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Temperature control is important in energy management of buildings. Air conditioning 
system contributes a high percentage of the total energy consumption, the 
compressor, which is a major component of the Air conditioning system, utilizes up to 
90% of the energy. This can drastically be reduced by varying the frequency of the 
compressor with respect to the required indoor temperature, as such, reducing the 
overall energy usage of the air conditioning system. The combination of a well-tuned 
controller and variable frequency drive can be used to achieve this. It is important to 
develop a good model which can be used to design the controller. Although there are 
published research works in the development of models for the control of air 
conditioning systems, there seems to be a lack of study in the area of multi-circuit 
centralized air conditioning system. In this study, two models were developed using 
Long Short Term Memory Neural Network and Recurrent Neural Network, utilizing 
compressor speed and indoor air temperature of a multi-circuit water cooled packaged 
unit as input and output respectively. Comparing the two models, results shows that 
the Long Short-Term Memory Neural Network model performed better across 
evaluation metrics such as R-squared, Mean Squared Error and Mean Absolute Error, 
with the value of 0.9638, 0.0049, and 0.0190 respectively. 
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1. Introduction 
 

The control mechanism and optimization settings play a major role in how well an air conditioning 
system performs in terms of energy efficiency and good thermal comfort. The air conditioning 
system's dependability and stability are so critical to the extent that even a slight system 
inconsistency might result in serious consequences, like energy wastage and too much deviation from 
set point. The air conditioning system is a major energy consumer in the building sector, accounting 
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for over half of all the electrical energy used in commercial buildings [1]. Thermal comfort on the 
other hand is an essential requirement in building because it affects the productivity and health of 
the occupants. Considering these factors, the appropriate control operations in the HVAC system can 
go a long way in saving a lot of energy without compromising the indoor thermal comfort [2]. 
Therefore, proper energy management in the HVAC system largely depends on the control system 
and optimization parameters [3]. This has also been confirmed by several study on efficient energy 
management in HVAC, that energy efficiency in HVAC can be improved through advance control 
algorithm. A good control algorithm which makes energy consumption reduction possible is 
dependent on accurate dynamic modeling and accurate optimization techniques [4]. It is a very 
challenging task to develop an accurate and effective model for HVAC systems, even with its 
similarities with other process control, there are some features that makes it more challenging like 
non-linearity of the system, time-varying disturbances and set-points. This points to the reality why 
modeling techniques continue to become more advanced in HVAC system control [3].  It has been 
demonstrated that it is more viable and cost-effective to improve the control algorithm in order to 
gain more efficiency [5]. Because of its non-linearity, external disturbances, set points value, and 
time-varying dynamics, air conditioning system control is often considered to be more demanding, 
sophisticated, and distinctive than other forms of control systems [6].  As a result, there is a need for 
a good model as systems must be well modelled in order to evaluate and regulate energy usage and 
indoor air quality. There are several diverse model applications in controlling energy consumption in 
air conditioning systems. In general, there are three types of modeling methods used for air 
conditioning systems. The first type of modeling is the data driven approach, in which the input and 
output system data are collected and a connection is established between the input and output 
variables using mathematical formulation [3, 7]. The second technique is physics-based, in which 
system models are built using controlling physics rules and in-depth knowledge of the basic 
procedure. Mass balance, heat transfer, momentum, and flow balance are the fundamental energy 
laws upon which physics-based models are constructed. From these laws, a number of mathematical 
equations can be derived and solved. These models can be lumped parameter or distributed. A study 
[8] suggest a physics-based linear parametric Autoregressive-moving average with exogenous terms 
(ARMAX) room temperature model in an office building where thermodynamic equations are used 
to determine a linear regression model's structure and order. The third type is the grey box 
technique, in which the basic framework of the model is built using physics-based approach, and the 
model parameters are calculated using parameter estimated algorithms utilizing the system's 
measured data and requiring extensive understanding of the system. Because they employ the 
physics-based approach to generate the model structure and data to estimate the model parameters, 
grey box models combine the benefits of both physics-based and data-driven models. The 
combination of both physics-based and data-driven models makes it a more complex model. Physics-
based methods form the basic structure of the model. A work that focuses on modeling thermal 
activity in buildings was done by previous study [9], to develop an efficient HVAC control algorithm. 
This is based on an approximate temperature model defined by the grey box approach for three 
different rooms in the same house. 

