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The theme of this study is to investigate the influence of the chemical reaction 
and activation energy on MHD peristaltic flow of Jeffery nanofluids in an 
inclined symmetric channel through a porous medium. Joule heating, 
radiation, viscous dissipation, heat generation/absorption, activation energy, 
and thermal diffusion and diffusion thermo effects are involved. The long 
wavelength and low Reynolds number approximations are used to simplify the 
non-linear equations that govern the flow. Then, the simplified equations are 
solved by using the homotopy perturbation method (HPM). We have depicted 
the velocity, temperature, solute concentration, and nanoparticles volume 
friction graphically. Physical explanations for the results are provided. The 
influence of interest parameters on entropy generation is also observed. 
Numerical results for the heat transfer coefficient, Nusselt number, and 
Sherwood number are presented. The results revealed that an increase in the 

value of the ratio of relaxation to retardation times of Jeffery nanofluid λ1 
enhances the velocity distribution, while a reduction in the solute 
concentration distribution occurs by increasing the activation energy 

parameter E and the temperature difference parameter 𝜌
1
. We also 

discovered that an increase of the chemical reaction parameter ξ increases 
the temperature profile and decreases the velocity and solute concentration 
profiles. Furthermore, the velocity becomes lower along the normal axis y and 
ends up with the minimum value near the upper wall of the channel. Also, the 
maximum and minimum values of the velocity increase with an increase of the 

second order slip parameter 𝛽
2
, while they decrease as Darcy number 𝐷𝑎 

increases. 
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1. Introduction 
 

The study of peristalsis attracted the attention of many researchers due to its significant role in 
the transport processes. Application of peristalsis in the human body occurs in the movement of food 
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particles through the digestive tract, the motion of chyme via the gastrointestinal tract, and the 
transfer of urine from the kidneys to the bladder. Moreover, many devices have been created based 
on the principle of peristalsis as blood pump machines, dialysis machines, and heart-lung machines. 
El-dabe et al., [1] studied the peristaltic motion of Eyring-Powell nanofluid with couple stresses and 
heat and mass transfer through a porous media under the effect of magnetic field inside asymmetric 
vertical channel. Abbasi et al., [2] studied the slip effects on mixed convective peristaltic transport of 
copper-water nanofluid in an inclined channel. El-dabe et al., [3] analyzed the peristaltic flow of 
Herschel Bulkley nanofluid through a non-Darcy porous medium with heat transfer under slip 
condition. El-dabe et al., [4] investigated MHD peristaltic flow of non-Newtonian power-law 
nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Mansour and 
Abou-zeid [5] studied the heat and mass transfer effects on Non-Newtonian fluid flow in a non-
uniform vertical tube with peristalsis. El-dabe and Abou-zeid [6] studied the radially varying magnetic 
field effect on peristaltic motion with heat and mass transfer of a non-Newtonian fluid between two 
co-axial tubes. El-dabe et al., [7] studied a semi-analytical technique for MHD peristalsis of 
pseudoplastic nanofluid with temperature dependent viscosity. Many researchers have studied 
different flows with peristalsis [8-12]. 

Nanofluids are nanometer-sized materials such as aluminium oxide (𝐴𝑙2𝑂3), copper (𝐶𝑢), 
copper-oxide (𝐶𝑢𝑂), gold (𝐴𝑢), silver (𝐴𝑔), etc., dispersed in a base fluid such as water, oil, ethylene 
glycol, polymer solution, and bio-fluids. Gold nanoparticles play a significant role in the biomedical 
sciences and emerge as promising agents for treatment. The small size of the gold nanoparticles and 
their ability to penetrate widely over the body made them attractive for application in cancer 
therapy. Further, they can bind many proteins and drugs and they can also actively target the cancer 
cells, treat them, and kill the bacteria. Furthermore, the high atomic number of the gold nanoparticles 
leads to produce heat which can be used for tumor-selective photothermal therapy. Peristaltic flows 
with gold nanoparticles have been investigated to examine the characteristics of gold nanoparticles 
in biological flows. El-dabe et al., [13] investigated MHD peristaltic flow of a third grade nanofluid 
through a porous medium. Mekheimer et al., [14] studied the peristaltic blood flow with gold 
nanoparticles as a third grade nanofluid in catheter. They pointed out that the gold nanoparticles are 
effective for drug carrying and drug delivery systems because they control the velocity through the 
Brownian motion parameter 𝑁𝑏 and thermophoresis parameter 𝑁𝑡, also they found that the gold 
nanoparticles enhance the temperature distribution which assists them to destroy the cancer cells. 
Simulation of gold nanoparticle transport during MHD electroosmotic flow in a peristaltic micro-
channel for biomedical treatment was analyzed by Nuwairan and Souayeh [15]. Asha and Sunitha [16] 
investigated the influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double 
diffusion in the presence of gold nanoparticles. They found that the impact of thermal radiation on 
blood flow with gold nanoparticles increases the temperature profile, which helps in destroying 
cancer cells during the drug delivery process. Umavathi et al., [17] studied the magnetohydrodynamic 
squeezing Casson nanofluid flow between parallel convectively heated disks. 

Newtonian fluids define as the fluids in which the shear stress is linearly proportional to the shear 
strain rate such as kerosene, gasoline water, air, and other gases. Otherwise, Fluids for which 
the shear stress is not linearly related to the shear strain rate are called non-Newtonian fluids like 
ketchup, polymer solutions, paste, paint, and cake batter. Blood exhibits non-Newtonian behavior 
under low shear stress and Newtonian behavior under high shear stress. Shear stress must be high 
for blood to flow through big veins and arteries and low for blood to flow through tiny veins and 
arteries. Jeffery fluid behaves like both Newtonian and non-Newtonian fluids depending on the core 
and peripheral regions. Many types of researches have been done to study Jeffery fluid in different 
geometries. Saleem et al., [18] studied the impact of velocity second slip and inclined magnetic field 
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on peristaltic flow coating with Jeffrey fluid in tapered channel. El-dabe et al., [19] studied a semi-
analytical treatment of Hall current effect on peristaltic flow of Jeffery nanofluid. Abd-Alla and Abo-
Dahab [20] analyzed the magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid 
in an asymmetric channel. Abd-Alla et al., [21] obtained a numerical solution for MHD peristaltic 
transport in an inclined nanofluid symmetric channel with porous medium. They found that an 
increase in the ratio of relaxation to retardation times of Jeffery fluid 𝜆1 causes a reduction in the 
velocity profile at the middle of the channel, while an opposite behavior occurs near the walls of the 
channel. Rafiq et al., [22] analyzed MHD electroosmotic peristaltic flow of Jeffrey nanofluid with slip 
conditions and chemical reaction. Hayat et al., [23] studied the radiative peristaltic flow of Jeffrey 
nanofluid with Slip conditions and Joule heating. El-dabe et al., [24] studied the 
magnetohydrodynamic peristaltic flow of Jeffry nanofluid with heat transfer through a porous 
medium in a vertical Tube. Sarada et al., [25] investigated the effect of magnetohydrodynamics on 
heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal 
Non-equilibrium condition. Kumar et al., [26] studied non-Newtonian hybrid nanofluid flow over 
vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium. Gowda 
et al., [27] analyzed the dynamics of nanoparticle diameter and interfacial layer on flow of non-
Newtonian (Jeffrey) nanofluid over a convective curved stretching sheet. 

