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The present work concerns the diffusion of nanoparticles in capillary-tissue exchange 
system. Nanoparticle are inoculated into the patient’s body by intertumoral 
administration. Thus, nanoparticles diffuse into tumoral tissues through diseased 
capillary walls. Blood in the capillaries is modelled as Jeffrey fluid. The resultant fluid is 
called Jeffrey nanofluid. In this model we have described diffusion occurring through 
the capillary walls into the surrounding tissue. The mathematical results are obtained 
analytically and have been compared with numerical solution. Graphs have been 
plotted using MATLAB. The effects of shape factor of nanoparticles, volume fraction of 
nanoparticles, Jeffrey fluid parameter, viscosity index and viscosity parameter has 
been observed on velocity and concentration of nanoparticles diffusing into the 
tissues. A noticeable observation states that brick shaped nanoparticles diffuse most 
rapidly i.e., have higher diffusion rates than other shapes 
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1. Introduction 
 

Diffusion is the process by which matter is transported from one part of a system to another as a 
result of random molecular motions. Biological processes mostly depend on diffusion for transport 
within cells and tissues. Thus, understanding nanoparticle diffusion in biological systems is an 
important field of research. Nanoparticles have shown many benefits in their therapeutic 
applications because of their enhanced abilities of diffusion through viscous biological fluids like 
mucus. The problem of nanoparticle diffusion in capillary-tissue exchange system is important as it 
investigates how the nanoparticles seep into the tissues after being injected in the blood. The 
diffusion of any substance like, nutrient, drug or oxygen in the physiological system is chiefly affected 
by their diffusion in capillaries [1]. This diffusion of nanoparticles into the tumoral tissues of diseased 
capillaries can be described by the phenomenon of capillary-tissue exchange system. So, it very 
important to measure the concentration of nanoparticles diffusing in them. Besides, study of such 
radial diffusion has vast applications in designing artificial devices which function in extra corporeal 
circulation [2].  
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Capillary-tissue exchange occurs in capillary beds where blood is in close proximity to the tissue 
that surrounds a particular organ [3]. This exchange takes place through the capillary walls. Capillaries 
are the foremost site of mass transfer between blood and tissue owing to their large surface area. 
The capillary walls are permeable and abide by the phenomenology of membrane transport. The 
outer lining of the vessel walls, in cases of some afflictions, may develop tumors under the effect of 
cholesterol, cellular waste products, lipids, calcium or other substances. The elevated metabolic 
activity required to develop and grow such depositions are supplied by the underlying cells. As a 
result, the endothelial cells proliferate rapidly and form unusual tumor like structures that are 
malignant as seen in tumors surrounding the capillaries in a particular organ. The leaky vasculature 
due to increased levels of oxygen and nutrient supply, allows drugs to seep into the interstitial tissues. 
A stunted lymphatic drainage system also intensifies accumulation and local concentration of drugs. 

Pharmokinetics defines the bio-availability of drugs by which the drug is absorbed into the tissues. 
Bio-availability is hence the measurement of drug efficacy. Nanoparticles have manifested 
themselves as an efficacious approach for the treatment of tumoral diseases like cancer and various 
cardio vascular blockages. Nanoparticle based targeted drug delivery or nanodrugs aim at commuting 
drugs to the diseased site in effective concentrations. Nanotechnology offers promising therapeutical 
effects than conventional methods, considerably reducing the side effects [4]. Nanoparticles are 
inoculated into the patient’s body by intertumoral administration. The success of this administration 
depends on the effective concentration of nanoparticles that diffuse from the capillaries into the 
surrounding tissue. Thus, it is significant to study the pharmokinetics and distribution of 
nanoparticles in the body after nanoparticle administration, in order to achieve the desired outcome. 

Nanoparticles have their transport severely hindered in normal vasculature that can cross the 
vessels walls of tumor vasculatures if they are not at sizes close to or exceeding the pore sizes of the 
tumour vasculature. Leaky vasculatures have reduced osmotic pressures since nutrients and oxygen 
can easily pass across the vessel walls leaving the effective pressure equivalent to the vessel pressure. 
Therefore, leaky tumours with large interstitial fluid pressures are equivalent to the blood pressure. 
Without any differences between fluid pressures across the capillary vessel wall, nanoparticles are 
left with diffusion as the only mode of transport through the tumour. 