The data driven approach is being utilized in this study. The aim of the data-driven approach is to 
establish a model for existing systems and to estimate system parameters using calculated data input 
and output. The data-driven method has been widely used in many fields and recent trends have 
shown that in HVAC applications it has also gained attention [10]. A study [6] categorized data-driven 
modelling into nine (9) major techniques. Such techniques include models of the frequency domain, 
algorithms of data mining, statistical models, geometric models, fuzzy logic models, state-space 
models case-based reasoning models, stochastic models and instant models. 
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Data-driven models are trying to find a real system approximation. To achieve an approximate 
model, the device identification process for data-driven modelling is useful for specific applications 
based on measured data and previous system awareness [11]. In this study data were collected for 
the parameters of indoor temperature and humidity, outdoor temperature and humidity, supply air 
temperature and humidity as well as mixed air temperature and humidity. The flow of the constant 
air volume air conditioning system was measured by an air flow velocity transducer. The power 
measurement of the two compressor was carried out using a power transducer. The data was 
analysed using variants of the Artificial Neural Network models namely the Long Short-Term Memory 
(LSTM) Neural Network model and the Recurrent Neural Network model [12]. The LSTM has been 
widely used in time series prediction and analysis, since it was first published by previous study [13]. 
The LSTM has been implemented across areas such as image analysis and processes, language 
translation and speech recognition. However, only a few research works have used the LSTM model 
to analyse and predict energy consumption. It was demonstrated in a study that while LSTM has a 
tough time predicting minute electric energy usage, it does a good job in predicting hourly electric 
energy consumption [14]. These findings demonstrate that the LSTM model has a lot of potential for 
predicting energy use. The capacity of the LSTM to solve non-linear problems and retain past data is 
superior to some other variant of neural network when compared to the time series model [15]. RNN 
on the hand can learn patterns from previous records, as well as generalise and forecast future load 
patterns for unknown data. During the previous few years, RNN had gained attention among 
researchers especially in the area of dynamic systems which can be described using networks with 
feedback connections. In this study, the results from both LSTM and RNN models were compared 
using evaluation metrics such as the Mean Squared Error, Mean Absolute Error, and R-Squared. Due 
to many elements such as the climatic environment and occupancy, air-conditioning consumption of 
energy is subject to quick variations but obeys periodic rules [16]. If these periodic criteria for 
precisely measuring the energy consumption of an air-conditioning system are properly mastered, a 
good energy-saving operation mode can be obtained [17].  
 
1.1 Recurrent Neural Network 
 

A RNN is a special case of ANN, the aim is to predict next steps in sequence of observation by 
comparing previous steps. The fundamental objective of RNNs is to foresee future trends by using 
sequential observations and learning from previous stages [18]. The knowledge obtained during the 
previous phases of reading sequential data is stored in the hidden layers of RNNs. Using earlier 
information, RNN do same task for each element in the sequence, predicting future unseen 
sequential data, hence they are referred to as a recurrent. The main drawback of a generic RNN is 
that it only recollects a few previous stages in the sequence, thus, unsuitable for retaining longer 
data sequences. Long Short-Term Memory (LSTM) recurrent network has been proposed to address 
this problem using the “memory cells” [19]. In Figure 1, the RNN architecture is displayed. The vector 
w(t), which represents the current word while employing 1 of N coding (thus, its size is equal to the 
size of the vocabulary), and the vector s(t-1), which represents output values in the hidden layer from 
the previous time step, are concatenated to create the vector x(t) [20]. The input, hidden, and output 
layers of the network, which was trained using conventional backpropagation, are all present. The 
following is how values in these layers are calculated. 
 