The magnetic field with a nonzero inclination is referred to an inclined magnetic field. So, we may 
declare that the inclined magnetic field is the generalization of a magnetic field. The inclination is 
required to explain the effectiveness of magnetohydrodynamic (MHD) plasma devices, energy 
systems, and accelerators as well as for the fulfillment of more real-world geophysical and biological 
fluxes. The influence of inclined magnetic fields on peristaltic flows has been presented by many 
researchers. Hayat et al., [28] studied the outcome of slip features on the peristaltic flow of a Prandtl 
nanofluid with inclined magnetic field and chemical reaction. Kamal and Abdulhadi [29] investigated 
the influence of an inclined magnetic field on peristaltic transport of pseudoplastic nanofluid through 
a porous space in an inclined tapered asymmetric channel with convective conditions. Akram et al., 
[30] studied the effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the 
presence of inclined magnetic field and channel with different wave forms. Hayat et al., [31] 
investigated the magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid 
with slip conditions and Joule heating in an inclined channel. They observed that increasing the 
inclination angle of both channel and magnetic field increases the velocity and temperature profiles, 
whereas a reduction occurs in the nanoparticle concentration profile. Noreen and Qasim [32] 

analyzed the peristaltic flow with inclined magnetic field and convective boundary conditions. Gowda 
et al., [33] studied three-dimensional non-Newtonian magnetic fluid flow induced due to stretching 
of the flat surface with chemical reaction. 

The study of entropy generation determines the energy losses of the engineering and industrials 
thermal systems. Entropy generation is used in turbomachinery, electronic cooling, porous media, 
heat exchanger pumps, solar collectors, combustions, and chemical vapour deposition instruments. 
Various researchers considered entropy generation in their studies. Ouaf et al., [34] analyzed the 
entropy generation and chemical reaction effects on MHD non-Newtonian nanofluid flow in a 
sinusoidal channel. Ismael et al., [35] investigated entropy generation and nanoparticles 𝐶𝑢𝑂 effects 
on MHD peristaltic transport of micropolar non-Newtonian fluid with velocity and temperature slip 
conditions. Akbar et al., [36] obtained the thermal radiation and Hall effects in mixed convective 
peristaltic transport of nanofluid with entropy generation. 

Activation energy is defined as the minimum amount of energy that required to start a chemical 
reaction. Recently, investigation the impact of chemical reaction and activation energy with 
peristalsis has attracted the attention of many researchers. Hayat et al., [37] studied the activation 
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energy and non-Darcy resistance in magneto peristalsis of Jeffrey material. Nisar et al., [38] pointed 
out the significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid. 
Hayat et al., [39] obtained the activation energy and entropy generation in mixed convective 
peristaltic transport of Sutterby nanofluid. Ellahi et al., [40] studied the peristaltic blood flow of 
couple stress fluid suspended with nanoparticles under the influence of chemical reaction and 
activation energy. Hayat et al., [41] studied the nonlinear radiative peristaltic flow of Jeffrey 
nanofluid with activation energy and modified Darcy’s law. Ibrahim et al., [42] studied the activation 
energy and chemical reaction effects on MHD Bingham nanofluid flow through a non-Darcy porous 
medium. 

Many researches have been done to study the impact of activation energy in different situations. 
Gowda et al., [43] investigated the impact of binary chemical reaction and activation Energy on heat 
and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Kumar et 
al., [44] studied the Exploring the impact of magnetic dipole on the radiative nanofluid flow over a 
stretching sheet by means of KKL model. Sarada et al., [45] studied the impact of exponential form 
of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier 
heat flux model. Gowda et al., [46] analyzed the KKL correlation for simulation of nanofluid flow over 
a stretching sheet considering magnetic dipole and chemical reaction. The computational 
investigation of Stefan Blowing effect on flow of second-grade fluid over a curved stretching sheet 
was done by Gowda et al., [47]. Exploration of Arrhenius activation energy on hybrid nanofluid flow 
over a curved stretchable surface was investigated by Kumar et al., [48]. Kumar et al., [49] studied 
the heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary 
hybrid nanofluid conveying three various shaped nanoparticles. Kumar et al., [50] investigated the 
inspection of convective heat transfer and KKL correlation for simulation of nanofluid flow over a 
curved stretching sheet. 

From the aforementioned articles, to the best of writer's knowledge that the aspects of chemical 
reaction and activation energy on MHD peristaltic flow of non-Newtonian Jeffery nanofluid in an 
inclined symmetric channel through a porous medium was not yet discussed. Hence, the main 
contribution of this study is to extend the work of Ouaf et al., [34] to examine the flow, heat and 
mass transfer features of Jeffery nanofluid with chemical reaction and activation energy, radiation, 
and an inclined magnetic field. The non-linear equations governing the system flow are simplified by 
using the long wavelength and low Reynolds number approximations. Then, a semi-analytical method 
called the Homotopy perturbation method (HPM) is used to solve the simplified equations. The 
influence of Brownian motion and thermophoresis are obtained. Graphs for the solution of velocity, 
temperature, solutal concentration, and nanoparticles volume friction are plotted to observe the 
influence of the involved parameters. Further, graphs for the entropy generation are illustrated. 
Numerical values of the heat transfer coefficient, Nusselt number, and Sherwood number for 
different values of interest parameters are presented. 
 