When nanoparticles are dispersed in a base fluid like oil, water, ethylene glycol mixture the fluid 
is called nanofluid [5]. Nanofluids show enhanced thermophysical properties [33] like thermal 
conductivity, viscosity, density compared to their respective base fluids in which they are dispersed 
[6-10]. The behavior of nanofluids is highly governed by the behavior of base fluid. Here, we have 
considered nanoparticles dispersed in blood. Therefore, blood is the base fluid here. 

Blood in diseased blood vessels display non-Newtonian characteristics. Blood flow depicts high 
shear rates in small blood vessels like capillaries. In such cases blood flow patterns can be described 
closely using Jeffrey fluid. Jeffrey fluid is a kind of non-Newtonian fluid with shear thinning property. 
With the increase in shear rate the viscosity of Jeffrey fluid reduces. Ellahi et al., [11] dealt with a 
mathematical model of Jeffrey fluid in the presence of nanoparticles in tapered stenosed artery 
having a catheter. Rahman et al., [12] examined the Jeffrey fluid flow with nanoparticles in tapered 
stenosed artery. Motivated by these, we have thus modelled blood or base fluid as Jeffrey fluid in 
capillary surrounded by tumoral tissues. The resultant fluid is called as Jeffrey nanofluid. 

The diffusion of various substances between capillaries and the surrounding tissues has been 
studied extensively by numerous investigators both theoretically and experimentally. Krogh’s model 
[13] for the molecular transport between blood capillaries and surrounding tissue cylinder was the 
first mathematical model used popularly in physiological studies. Popel [14] gave the solution of the 
diffusion transport in a capillary network and surrounding tissue. He formulated a Neumann- type 
boundary value problem in a rectangular domain. Blum [15] added a finitely permeable or semi-
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permeable membrane capillary wall to Krogh’s problem. Levitt [16] attempted to consider diffusional 
and time dependent interaction of adjacent capillaries. Tandon et al., [17] studied the capillary-tissue 
fluid exchange system imbibing the characteristics of boundary and medium in which the fluid flows. 
They showed that filtration from a cylindrical capillary decreased as the step velocity of the porous 
boundary increases. Tandon and Agarwal [3] studied the diffusion phenomenon in normal and 
stenotic capillary-tissue fluid exchange system. Diffusivity of nutrients is higher in capillary region 
compared to that in the tissue region. Siddiqui and Mishra [18] studied the diffusion phenomenon in 
normal and stenotic capillary-tissue exchange system modelling blood as a modified Casson’s fluid. 
The severity of the stenosis was given due attention using retention parameter. Singh [19] modelled 
the diffusion phenomenon in stenosed capillary-tissue exchange system using Power law fluid by 
numerical computations. Bali et al., [20] studied two-layer model of blood in capillary- tissue 
exchange system. The permeability of the tissue was taken into account for calculating the viscosity 
and haematocrit. Qiu [1] modelled diffusion process in capillary-tissue system using Krogh’s cylinder 
model. The nature of flow depended on the values of resistance of plasma in extravascular space and 
the capillary. Ismaeel et al., [21] analysed the heat transfer in capillary-tissue exchange system 
modelling blood as a nanofluid. This model incorporates the effects of Brownian motion and 
thermophoresis parameter. They showed that nanoparticle transport across the tissue depended 
largely on the thermophoresis parameter.  

The diffusion of nanoparticles in blood is particularly necessary to comprehend drug delivery. 
Mun et al., [22] studied the diffusion of nanoparticles in polymer solutions of different types and 
revealed that geometry of nanoparticle [23, 25], the viscosity of base fluid [26, 32] and the 
interactions of the nanoparticles with the base fluid strongly effect their diffusivity. Therefore, in this 
research article we have taken two factors that affect nanoparticle diffusivity i.e., nanoparticle shape 
and the viscosity of the base fluid. 