( ) [ ( ) ( 1) ]T T Tx t w t s t                                                                                                                                        (1)                                                           
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Fig. 1. Simple RNN Structure [18] 

 
1.2 LSTM Model 
 

The LSTM resulted from further development and overcoming the error in RNN [13] This issue is 
the long time lag which were inaccessible to the existing RNN architecture, considering the fact that 
backpropagated error either blows up or decays exponentially. LSTM is a special kind of RNN with 
additional features to memorize the sequence of data. It is composed of memory blocks, which are 
similar to differentiable versions of the memory chips used in digital computers. Each one has one or 
more recurrently connected memory cells as well as three multiplicative units (input, output, and 
forget gates) that provide continuous analogues for the write, read, and reset operations for the cells 
[21]. The input to the cells is multiplied by the input gate's activation, the output to the net is 
multiplied by the output gate's activation, and the prior cell values are multiplied by the forget gate's 
activation. Only the gates allow the net to connect with the cells. The structure of the LSTM is shown 
in Figure 2 below. 
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Fig. 2. LSTM Structure [15] 

 
The preceding data and historic data, which is analyzed by the cells, are used to anticipate the 

data for the next moment. As indicated in Figure 3, the LSTM is made up of cells with similar structure. 
Each cell contains three input parameters, Ct−1 (historically stored information), Xt (historical data), 
and ht−1 (prediction of prior cell outcomes and cell input parameter) [15, 22].  
 

 
Fig. 3. LSTM Cell [15] 

 
The data ht−1, is processed by the preceding cell, and the input data of the present time Xt are 

combined via a matrix to form Eq. (1): 
 
X′t = [ht−1, Xt]                                                                                                                                               (4) 
 

In the forgotten gate, the LSTM obtains the capacity to filter data. X′t is processed by the sigmoid 
function to obtain ft1 which is calculated thus: 
 
ft1=σ(Wf ⋅ X′t + bf)                                                                                                                                           (5) 
 

In calculating C′t, X′t is processed by the tanh function and sigmoid function to obtain it: 
 
it =σ(Wi ⋅ X′t + bt)                                                                                                                                    (6) 
                                                                
C′t= tanh(Wc ⋅ X′t + bc)                                                                                                                                        (7) 
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 ft2= it × C′t                                                                                                                                                 (8) 
 

Ct is restructured in the update gate. The historical data is then derived by multiplying Ct and ft1 
with the matrix. Combining with ft2, the neutral unit output Ct   can be expressed as given below: 

 
Ct = ft1 × Ct−1 + ft2                                                                                                                                          (9) 
 

The LSTM outputs the result in the output gate. To convert X′t to Ot, the sigmoid function is 
employed. As a result, Ot decides which Ct should be kept. In addition, the tanh function transforms 
Ct into h′t. The final data ht is obtained by multiplying h′t and Ot which is expressed below: 
 
Ot=σ (Wo⋅X′t+bo)                                                                                                                                        (10) 
 
ht = Ot* tanh                                                                                                                                                    (11) 
 
2. Methodology  
 

This procedure followed in this study to design the model for temperature control in multi-circuit 
air conditioning system are summarised in Figure 4. 
 