2. Mathematical Formulation 
 

Peristaltic flow of MHD Jeffery nanofluid through a porous medium in an inclined symmetric 
channel having width 2𝑑 and inclined at an angle 𝛼 to the horizontal as shown in Figure 1. The 
Cartesian coordinates are assumed in such a way that the 𝑋-axis lies along the centre line of the 
channel whereas 𝑌-axis is perpendicular to it. The velocity components 𝑈 and 𝑉 lie along 𝑋 and 𝑌 
directions, respectively. The geometry of the wall surface of a symmetric channel can be described 
as follows 
 



CFD Letters 

Volume 15, Issue 6 (2023) 65-85 

69 
 

𝑦 = ±ℎ(𝑋, 𝑡) = ± [𝑑 + 𝑎 𝑐𝑜𝑠
2𝜋

𝜆
(𝑋 − 𝑐𝑡)]          (1) 

 
A magnetic field of strength 𝐵0 is inclined at angle 𝜂 to the vertical axis of the channel, and may 

have the following form [31] 
 
𝑩 = (𝐵0  sin 𝜂 , 𝐵0  cos 𝜂 , 0)            (2) 
 
By ignoring the Hall and ion-slip effects, the current density 𝑱 can be expressed as [51] 
 
𝑱 = 𝜎𝑓(𝑬 + 𝑽 × 𝑩)             (3) 

 
Here, 𝑬 is the electric field and assumed to be zero since there is no polarization voltage, 𝜎𝑓 is the 

electric conductivity of the fluid, and 𝑽 is the vector velocity. Eq. (3) can be rewritten with the help 
of Eq. (2) as follows [31] 
 

𝑱 = 𝜎𝑓 𝐵0(𝑈 cos 𝜂 − 𝑉 sin 𝜂)𝑘̂           (4) 

 

The terms 𝑱 × 𝑩, 
𝑱.𝑱

𝜎𝑓
 represent the Lorentz force per unit volume and Joule heating, respectively. 

These terms can be written by using Eq. (3) and Eq. (4) as follows [31] 
 
𝑭 = 𝑱 × 𝑩 = 𝜎𝑓 𝐵0

2(𝑈 cos 𝜂 − 𝑉 sin 𝜂)( sin 𝜂 𝑗̂ − cos 𝜂 𝑖̂)        (5) 

 
𝑱.𝑱

𝜎𝑓
= 𝜌𝑓𝐵0

2(𝑈2𝑐𝑜𝑠2𝜂 − 2𝑈𝑉 cos 𝜂  sin 𝜂 + 𝑉2𝑠𝑖𝑛2𝜂)        (6) 

 

 
Fig. 1. Geometry of the problem 
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The governing equations for MHD Jeffery nanofluid in the presence of chemical reaction and 
activation energy, Joule heating, viscous dissipation, radiation, heat generation/absorption, and 
thermal diffusion and diffusion thermo effects are described as [52] 
 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0              (7) 

 

𝜌𝑓 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑋
+

𝜇𝑓

1+𝜆1
(

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2) + 𝜌𝑓𝑔 𝑠𝑖𝑛 𝛼 (𝛽𝑇(𝑇 − 𝑇0) +  𝛽𝐶(𝐶 − 𝐶0) −

 𝛽𝑓(𝑓 − 𝑓0)) − 𝜌𝑓𝐵0
2  cos 𝜂 (𝑈 cos 𝜂 − 𝑉 sin 𝜂) −

𝜇𝑓

𝑘1
𝑈        (8) 

 

𝜌𝑓 (
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑌
+ +

𝜇𝑓

1+𝜆1
(

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2) + 𝜌𝑓𝑔 cos 𝛼 (𝛽𝑇(𝑇 − 𝑇0) +  𝛽𝐶(𝐶 − 𝐶0) −

𝛽𝑓(𝑓 − 𝑓0)) + 𝜌𝑓𝐵0
2  sin 𝜂 (𝑈 cos 𝜂 − 𝑉 sin 𝜂) −

𝜇𝑓

𝑘1
𝑉        (9) 

 

(𝜌𝑐)𝑓 (
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
) = 𝜅𝑓 (

𝜕2𝑇

𝜕𝑋2
+

𝜕2𝑇

𝜕𝑌2
) +

𝜇𝑓

1+𝜆1
(2 (

𝜕𝑈

𝜕𝑋
)

2

+ (
𝜕𝑉

𝜕𝑌
)

2

+ (
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)

2

) +

(𝜌𝑐)𝑝 [ 𝐷𝐵 ( 
𝜕𝑇

𝜕𝑋

𝜕𝑓

𝜕𝑋
+

𝜕𝑇

𝜕𝑌

𝜕𝑓

𝜕𝑌
 ) +

𝐷𝑇

𝑇𝑚
((

𝜕𝑇

𝜕𝑋
)

2

+ (
𝜕𝑇

𝜕𝑌
)

2

)] +  𝐷𝑇𝐶 (
𝜕2𝐶

𝜕𝑋2 +
𝜕2𝐶

𝜕𝑌2) + 𝜌𝑓𝐵0
2(𝑈2𝑐𝑜𝑠2𝜂 −

2𝑈𝑉 cos 𝜂 sin 𝜂 + 𝑉2𝑠𝑖𝑛2𝜂) + 𝑄0(𝑇 − 𝑇0) −
𝜕𝑞𝑟

𝜕𝑌
                   (10) 

 
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
 = 𝐷𝑠 (

𝜕2𝐶

𝜕𝑋2 +
𝜕2𝐶

𝜕𝑌2) + 𝐷𝐶𝑇 (
𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2) − 𝐾𝑟
2 (𝐶 − 𝐶0) (

𝑇

𝑇0
) 𝑒𝑥𝑝 (

𝐸𝑎

𝑘 𝑇
)              (11) 

 
𝜕𝑓

𝜕𝑡
+ 𝑈

𝜕𝑓

𝜕𝑋
+ 𝑉

𝜕𝑓

𝜕𝑌
 = 𝐷𝐵 (

𝜕2𝑓

𝜕𝑋2 +
𝜕2𝑓

𝜕𝑌2) +
𝐷𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2)                  (12) 

 
The radiative heat flux 𝑞𝑟 is given by [16,23] 
 

𝑞𝑟 =
−4𝜎∗

3𝑘𝑅

 𝜕𝑇4

𝜕𝑌
                        (13) 

 
where 𝜎∗, 𝑘𝑅 are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. 
Here, the difference in temperature within the flow is sufficiently small as the term 𝑇4 in Taylor series 
about temperature 𝑇0 which can be expressed as follows 
 
𝑇4 = 𝑇0

4 + 4 𝑇0
3(𝑇 − 𝑇0) + 6 𝑇0

2 (𝑇 − 𝑇0)2 + ⋯                   (14) 
 
Neglecting the higher order terms of Eq. (14) beyond the first order in (𝑇 − 𝑇0), we obtain 
 
𝑇4 ≅ 4 𝑇0

3𝑇 − 3𝑇0
4                       (15) 

 
Substituting Eq. (15) into Eq. (13), we get 
 

𝑞𝑟 = −
16 𝜎∗𝑇0

3

3𝑘𝑅

 𝜕𝑇

𝜕𝑌
                       (16) 
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Transformation between laboratory and moving frames is given as 
 
