci 
and Bradshaw [55]. During more than three decades, it proved to be effective and capable of 
constructing an accurate numerical solution to the issues related to boundary layers by being 
unconditionally stable, with second-order convergence. In the present study, a numerical solution 
was constructed using this method. The Keller-box method procedure is illustrated in the following 
inflow Figure 2: 

 

 
Fig. 2. Methodology of KBM 
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4. Results and Discussion 
 

In this segment, we have discoursed the velocity and heat transmission features of Williamson 
hybrid nanofluid over a stretching sheet. The numerical problem is governed by physical parameters 
which comprise (M), (We), and (Nr). Solutions by KBM passed through MATLAB and calculated results 
are shown through graphs and tabular forms.  

We selected Aluminium oxide (Al2O3) because of its great heat resistance and low electrical 
conductivity. In chemical reactions, copper oxide (CuO) is a popular oxidizing/reducing agent and 
process regulator. Also, sodium alginate (SA) was utilized as a thickening and moisture stabilizer.  
 

Table 2 
provides a comparison of their thermophysical qualities [19] 
Thermo-Physical 
property  

Al2O3 CuO SA 

𝜌(kg/m3) 6510  3970  989 
𝐶𝑝(J/kgK) 540  765 4175 

𝐾(𝑤/𝑚𝐾) 18  40 0.6376 
𝜎(𝑠/𝑚) 5.96 × 107 3.5 × 107 2.6 × 10−4 
Pr   6.5 

 
Table 3 displays the numerical results, which are in remarkable agreement with the existing data. 

We compared our findings to those of Hassanien et al., [56], Salah et al., [57], and Alkasasbeh et al., 
[18] to show that our suggested numerical approach for the Williamson hybrid nanofluid over a 
stretched sheet is valid, accurate, and precise. This strengthens our conviction that the findings 
presented in this paper are very good. 
 

Table 3 

Comparison of𝑅𝑒−1/2 𝑁𝑢 with variation in Prandtl number, when M=We= Nr=𝜙1 =
𝜙2 = 0 
Pr 𝑅𝑒−1/2 𝑁 𝑢 
 Hassanien et al., [56] Salleh et al., [57] Alkasasbeh et al., [18] Present 

0.72 0.46325 0.46317 0.46316 0.46357 
1 0.58198 0.58198 0.58198 0.58198 
3 1.16525 1.16522 1.16524 1.16524 
5  1.56806 1.56807 1.56806 
7  1.89548 1.89550 1.89551 
10 2.30801 2.30821 2.30820 2.30821 
100 7.74925 7.76249 7.76250 7.76250 

 
The numerical results of Nusselt number and the friction coefficient for various values of 

magnetic field parameter M, the radiation parameter Nr and the Weissenberg number We are 
compiled in Table 4, which shows what happens when the hybrid nanofluid and the nanofluid are 
exposed to the same circumstances. Both the Nusselt number and the friction coefficient of the 
hybrid nanofluid decrease when M is decreased throughout this study. Compared to nanofluid, the 
melting point of the hybrid nanofluid is lower. This drop is also not usual for most fluids, so it's notable 
in both cases. Everyone knows that raising the Nusselt number of a fluid makes it less thick and more 
fluid. When compared to the influence of the (We) coefficient, Nusselt numbers exhibits a 
considerable rise when (We) are elevated, in the coefficient of friction addition to a very minor 
change in both fluids. This is in contrast to the effect of the M coefficient. The effect of Nr on Nusselt 
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number in both fluids shows that the values are stable, which shows that its effect is limited other 
than at low the coefficient of friction, where there seems to be little change in both fluids. 

The effect of magnetic field parameter M on the velocity component f′(η) and temperature θ(η) 
are seen in Figure 3 and Figure 4, respectively for both Al2O3+CuO/SA hybrid nanofluid and Al2O3/SA 
nanofluid. When a magnetic field is generated, the Lorentz force appears works to hinder the flow of 
the fluid, and its presence causes a rapid reduction in velocity at the boundary. In contrast, as fluid 
particles move, lines of magnetic field are distorted and electric current is produced, which is 
converted into heat energy due to the resistance of the fluid particles to electric current flow. This 
heat is utilized to increase the total energy of the fluid particles and therefore, temperature rises and 
the velocity of fluid is reduced. 
 