 
Fig. 4. Data analysis flowchart 

 
2.1 Experimental Setup and Data Collection 
 

The multi-circuit air conditioning system used in this study is located in an office building (Block 
F54) in Universiti Teknologi Malaysia, Johor Bahru, Malaysia. The air conditioning system is a two-
refrigeration circuit water-cooled packaged unit (WCPU). An evaporator unit with expansion valve, a 
water-cooled condenser, and a scroll type compressor makes up each circuit. In the event that one 
of the compressors fails, the two refrigeration circuits are designed to supply partial capability. The 
on/off thermostat and power connectors are situated in the AHU (Air Handling Unit) room in which 
the WCPU is located. The duct network that travels from the AHU to the indoor space constitutes the 
air distribution portion. The indoor space serves as an office environment, with an average of 40 
occupants. The working hours are from 8:00 a.m. to 5:00 p.m. on Sunday to Wednesday, and 8:00 
a.m. to 3.30 p.m. on Thursday. The set-point temperature for the air conditioning system was 24oC. 
Data gathering is a key step in creating an accurate model that accurately captures the system's 
physics as closely as possible. The power of the compressor is the input data, while the indoor 
temperature is the output data. Table 1 lists the measuring instruments with the parameters being 
measured. 
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Table 1 
Parameters measured and instruments 
No Parameter Instrument Accuracy 

1 Compressor Power  Clamp-on Power Analyzer 0.5% of full scale 
2 Indoor Temperature  

 
EasyLog wifi 
Temperature Data Logger 

±0.3°C / ±0.6°F 

3 Outdoor Temperature EasyLog wifi 
Temperature Data Logger 

±0.3°C / ±0.6°F 

4 Supply Air  Air flow meter ±2.0% of reading 
 

5 Indoor Relative Humidity  EasyLog wifi 
Humidity Data Logger 

±2% RH 

6 Outdoor Relative Humidity  
 

EasyLog wifi 
Humidity Data Logger 

±2% RH 

 
  In Figure 5 below the instruments that were used for data collection were shown during the two-
week period of collecting data. 
 

  
(a) (b)  

  
(c)  (d)  

Fig. 5. Data Collection Instruments (a) Yokogawa IM CW240E Clamp-on 
Power Analyzer (b) EasyLog wifi Temperature and Humidity Data Logger (c) 
Power meter (d) Air flow meter 

 
Figure 6 depicts the installation of the measuring equipment utilized in the data collection of 

crucial parameters. The locations were properly monitored for the duration of data collection to 
ensure seamless data collection. 
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(a)  (b)  

  
(c) (d)  

Fig. 6. Data Collection instrument location (a) Air handling Unit (b) Installation of 
power analyzer at the power and control panel (c) The indoor data logger 
installation (d) The outdoor data logger installation 

 
 
2.2 Data Description/Preprocessing 
 

The experimental data is a time series data of per minute measurements of two compressor 
power inputs and a corresponding indoor temperature output for a duration of 4486 minutes. The 
summary statistics of each of the input and output variables are presented in Table 2. As shown in 
the table, the range of input and output variables vary which has been reported in pertinent works 
to affect the performance of neural networks [23]. Hence, each of the input and output variables are 
normalized such that each falls between 1 and -1 to avoid the associated shortcomings and speedup 
model convergence. 
 

Table 2 
Summary Statistics of Data 
Statistics Temperature Compressor input 1 Compressor input 2 

Count of samples 4486.0 4486.0 4486.0 
mean 21.75 7716.16 8363.42 
std 1.13 1092.04 471.96 
min 19.35 0.0 1200.0 
25% 20.91 7600.0 8100.0 
50% 21.58 7800.0 8300.0 
75% 22.23 8100.0 8700.0 
max 26.61 8700.0 9200.0 
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2.3 Model Architectural Setup and Configuration 
 

For this work, the proposed LSTM model has a single hidden layer with 128 hidden LSTM cells. 
This setup was enough to model the given data over a maximum training period of 200 epochs. 
Similarly, a baseline RNN model with a single hidden of 128 neurons was also built as a comparative 
method to the baseline. To prevent overfitting, two regularization methods, early stopping and 
dropout rate of 20%, were employed as part of the training phase. The early stopping simply monitors 
the validation error and stops the model training if there are improvement in performance after 5 
consecutive epochs to ensure both the LSTM and RNN models do not overfit the training data. The 
RNN model used for comparison has similar architectural setup as the proposed LSTM.  Adam 
optimizer with a learning rate of 0.0001 was used for model optimization. We trained each model 
using stochastic gradient decent with batch size of 32. All the models were implemented within 
pytorch deep learning framework environment [24].  