𝑦 = 𝑌, 𝑥 = 𝑋 − 𝑐𝑡, 𝑝(𝑥, 𝑦) = 𝑃(𝑋, 𝑌, 𝑡), 𝑢 = 𝑈 − 𝑐, 𝑣 = 𝑉(𝑥, 𝑦, 𝑡), 𝑇(𝑥, 𝑦) = 𝑇(𝑋, 𝑌, 𝑡), 𝐶(𝑥, 𝑦) =
𝐶(𝑋, 𝑌, 𝑡), 𝑓(𝑥, 𝑦) = 𝑓(𝑋, 𝑌, 𝑡)                     (17) 
 
Where (𝑢, 𝑣) are the velocity components in the wave frame (𝑥, 𝑦). Defining the following non-
dimensional quantities 
 

𝑢∗ =
𝑢

𝑐
 , 𝑣∗ =

𝑣

𝑐𝛿
 , 𝑥∗ =

𝑥

𝜆
, 𝑦∗ =

𝑦

𝑑
 , 𝑡∗ =

𝑐𝑡

𝜆
, 𝑝∗ =

𝑑2𝑝

𝑐𝜆𝜇
 , 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
 , 𝜙 =

𝐶−𝐶0

𝐶1−𝐶0
 , ℱ =

𝑓−𝑓0

𝑓1−𝑓0
, 𝑅𝑒 =

𝜌𝑓𝑐𝑑

𝜇
 , 

𝛿 =
𝑑

𝜆
 , 𝑀 = √

𝜎

𝜇
𝐵0𝑑, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
 , 𝐸𝑐 =

𝑐2

𝑐𝑝(𝑇1−𝑇0)
, 𝐵𝑟 = 𝐸𝑐 𝑃𝑟, 𝜖 =

𝑎

𝑑
, 𝐷𝑎 =

𝑘1 

𝑑2 , 𝑅 =
4𝜎∗𝑇0

3

𝑘𝑓𝑘𝑅
, 𝑁𝑏 =

 𝜏1 𝐷𝐵

𝜈
(𝑓1 − 𝑓0), 𝑁𝑡 =

𝜏1 𝐷𝑇

𝜈 𝑇𝑚
(𝑇1 − 𝑇0), 𝑁𝑇𝐶 =

𝐷𝑇𝐶 (𝐶1−𝐶0)

𝜇𝑓𝑐𝑝(𝑇1−𝑇0)
, 𝑁𝐶𝑇 =

𝐷𝐶𝑇 (𝑇1−𝑇0)

 𝐷𝑠 (𝐶1−𝐶0)
, 𝜌1 =

𝑇1−𝑇0

𝑇0
, 𝐸 =

𝐸𝑎

𝐾 𝑇0 
, 𝜉 =

𝐾𝑟
2 𝑑2

𝐷𝑠
 𝐺𝑟 =

𝜌𝑓g𝛽𝑇 𝑑2(𝑇1−𝑇0) 

 𝑐𝜇𝑓
, 𝐺𝑐 =

𝜌𝑓g𝛽𝐶𝑑2(𝐶1−𝐶0) 

 𝑐𝜇𝑓
, 𝐺𝑐 =

𝜌𝑓g𝛽𝑓𝑑2(𝑓1−𝑓0) 

 𝑐𝜇𝑓
, 𝑄 =

𝑄0 𝑑2

𝜇𝑓𝑐𝑝
               (18) 

 
By applying the transformation between laboratory and moving frames in Eq. (17) and using the 

above non-dimensional parameters defined in Eq. (18). Eq. (8) to Eq. (12) can be written after 
applying the low Reynolds number and long-wavelength approximation as follows 
 
𝜕𝑃

𝜕𝑥
=

1

1+𝜆1

𝜕2𝑢

𝜕𝑦2 + (𝐺𝑟𝜃 + 𝐺𝑐𝜙 − 𝐺𝑓ℱ) sin 𝛼 − (
1

 𝐷𝑎
+ 𝑀2𝑐𝑜𝑠2𝜂) (𝑢 + 1)                (19) 

 
𝜕𝑃

𝜕𝑦
= 0                         (20) 

 

(1 +
4

3
𝑅)

𝜕2𝜃

𝜕𝑦2 +
𝐵𝑟

1+𝜆1
(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑁𝑏 𝑃𝑟
𝜕𝜃

𝜕𝑦

𝜕ℱ

𝜕𝑦
+ 𝑁𝑡 𝑃𝑟 (

𝜕𝜃

𝜕𝑦
)

2

+ 𝑁𝑇𝐶 𝑃𝑟
𝜕2𝜙

𝜕𝑦2 + 𝑄 𝑃𝑟 𝜃 + 𝑀2𝐵𝑟 (𝑢 +

1)2𝑐𝑜𝑠2𝜂 = 0                        (21) 
 
𝜕2𝜙

𝜕𝑦2
+ 𝑁𝐶𝑇

𝜕2𝜃

𝜕𝑦2
− 𝜉 𝜙 (𝜌1𝜃 + 1)𝑒𝑥𝑝 (

𝐸

(𝜌1𝜃+1)
) = 0                   (22) 

 
𝜕2ℱ

𝜕𝑦2
+

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝑦2
= 0                       (23) 

 
Dimensionless boundary conditions are given as [34] 
 
𝜕𝑢

𝜕𝑦
= 0, 𝜃 = 0, 𝜙 = 0, ℱ = 0         at    𝑦 = 0                    (24) 

 

𝑢 + 𝛽1
𝜕𝑢

𝜕𝑦
+ 𝛽2

𝜕2𝑢

𝜕𝑦2
= −1, 𝜃 = 1, 𝜙 = 1, ℱ = 1         at   𝑦 = ℎ                 (25) 

 
3. Method of Solution: Homotopy Perturbation Method (HPM) 
 

The homotopy perturbation method is one of the notable semi-analytical approaches used to 
solve the nonlinear partial and ordinary differential equations. The homotopy perturbation method 
recommends to write the equations governing the flow as follows [34,53] 
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(1 − 𝑝) (
1

1+𝜆1

𝜕2𝑢

𝜕𝑦2
−

1

1+𝜆1

𝜕2𝑢0

𝜕𝑦2
) + 𝑝 (

1

1+𝜆1

𝜕2𝑢

𝜕𝑦2
+ (𝐺𝑟𝜃 + 𝐺𝑐𝜙 − 𝐺𝑓ℱ) sin 𝛼 − (

1

 𝐷𝑎
+ 𝑀2𝑐𝑜𝑠2𝜂) (𝑢 +

1) −
𝜕𝑃

𝜕𝑥
) = 0                        (26) 

 

(1 − 𝑝) ((1 +
4

3
𝑅)