So far, the phenomenon of diffusion of nanoparticles has been observed mathematically only 
with respect to their diffusive parameters and not with respect to their shape parameters. Also, the 
properties of Jeffrey fluid parameters with respect to diffusion in tissues has not been studied. 
Therefore, in the present article we have made an attempt to provide a detailed examination for 
diffusion of nanoparticles through the capillary walls into the surrounding diseased tissue. Diffusion 
occurs through the capillary walls and flow of blood takes place from the arterial end to the venous 
end. We have assumed that blood in the capillaries with nanoparticles in it as nanofluids. The 
properties of blood, which is the base fluid, is described by Jeffrey fluid and the resulting fluid is called 
Jeffrey nanofluid. We have investigated the case of diffusion as nanoparticles seep into the tumoral 
tissues. The mathematical equations are framed using equation of continuity, Navier-stokes equation 
and diffusion equation in the capillary and tissue region respectively. Taylor’s dispersion model is 
used to solve the diffusion equation. The equations are solved analytically and numerically by using 
finite difference method. The obtained results have been compared. The impact of shape of 
nanoparticles, their volume fraction has been observed on velocity of nanofluid and concentration 
of nanoparticles. The effects of Jeffrey fluid parameters have also been observed on the same. The 
graphs have been plotted using MATLAB. The obtained results have useful applications in the field of 
nano bio-medicine.  
 
2. Mathematical Formulation 
 

We consider blood flow in capillary surrounded by tissue of permeability 𝑘0. The flow through 
the capillary tube of length 𝐿′ with radius 𝑅0 is laminar, steady and incompressible (see Figure 1). The 
nanoparticles permeate from the capillary into the diseased tissues with height ℎ′. The cylindrical co-
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ordinates (𝑟′, 𝜃′, 𝑧′) are taken into consideration for describing the velocity of nanofluid. In the axial 

direction i.e., along 𝑧′-axis as 𝑢′ and 𝑢′̅  describe the axial velocity in the capillary and tissue region 

respectively, while 𝑣′ and 𝑣′̅ describe the radial velocity i.e., along 𝑟′-axis for the capillary and tissue 
region respectively. The velocity along the 𝜃′-direction is zero due to axis-symmetricity. 𝜇𝑛𝑓 describes 

the viscosity of nanofluid while 𝜇𝑓 is the viscosity of base fluid which is blood here. 

 

 
Fig. 1. Geometrical representation of model  

 

The governing equations are given as 
 
Equation of continuity in cylindrical co-ordinates 
 

𝜕𝜌𝑛𝑓

𝜕𝑡′
=

1

𝑟′
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Navier-Stokes equation in cylindrical co-ordinates 
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where 𝐹 in different indices represents body forces with respect to different directions and 𝜌𝑛𝑓 is the 

density of the nanofluid. 
Diffusion equation [34] for nanoparticles in blood in cylindrical co-ordinates 
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where 𝐷′ is diffusivity and 𝑚′ is the rate of production or degeneration of nanoparticles.  

Nanofluids are described as advanced colloidal fluids obtained by the dispersion of 1-100nm 
nanoparticles in standard fluids. The treatment of viscosity variation in a nanofluid can be considered 
similar to the effect of viscosity of a solvent by adding solute. Einstein designated the first model for 
the viscosity in 1906 when he precisely studied the phenomenon of particle diffusion in a dilute 
solution. Thus, the nanofluid viscosity is described by the equation 
 
𝜇𝑛𝑓 = (1 + 𝐴𝜙)𝜇𝑓             (6) 

 
where 𝐴 is specific to the shape of nanoparticles [23] in the fluid (Table 1) and 𝜙 is the volume fraction 
of nanoparticles in blood. 𝜇𝑓 is the viscosity of blood.  

The nature of base fluid of a nanofluid largely governs how the nanofluid behaves. Thus, 
modelling of base fluid is highly important to predict the behavior of nanofluid. Blood is the base fluid 
in our model, the properties of which are described by a non-Newtonian fluid called the Jeffrey fluid.  