Table 4  

Values of Re−1/2𝐶𝑓 and  𝑅𝑒−1/2 𝑁 𝑢 for different values of We, Nr, and M 

 Hybrid nanofluid 

(Al2O3+CuO)/SA 
Nanofluid 
(Al2O3)/SA 

M We Nr 𝑅𝑒−1/2𝑁𝑢 𝑅𝑒−1/2𝐶𝑓 𝑅𝑒−1/2𝑁𝑢 𝑅𝑒−1/2𝐶𝑓 
1 0.1 2 0.74280 -2.14012 1.15985 -1.95551 
2   0.63030 -2.73888 1.00399 -2.45209 
3   0.57294 -3.14333 0.91738 -2.81242 

2 0.01 2 0.63375 -3.29974 1.01110 -2.84748 

 0.1  0.63030 -2.73888 1.00399 -2.45209 
 0.5  0.61270 -0.56004 0.96532 -0.17412 
2 0.1 1 0.62859 -2.73888 0.99239 -2.45209 

  2 0.55091 -2.73888 0.90031 -2.45209 

  3 0.54284 -2.73888 0.89042 -2.45209 

 

 
Fig. 3. Velocity f′(η) fluctuation with M 
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Fig. 4. Temperature θ(η) fluctuation with M 

 
Figures 5 and 6 illustrate the influence of Weissenberg number (We) on velocity f′ (η) and 

temperature for both hybrid nanofluid and nanofluid. It appears that the velocity of both of the fluids 
decreases with the increasing values of (We) and the opposite happens with respect to temperature. 
In order to comprehend stretching processes like natural shear, it is vital to know the Weissenberg 
number (We), which specifies the degree of deformation anisotropy or direction. When subjected to 
frictional manipulations, the ephemeral fluid's non-Newtonian property is amplified, leading to 
increased fluidity. As a result of the fluid's reduced sensitivity to shear, less of the momentum of the 
moving boundary wall is transmitted to the fluid. Because of this, fluidity is hindered when fluid 
motion slows and the thickness of the momentum barrier layer lowers. 
 

 
Fig. 5. Velocity f′(η) fluctuation with We 
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Fig. 6. Temperature θ(η) fluctuation with We 

 
Finally, the temperature is shown for different thermal radiation intensities Nr in Figure 7 for both 

Al2O3+CuO/SA hybrid nanofluid and Al2O3/SA nanofluid. The radiation parameter is used to quantify 
the connection between the two forms of heat transport (conduction and thermal radiation). As a 
result, a higher value for Nr indicates that more radiative heat energy is being introduced into the 
system, leading to a higher temperature. Consequently, the radiation may regulate the temperature 
of the boundary layers. 
 

 
Fig. 7. Temperature θ(η) fluctuation with Nr 

 
5. Conclusion 
 

In this work, we analysed the consequences of heat and mass transfer of magnetic Williamson 
hybrid nanofluid flow over a stretched sheet with thermal radiation. The existing flow equations are 
tackled by KBM passed through MATLAB. The key results of the present analysis are: 
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i. Increasing M and We contributions cause f'(η) to decrease dramatically for both fluids. 
ii. A rise in temperature θ(η) due to an increase in M, Nr, and We. 

iii. Increases in We, Nr and M lead to a lower skin friction coefficient Cf. 
iv. The Nusselt number Nu outlines for both fluids reduce with rise in M, and the opposite 

 happens with the effect of We. 
v. The velocity f'(η) fluctuation of a fluid is not significantly affected by the Nr parameter. 

vi. Williamson nanofluid has the highest value for Nusselt number, skin friction and velocity 
profile. Moreover, it is the lowest value for temperature profile. 
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