𝜕2𝜃

𝜕𝑦2 − (1 +
4

3
𝑅)

𝜕2𝜃0

𝜕𝑦2 ) + 𝑝 ((1 +
4

3
𝑅)

𝜕2𝜃

𝜕𝑦2 +
𝐵𝑟

1+𝜆1
(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑁𝑏 𝑃𝑟
𝜕𝜃

𝜕𝑦

𝜕ℱ

𝜕𝑦
+

𝑁𝑡 𝑃𝑟 (
𝜕𝜃

𝜕𝑦
)

2

+ 𝑁𝑇𝐶 𝑃𝑟
𝜕2𝜙

𝜕𝑦2 + 𝑄 𝑃𝑟 𝜃 + 𝑀2𝐵𝑟 (𝑢 + 1)2𝑐𝑜𝑠2𝜂) = 0                (27) 

 

(1 − 𝑝) (
𝜕2𝜙

𝜕𝑦2 −
𝜕2𝜙0

𝜕𝑦2 ) + 𝑝 (
𝜕2𝜙

𝜕𝑦2 + 𝑁𝐶𝑇
𝜕2𝜃

𝜕𝑦2 − 𝜉 𝜙 (𝜌1𝜃 + 1)𝑒𝑥𝑝 (
𝐸

(𝜌1𝜃+1)
)) = 0               (28) 

 

(1 − 𝑝) (
𝜕2ℱ

𝜕𝑦2
−

𝜕2ℱ0

𝜕𝑦2
) + 𝑝 (

𝜕2ℱ

𝜕𝑦2
+

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝑦2
) = 0                   (29) 

 
The initial approximations 𝑢0, 𝜃0, 𝜙0 and ℱ0can be written as the following 
 

𝑢0 = −1 , 𝜃0 =
𝑦

ℎ
 , 𝜙0 =

𝑦

ℎ
 , ℱ0 =

𝑦

ℎ
                     (30) 

 
The solution of 𝑢, 𝜃, 𝜙 and ℱ can be expressed in terms of power series form as follows 
 
(𝑢, 𝜃, 𝜙, ℱ) = (𝑢0, 𝜃0, 𝜙0, ℱ0) + 𝑝 (𝑢1, 𝜃1, 𝜙1, ℱ1) + 𝑝2 (𝑢2, 𝜃2, 𝜙2, ℱ2) + ⋯               (31) 
 
where 𝑝 ∈ [0,1] is the embedding parameter. Here, we choose 𝑝 = 1 to get an accurate 
approximation for the solution. Therefore, the solution of velocity, temperature, solute 
concentration, and nanoparticles volume friction may be written as follows: 
 
𝑢(𝑥, 𝑦) = 𝑐1 + 𝑐2𝑦 + 𝑐3𝑦2 + 𝑐4𝑦3 + 𝑐5𝑦4 + 𝑐6𝑦5+𝑐7 𝑦6                  (32) 
 
𝜃(𝑥, 𝑦) = 𝑐8 + 𝑐9𝑦 + 𝑐10𝑦2 + 𝑐11𝑦3                     (33) 
 
𝜙(𝑥, 𝑦) = 𝑐12 + 𝑐13 𝑦 + 𝑐14𝑦2 + 𝑐15 𝑦3 + 𝑐16 𝑦4 + 𝑐17 𝑦5 + 𝑐18 𝑦6 + 𝑐19 𝑦7               (34) 
 
ℱ(𝑥, 𝑦) = 𝑐20 + 𝑐21 𝑦 + 𝑐22𝑦2 + 𝑐23 𝑦3                    (35) 
 

Here, 𝑐1 - 𝑐23 are not given here to save space, but they are available upon request. Also, we 
defined the heat transfer coefficient 𝑍(𝑥), Nusselt number 𝑁𝑢, and Sherwood number 𝑆ℎ at the 
upper wall of the channel as follows [53-55] 
 

𝑍(𝑥) =
𝜕ℎ

𝜕𝑥
(

𝜕𝜃

𝜕𝑦
)

𝑦⟶ℎ
 , 𝑁𝑢 = − (

𝜕𝜃

𝜕𝑦
)

𝑦⟶ℎ
, 𝑆ℎ = − (

𝜕𝜙

𝜕𝑦
)

𝑦⟶ℎ
                  (36) 

 
We obtained the above expressions by substituting Eq. (32) to Eq. (35) into Eq. (36), and then we 

used the software Mathematica package to evaluate them numerically for different parameters of 
the given problem. 
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4. Entropy Generation 
 

The entropy generation equation is modified by involving the effect of Joule heating, radiation, 
and heat generation/absorption as follows [34,55] 
 

𝑁𝑠 = (
𝜕𝜃

𝜕𝑦
)

2

+
1

(1+
4

3
𝑅)

 (
𝐵𝑟

1+𝜆1
(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑁𝑏 𝑃𝑟
𝜕𝜃

𝜕𝑦

𝜕ℱ

𝜕𝑦
+ 𝑁𝑡 𝑃𝑟 (

𝜕𝜃

𝜕𝑦
)

2

+ 𝑁𝑇𝐶 𝑃𝑟
𝜕2𝜙

𝜕𝑦2 +

𝑄 𝑃𝑟 𝜃 + 𝑀2𝐵𝑟 (𝑢 + 1)2𝑐𝑜𝑠2𝜂)                     (37) 

 
5. Results and Discussion 
 

We have examined the impact of the relevant parameters of MHD peristaltic flow of Jeffery 
nanofluid inside an inclined symmetric channel in the presence of an inclined magnetic field. We 
obtained the velocity, temperature, solutal concentration and nanoparticles volume friction profiles 
by considering the following steady values 
 
𝑑𝑝 𝑑𝑥⁄ = 10, 𝜖 = 𝑡 = 𝛽1 = 𝛽2 = 𝜆1 = ξ = 𝜌1 = 𝑁𝑇𝐶 = 𝑁𝐶𝑇 = 0.1, 𝑥 = 𝑅 = 𝐵𝑟 = 𝐺𝑓 = 0.2, Nt =

Nb = 𝑀 = 𝑄 = 1, Pr = 𝐺𝑟 = 𝐺𝑐 = 𝐸 = 2, 𝐷𝑎 = 0.3, 𝛼 =
𝜋

3
 and 𝜂 =

𝜋

4
.  