For the predictive task of indoor temperature prediction, 50% of the data was used as training 
set while the remaining 50% served as the validation set. The sequence length represents the 
duration or length of input a time series prediction model is trained on for to predict the output for 
the next timestamp. For instance, we can choose to train our model for the 5 consecutive sequence 
(minutes) of data to predict the temperature for the 6th minute. Smaller sequences have been 
reported in the literature to lack relevant historical information necessary for good model 
performance while very large sequences appear to overwhelm the model with redundant 
information and consequently the deteriorate overall performance. Hence, we trained the models 
with varying sequence lengths, ranging from 60 to 10 minutes.  
 
2.4 Evaluation Metrics 
 

Three popular yet complementary evaluation metrics that were used to measure the 
performance of the proposed regression LSTM and RNN models in this research are as follows: 
 
2.4.1 Coefficient of determination (R2 or R-squared) 
 

Given a set of expected outputs Y and model predicted outputs f(X), where Yj and f(X)j are 

respectively the actual and predicted for the X jth sequence of data, we define the mean of the actual 

outputs as: 
                                                         

Meanout =
1

n
∑ Yj

n

j

                                                                                                                                           (12) 

                                                                      
R2 or R-squared [25] is given as follows: 

 

R2 = 1 −
∑ (Yj − f(X)j)

2
j

∑ (Yj − Meanout)
2

j

                                                                                                                        (13) 

 
where the numerator and denominator are the residual sum of squares and total sum of squares 
respectively. While the value ranges from -∞  to +1, the closer the value is to +1, the better is the 
result. 
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2.4.2 Mean square error (MSE) 
  

Mean Square Error is given by Eq. (12). It has been found to be especially useful in detecting 
outlier within a predicted range. 

 

MSE =
1

n
∑(Yj − f(X)j)

2

n

j

                                                                                                                               (14) 

                                                                   
The range of values for MSE is between 0 to +∞ with the best value being 0. 

 
2.4.3 Mean absolute error (MAE) 
 

Similarly, the range of values for MAE is between 0 to +∞ with the best value being 0. However, 
unlike the MSE, MAE is the sum of the absolute difference of the actual and the predicted outputs.  

 

MAE =
1

n
∑ |Yj − f(X)j|

n

j

                                                                                                                                 (15) 

                                                                            
3. Results  
 

The results of the proposed LSTM model as well as the RNN model for varying sequence lengths 
across the different evaluation metrics is presented in Table 3. Varying the sequence lengths provided 
some useful insight on the performance of the models.  Smaller sequence length generally tends to 
yield better performance compared to longer ones. 

Although smaller sequence lengths are susceptible to model overfitting, the regularization 
methods (early stopping and dropout) employed in this studied sufficiently prevented the models 
from it. It can be observed from the table that although LSTM model trained with sequence length 
of 25 minutes yielded the best training performance but such impressive performance could not be 
replicated on the validation set which the true measure of the model performance. Hence, the best 
LSTM model is the one trained using sequence length of 30 minutes. Similar trend is observed on the 
RNN model which showed the best performance with data of sequence length 15 minutes.  
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Table 3  
Training and validation performance of LSTM and RNN models across varying sequence 
lengths 
Sequence 
Length in 
minutes 