 
The variation of the velocity distribution 𝑢 along the normal axis 𝑦 for different values of the 

second order slip parameter 𝛽2 and Darcy number 𝐷𝑎 is illustrated in Figure 2 and Figure 3, 
respectively. It is clear from these figures that the velocity 𝑢 increases with an increase of 𝛽2, while 
it decreases by increasing 𝐷𝑎. Moreover, we observed from these figures that the velocity profile is 
parabolic. Also, the maximum value of the velocity 𝑢 is always located at the center of the channel 
(at 𝑦 = 0). We have observed from these figures that the velocity 𝑢 for various values of 𝛽2 and 𝐷𝑎 
becomes lower along the normal axis y and ends up with the minimum value near the upper wall of 
the channel. Note that the maximum and minimum values of the velocity 𝑢 increase with an increase 
of 𝛽2, while they decrease as 𝐷𝑎 increases. 

We observed that the influence of the ratio of relaxation to retardation times of Jeffery fluid 𝜆1 
on the velocity distribution is similar to the effect of 𝛽2 that is given in Figure 2. It is worth mentioning 
that 𝜆1 = 0 in the Jeffery model corresponds to Newtonian fluid. Therefore, we can say that 
Newtonian fluid is a special case of Jeffery fluid. But we noticed that the velocity profile for 
Newtonian fluid (when 𝜆1 = 0) is smaller than the velocity for Jeffery fluid. The figure is not given 
here to avoid any type of repetition. Further, we noticed that the influence on the velocity profile 𝑢 
for different values of 𝛽1, 𝑁𝑡, 𝑁𝑏, 𝐺𝑓, 𝑄, 𝑃𝑟 and 𝑀 is similar to the result obtained in Figure 2, while 
the influence of 𝛼, 𝜂, 𝜉, 𝑅, 𝐺𝑟 and 𝐺𝑐 is like that shown in Figure 3. But, the velocity curves for 𝑅, 𝑁𝑡, 
𝑁𝑏, 𝑃𝑟, 𝑄, 𝛼 and 𝜉 are closer to each other comparing with those in Figure 2 and Figure 3. The velocity 
profiles are parabolic for different values of the involved parameters that mentioned above which 
are not presented here to save space. Furthermore, we found that the obtained results in Figure 2 
and Figure 3 are in a good agreement with those obtained by Ouaf et al., [34]. 
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Fig. 2 Variation of 𝛽2 on velocity  Fig. 3. Variation of 𝐷𝑎 on velocity 

 
Figure 4 and Figure 5 describe the impact of the chemical reaction parameter 𝜉 and the radiation 

parameter 𝑅 on the temperature distribution 𝜃 against the normal axis 𝑦, respectively. We have 
observed from these figures that the temperature 𝜃 increases as 𝜉 increases, but it decreases by 
increasing 𝑅. Since the thermal radiation is inversely proportional to thermal conduction, the 
maximum heat of the system radiates away, which reduces the heat conduction of the fluid. It is clear 
from Figure 4 and Figure 5 that the temperature 𝜃 along the normal axis 𝑦 becomes greater till 
reaches the maximum value, after which is decreases near the upper wall of the channel. Figure 4 
shows that the maximum value of the temperature 𝜃 increases by increasing 𝜉, while it decreases as 
𝑅 increasing. Moreover, the obtained result in Figure 5 is in a good agreement with those obtained 
by Ouaf et al., [34] and Abuiyada et al., [55]. Furthermore, similar effects on the temperature profile 
𝜃 as in Figure 4 are observed for 𝐵𝑟, 𝑄, 𝐺𝑓 and 𝑁𝑇𝐶. But the curves captured in Figure 4 are closer to 
each other than those obtained for 𝐵𝑟 and 𝑄 as captured in Figure 7. Figure 9 shows that the curves 
obtained for 𝐺𝑓 are closer to each other comparing with those in Figure 4. The impact of 𝐺𝑟 and 𝐺𝑐 
on the temperature profile 𝜃 is similar to the result in Figure 5, but from Figure 8 we can observe that 
the resulting curves are closer to each other comparing with those in Figure 5. Some figures are not 
provided here to avoid any type of repetition. We also observed from Figure 8 and Figure 9 that 𝐺𝑟 
and 𝐺𝑓 affect the temperature distribution 𝜃 in an opposite manner. The variation of the 
temperature distribution 𝜃 with the normal axis 𝑦 for different values of the thermophoresis 
parameter 𝑁𝑡 is depicted in Figure 6. It is revealed from this figure that the temperature 𝜃 increases 
by increasing 𝑁𝑡 in the interval (0 ≤ 𝑦 ≤ 0.7), but an opposite reaction occurs when 𝑦 ≥ 0.7. Figure 
6 shows that the difference in the temperature profile 𝜃 becomes greater and gets to the highest 
value, after which is decreases and then rises again near the upper wall of the channel. It is clear from 
this figure that the highest value of the temperature 𝜃 increases by increasing the value of 𝑁𝑡. The 
result in Figure 6 agrees with those obtained by Ouaf et al., [34] and El-dabe et al., [53]. We also 
observed a similar effect to that captured in Figure 6 for different values of the Brownian motion 
parameter 𝑁𝑏 and Prandtl number 𝑃𝑟. Actually, an improvement in the Brownian motion and 
thermophoresis effects leads to an active movement of the nanoparticles from the wall to the fluid, 
which significantly raises the temperature. These figures are omitted here to prevent any kind of 
duplication. 
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Fig. 4. Variation of 𝜉 on temperature  Fig. 5. Variation of 𝑅 on temperature 

 

 

 

 
Fig. 6. Variation of 𝑁𝑡 on temperature  Fig. 7. Variation of 𝑄 on temperature 

 

 

 

 
Fig. 8. Variation of 𝐺𝑟 on temperature  Fig. 9. Variation of 𝐺𝑓 on temperature 

 
The variation of the solutal concentration 𝜙 over the radiation parameter 𝑅 and the temperature 

difference parameter 𝜌1 against the normal axis 𝑦 is displayed in Figure 10 and Figure 11, 
respectively. Figure 10 shows that an increase in 𝑅 increases the solutal concentration 𝜙, while 
increasing the value of 𝜌1 decreases it as seen in Figure 11. In these figures, the variation of the solutal 
concentration 𝜙 increases along the normal axis 𝑦 and ends up with the maximum value at the upper 
wall of the channel. These figures satisfy the boundary conditions in Eq. (24) and Eq. (25). The 
influence of 𝑁𝑡, 𝑁𝑏, 𝑄, 𝐸, 𝑁𝐶𝑇, 𝑁𝑇𝐶, 𝜉 and 𝑃𝑟 on the solutal concentration 𝜙 is similar to the effect 
of 𝜌1that given in Figure 10. Figure 12 shows that the obtained curves for 𝑁𝐶𝑇 are not close to each 
other compared to those curves obtained in Figure 10. It is worth mentioning here that the behavior 
of the solutal concentration 𝜙 is similar for both 𝑁𝑡 and 𝑁𝑏. Note that some graphs are not given 
here to save space. Furthermore, it can be noted from the last term of Eq. (22) that the rate of the 
chemical reaction increases by increasing the value of the chemical reaction parameter 𝜉 which 
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causes a reduction in the concentration profile as depicted in Figure 13. Note that the activation 
energy is the minimum energy that required to start the chemical reaction process. Therefore, at a 
specific value of the activation energy parameter 𝐸, the chemical reaction will start which will cause 
a reduction in the concentration as shown in Figure 14. 
 

 

 

 
Fig. 10. Variation of 𝑅 on solutal concentration  Fig. 11. Variation of 𝜌1 on solutal concentration 

 

 

 

 
Fig. 12. Variation of 𝑁𝐶𝑇 on solutal concentration  Fig. 13. Variation of 𝜉 on solutal concentration 

 

 
Fig. 14. Variation of 𝐸 on solutal concentration 

 
Figure 15 and Figure 16 are plotted to observe the effects of various values of the Brownian 

motion parameter 𝑁𝑏 and the thermophoresis parameter 𝑁𝑡 on the nanoparticles volume friction 
profile ℱ versus the normal axis 𝑦. The nanoparticles volume friction ℱ increases with the increase 
of 𝑁𝑏 as shown in Figure 15. An opposite behavior on the nanoparticles volume friction ℱ occurs by 
increasing 𝑁𝑡 as shown in Figure 16. It is clear from Figure 15 and Figure 16 that the distribution of 
nanoparticles volume friction ℱ becomes lower till reaches the lowest value, after which is increases. 
The minimum value of the nanoparticles volume friction ℱ increases by increasing 𝑁𝑏, whereas it 
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decreases as 𝑁𝑡 increases. We found that the results in Figure 15 and Figure 16 are in a good 
agreement with those obtained by Ouaf et al., [34]. We also observed that the influence of 𝑅 on the 
nanoparticles volume friction profile ℱ along the normal axis 𝑦 is similar to the effect of 𝑁𝑏 that 
shown in Figure 15, while the influence of 𝑄 and 𝑃𝑟 on it is very close to the effect of 𝑁𝑡 that given 
in Figure 16. Figure 17 shows the effect of 𝑄 on the nanoparticles volume friction profile ℱ. Some 
figures are not provided here for want of space. 
 

 
Fig. 15. Variation of 𝑁𝑏 on nanoparticles volume 
friction 

 

 

 

 
Fig. 16. Variation of 𝑁𝑡 on nanoparticles volume 
friction 

 Fig. 17. Variation of 𝑄 on nanoparticles volume 
friction 

 
Figure 18 and Figure 19 are plotted to examine the sequences of the ratio of relaxation to 

retardation times 𝜆1 and the inclination angle of the magnetic field parameter 𝜂 on the entropy 
generation number 𝑁𝑠 along the normal axis 𝑦, respectively. We can observe from these figures that 
the entropy generation number 𝑁𝑠 increases by increasing the value of 𝜆1, while it decreases with 
an increase of 𝜂. Moreover, it is clear from these figures that the variation of the entropy generation 
number 𝑁𝑠 along the normal axis 𝑦 becomes lower till reaches the minimum value, after which is 
increases. The minimum value increases by increasing 𝜆1, while it decreases as 𝜂 increases. The 
influence of 𝐵𝑟, 𝛽1, 𝛽2, 𝐺𝑓, 𝑄, 𝑁𝑇𝐶, 𝑁𝐶𝑇 and 𝐵𝑟 is similar to the result captured in Figure 18, and the 
impact of 𝛼 and 𝑅 on it is similar to the effect of 𝜂 that is illustrated in Figure 19. These figures are 
not provided here to prevent any kind of duplication. Figure 20 shows that the impact of the local 
mass Grashof number 𝐺𝑐 on the entropy generation number 𝑁𝑠 versus the normal axis 𝑦 is similar 
to the effect of 𝜂 captured in Figure 19. But we noticed from Figure 20 that for a large value of 𝐺𝑐 
the variation of the entropy generation number 𝑁𝑠 becomes lower and ends up with the minimum 
value at the upper wall of the channel. Similar effects to that obtained in Figure 20 can be observed 
for various values of 𝐷𝑎 and 𝐺𝑟. 



CFD Letters 

Volume 15, Issue 6 (2023) 65-85 

78 
 

 

 

 

 
Fig. 18. Variation of 𝜆1 on entropy generation  Fig. 19. Variation of 𝜂 on entropy generation 

 

 
Fig. 20. Variation of 𝐺𝑐 on entropy generation 

 
Note that these figures are omitted here to save space. The variation of different values of 𝜉 on 

the entropy generation number 𝑁𝑠 against the normal axis 𝑦 is depicted in Figure 21. This figure 
shows that the entropy generation number 𝑁𝑠 increases with an increase in 𝜉 approximately when 
𝑦 ≤ 0.35, but an opposite behavior is observed when 𝑦 ≥ 0.35. It is clear from this figure that the 
variation of the entropy generation number 𝑁𝑠 along the normal axis 𝑦 becomes lower to reach 
down to the lowest value, after which is increases. Note that the lowest value decreases by increasing 
the value of 𝜉 as shown in Figure 21. Figure 22 depicts the influence of the thermophoresis parameter 
𝑁𝑡 on the entropy generation number 𝑁𝑠 along the normal axis 𝑦. We can observe from Figure 22 
that the entropy generation number 𝑁𝑠 increases with an increase of 𝑁𝑡. For large values of 𝑁𝑡, the 
relation between 𝑁𝑠 and the normal axis 𝑦 is a wave with one period and there are two minimum 
values. These minimum values occur at 𝑦 = 0.31 and 𝑦 = 0.91. The influence of 𝑁𝑏 and 𝑃𝑟 on 𝑁𝑠 is 
closed to the effect of 𝑁𝑡 captured in Figure 22. These graphs are not provided here to save space 
and avoid any type of duplication. 
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Fig. 21. Variation of 𝜉 on entropy generation  Fig. 22. Variation of 𝑁𝑡on entropy generation 

 
Numerical results for heat transfer coefficient, Nusselt number, and Sherwood number are 

presented in Table 1. It is clear from the table that an increase of 𝑅, 𝑁𝑏 and 𝑁𝑡 decreases the heat 
transfer coefficient and Nusselt number, while increasing 𝜉, 𝐸, 𝐵𝑟, 𝑄 and 𝑁𝑇𝐶  increases them. 
Moreover, the increase of 𝑅, increases the Sherwood number, whereas the increase of 𝜌1, 𝜉, 𝐸, 𝑄, 
𝑁𝐶𝑇 and 𝑁𝑏 decreases it. 
 