Phase LSTM RNN 

R-squared MSE MAE R-squared MSE MAE 

60  Training 0.9712 0.0030 0.0165 0.9725 0.0028 0.0159 

Testing 0.9514 0.0066 0.0226 0.9521 0.0065 0.0226 

55 Training 0.9748 0.0026 0.0151 0.9735 0.0027 0.0143 

Testing 0.9585 0.0056 0.0205 0.9562 0.0060 0.0180 

50 Training 0.9751 0.0026 0.0148 0.9727 0.0029 0.0155 

Testing 0.9590 0.0056 0.0200 0.9537 0.0063 0.0207 

45 Training 0.9739 0.0027 0.0163 0.9705 0.0031 0.0166 
Testing 0.9524 0.0065 0.0228 0.9295 0.0095 0.0280 

40 Training 0.9740 0.0026 0.0153 0.9736 0.0028 0.0146 
Testing 0.9536 0.0055 0.0231 0.9543 0.0062 0.0194 

35 Training 0.9746 0.0027 0.0165 0.9718 0.0030 0.0185 

Testing 0.9547 0.0061 0.0242 0.9516 0.0065 0.0223 

30 Training 0.9766 0.0025 0.0154 0.9745 0.0028 0.0166 
Testing 0.9638 0.0049 0.0190 0.9588 0.0055 0.0197 

25 Training 0.9775 0.0025 0.0142 0.9751 0.0027 0.0141 
Testing 0.9555 0.0060 0.0215 0.9573 0.0057 0.0183 

20 Training 0.9759 0.0027 0.0166 0.9750 0.0028 0.0176 
Testing 0.9592 0.0055 0.0208 0.9595 0.0054 0.0199 

15 Training 0.9767 0.0026 0.0146 0.9766 0.0027 0.0150 

Testing 0.9580 0.0056 0.0194 0.9612 0.0052 0.0171 
10 Training 0.9767 0.0027 0.0156 0.9770 0.0027 0.0151 

Testing 0.9581 0.0056 0.0206 0.9604 0.0053 0.0185 

 
The training and validation performance of both the best LSTM and RNN models are also 

illustrated in Figure 7 and 8 respectively. It shows the time series graph of the training and validation 
performance of both the LSTM and RNN models.  
 

        
(a) 
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(b)                                                                                 

Fig. 7. Training Performance of RNN and LSTM models trained on 15- 
and 30-minutes sequence lengths respectively (a) RNN (b) LSTM 

 
It can be observed from Figure 7 that both models fit the training data (i.e., the real output) 

adequately with LSTM doing so better. This is also evident from the results obtained for the 
evaluation metrics in terms of the Mean Squared Error (MSE), Mean Absolute Per Error (MAE) and R-
squared as shown in Table 3. Figure 8 similarly shows the graph of the validation predictions of both 
LSTM and RNN models with the real output. While both models were able to capture the distribution 
of the real output in the early part of the time series, the RNN model notably deviates from the true 
values as it approaches the end. 
 

 
(a) 
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(b) 

Fig. 8. Validation Performance of RNN and LSTM models trained on 15 and 
30 minutes sequence lengths respectively (a) RNN (b) LSTM 

 
The true performance of any machine learning model can only be shown by it performance on a 

validation/test dataset [26]. In contrast to the RNN model, the LSTM model shows minimal deviation 
from the real output as it approaches the end of the time as in Figure 8(b). This is largely possible due 
to the presence of memory cells which allows LSTM to remember longer sequence of data. The 
superior validation performance of the best LSTM model over the corresponding best RNN model 
can also be seen in Table 3 where it shows better R-squared and MSE of 0.9638 and 0.0049 compared 
to 0.9612 and 0.0052 for the RNN model respectively.  However, in terms of MAE, the best RNN 
model shows better performance of 0.0171 over the LSTM model with 0.0190. Moreover, results for 
the LSTM and RNN models as illustrated in Table 3 shows good training performance for both models 
and replicating similar performance on the validation data indicates that both models did not overfit 
the the training data.  
 
4. Conclusions 
 

Selecting an accurate model that best describes the dynamics of the system is very important to 
develop a control process which will reduce energy usage without compromising the desired indoor 
condition [27]. This research contributes to the body of knowledge in the field of building and energy 
management, particularly in the design of controllers for air conditioning systems. It is important to 
note that the results of the proposed model in this study are applicable to the experimental set-up 
for the case study reported in this paper. However, a similar approach for obtaining dynamic models 
can be used for other centralized multi-circuit air conditioning systems in buildings. 
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