Table 1 
Numerical values for heat transfer coefficient, Nusselt number and Sherwood number 
𝑅 𝜌1 𝜉 𝐸 𝑄 𝑁𝑇𝐶  𝑁𝐶𝑇  𝐵𝑟 𝑁𝑏 𝑁𝑡 𝑍(𝑥) 𝑁𝑢 𝑆ℎ 

0.2 0.1 0.1 1 1 0.1 0.1 0.2 1 1 0.37030 1.00267 −1.22681 
0.5          0.27996 0.75806 −1.17783 
1          0.15440 0.41807 −1.13351 
 0.5         − − −1.25569 
 1         − − −1.26178 
  0.5        0.39341 1.06525 −1.59119 
  1        0.42230 1.14347 −1.97828 
   2       0.37399 1.01262 −1.28773 
   3       0.37765 1.02257 −1.34774 
    2      0.61645 1.66918 −1.28398 
    3      0.91429 2.47562 −1.34115 
     0.5     0.39341 1.06525 − 
     1     0.42230 1.14347 − 
      0.5    − − −2.03868 
      1    − − −3.05351 
       0.5   0.96752 2.61977 − 
        2  0.21413 0.57981 −1.30028 
         2 −0.04029 −0.10909 − 

 
6. Conclusion 
 

In this study, we have extended the work of Ouaf et al., [34] by considering the influence of the 
chemical reaction and activation energy on peristaltic flow of MHD Jeffery nanofluid inside an 
inclined symmetric channel through a porous medium. An inclined magnetic field is applied. The 
effect of Joule heating, viscous dissipation, radiation, heat generation/absorption, and thermal 
diffusion and diffusion thermo are taken into account. A semi-analytical method called the homotopy 
perturbation method (HPM) is employed to solve the equations governing the problem. Graphs for 
velocity, temperature, solutal concentration, and nanoparticles volume friction distributions are 
sketched for various values of interest parameters. Numerical results for the heat transfer coefficient, 
Nusselt number, and Sherwood number are presented. Figures for the influence of interest 
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parameters on entropy generation number are plotted. Physical explanations for this flow of the 
obtained results are provided [56-78]. The key findings can be briefed as follows: 

 
(i) The increase of each of 𝛽1, 𝛽2, 𝜆1, 𝑁𝑡, 𝑁𝑏, 𝐺𝑓, 𝑄, 𝑃𝑟 and 𝑀 increases the velocity, while 

increasing 𝛼, 𝜂, 𝜉, 𝑅, 𝐷𝑎, 𝐺𝑟 and 𝐺𝑐 decreases it. 
(ii) The velocity 𝑢 for various values of 𝛽1, 𝛽2, 𝜆1, 𝑁𝑡, 𝑁𝑏, 𝐺𝑓, 𝑄, 𝑃𝑟, 𝑀, 𝛼, 𝜂, 𝜉, 𝑅, 𝐷𝑎, 𝐺𝑟 and 

𝐺𝑐 becomes lower along the normal axis y and ends up with the minimum value near the 
upper wall of the channel.  

(iii) The temperature distribution 𝜃 increases as 𝜉, 𝐵𝑟, 𝑄, 𝐺𝑓 and 𝑁𝑇𝐶  increase, but it decreases 
by increasing 𝑅, 𝐺𝑟 and 𝐺𝑐. 

(iv) The variation of the temperature 𝜃 along the normal axis 𝑦 becomes greater till arrives the 
maximum value, after which is decreases near the upper wall of the channel. 

(v) The temperature distribution 𝜃 increases as 𝑁𝑡 increases in the interval (0 ≤ 𝑦 ≤ 0.7), but 
an opposite reaction occurs when 𝑦 ≥ 0.7. 

(vi) The difference of the temperature profile 𝜃 for different values of 𝑁𝑡 becomes greater and 
gets up to the highest value, after which it decreases and then rises again near the upper 
wall of the channel. 

(vii) The effect of Brownian motion parameter 𝑁𝑏 and Prandtl number 𝑃𝑟 on the temperature 
𝜃 is similar to the effect of 𝑁𝑡. 

(viii) An increase in 𝑅 decreases the solutal concentration 𝜙, while increasing the value of 𝜌1, of 
𝑁𝑡, 𝑁𝑏, 𝑄, 𝐸, 𝑁𝐶𝑇, 𝑁𝑇𝐶, 𝜉 and 𝑃𝑟 enhances it. 

(ix) The variation of the solutal concentration 𝜙 for various values of 𝑅, 𝜌1, 𝑁𝑡, 𝑁𝑏, 𝑄, 𝐸, 𝑁𝐶𝑇, 
𝑁𝑇𝐶, 𝜉 and 𝑃𝑟 increases along the normal axis 𝑦 and ends up with the maximum value at 
the upper wall of the channel. 

(x) The nanoparticles volume friction ℱ increases with the increase of 𝑁𝑏 and 𝑅, but an 
opposite behavior on the nanoparticles volume friction ℱ occurs by increasing 𝑁𝑡, 𝑄 and 
𝑃𝑟. 

(xi) The entropy generation number 𝑁𝑠 increases by increasing the value of 𝜆1, 𝐵𝑟, 𝛽1, 𝛽2, 𝐺𝑓, 
𝑄, 𝑁𝑇𝐶, 𝑁𝐶𝑇 and 𝐵𝑟 while it decreases with an increase of 𝜂, 𝛼, 𝐺𝑐, 𝐺𝑟, 𝐷𝑎 and 𝑅. 

(xii) The entropy generation number 𝑁𝑠 increases with an increase in 𝜉 approximately when 
𝑦 ≤ 0.35, but an opposite behavior is observed when 𝑦 ≥ 0.35. 

(xiii) For large values of 𝑁𝑡, the relation between 𝑁𝑠 and the normal axis 𝑦 is a wave with one 
period and there are two minimum values. These minimum values occur at 𝑦 = 0.31 and 
𝑦 = 0.91. 

(xiv) An increase of 𝑅, 𝑁𝑏 and 𝑁𝑡 decreases the heat transfer coefficient and Nusselt number, 
while increasing 𝜉, 𝐸, 𝐵𝑟, 𝑄 and 𝑁𝑇𝐶  increases them.  

(xv) The increase of 𝑅, increases the Sherwood number, whereas the increase of 𝜌1, 𝜉, 𝐸, 𝑄, 
𝑁𝐶𝑇 and 𝑁𝑏 decreases it. 

(xvi) HPM method does not necessitate a small parameter in a system of differential equation.  
(xvii) All obtained results show that HPM is an effective method for a highly non-linear systems 

of differential equations. 
(xviii) Heat transfer coefficient, Nusselt number, and Sherwood number results are obtained in 

accurate solutions using HPM 
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