The assumption of Newtonian behavior of blood is acceptable for high shear rate flow i.e., while 
flow through larger blood vessels. It is not valid when the shear rate is low as in the case of capillaries. 
Class of non-Newtonian fluids having the characteristics memory time scale, also known as the 
relaxation time scale, also known as the relaxation time, can be will described by Jeffrey fluid model 
[27, 28]. Jeffrey fluid model is capable of describing the stress-relaxation property of non-Newtonian 
fluids, which the usual viscous fluid model cannot describe.  Jeffrey fluid is specified as a non-
Newtonian fluid having shear-thinning property for which the viscosity of fluid reduces with 
increasing rate of shear stress. 𝜆 is the ratio of relaxation to retardation time which is also called 
Jeffrey fluid parameter, modifying it we get the properties of a Newtonian fluid. Physically, the 
viscosity of blood is variable i.e., it depends non-linearly on viscosity index and viscosity parameters 
[2]. Chauhan and Tiwari [2] depicted the importance of Jeffrey fluid with varying viscosity in the 
dispersion of solutes in blood. 

 
Table 1 
List of shapes of nanoparticles and their 
respective parameters [23] 
Shape of nanoparticles 𝐴 (shape parameter) 

Platelets 37.1 
Blades 14.6 
Cylinders 13.5 
Bricks 1.9 

 
 

Thus, combining the effects of nanofluid in Jeffrey fluid is named as Jeffrey nanofluid [29, 30]. 
The mathematical expression defining shear stress as 𝜏′ for Jeffrey nanofluid with varying viscosity 
[2, 35] is given as: 

 

𝜏′ =
1

1+𝜆
[𝜇𝑛𝑓{1 + 𝑘 − 𝑘 (

𝑟′

𝑅0
)
𝑚

}(−
𝜕𝑢′

𝜕𝑟′
)]          (7) 

 
where 𝑘 is the viscosity parameter and 𝑚 is the viscosity index. 

The governing Eq. (1) to Eq. (5) will be solved under the following assumptions: 

I. Flow is considered two dimensional. 



CFD Letters 

Volume 15, Issue 6 (2023) 130-153 

135 
 

II. Flow is steady in capillaries. 

III. Flow is axisymmetric. 

IV. The azimuthal component of fluid velocity is zero. 

V. The cross-section area is very small in capillaries; thus, the flow is described by low 

Reynolds number. 

VI. The nanoparticle transfer takes place via diffusion from the capillary to the tissue 

neglecting the axial diffusion.  

VII. Base fluid is modelled as Jeffrey fluid.  
 

The modified equations for the capillary region and tissue region are given henceforth. The 
equations in the capillary region (0 < 𝑟′ < 𝑅𝑜) 

 
𝜕𝑢′

𝜕𝑧′
+
𝑣′

𝑟′
+
𝜕𝑣′

𝜕𝑟′
= 0             (8) 

 
𝜕𝑝′

𝜕𝑧′
= −

1

𝑟′
𝜕

𝜕𝑟′
(𝑟′𝜏′)             (9) 

 
where 𝑝′ is the pressure in the capillary region. 
 
The boundary condition for axis-symmetricity of axial flow is expressed as 
 
𝜕𝑢′

𝜕𝑟′
= 0   at 𝑟′ = 0                       (10) 

 
Since there is a leakage of nanoparticles from the capillary walls to the tissues, Darcy law is 

applied at the interface, the boundary condition for which is expressed as 
 

𝑢′ − 𝑢′̅ = −𝜎′
𝜕𝑢′

𝜕𝑟′
      at  𝑟′ = 𝑅0                     (11) 

 

where 𝑝′̅ is the pressure in the tissue region and 𝜎′ is the slip parameter between the capillary and 
tissue region. 

The radial component of velocity is zero at the centre line of nanofluid in the capillary, thus the 
boundary condition is given as 

 
𝑣′ = 0      at      𝑟′ = 0                       (12) 
 

Since the fluid permeates from the capillary to the tissues, the boundary condition is expressed 
as 

 

𝑣′ = 𝑣′̅    at   𝑟′ = 𝑅0                        (13) 
 
The boundary conditions for pressure at the capillary ends are expressed as 
 
𝑝′ = 𝑝𝐴

′     at  𝑧′ = 0                        (14) 
 
𝑝′ = 𝑝𝐵

′     at  𝑧′ = 𝐿′                        (15) 
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where 𝑝𝐴

′  and 𝑝𝑉
′  is the pressure at the arterial end and venous end. 

 
The diffusion of nanoparticles in the capillary region is given as 

 

𝑢′
𝜕𝑐1
′

𝜕𝑧′
= 𝐷1

′ (
𝜕2𝑐1

′

𝜕𝑟′2
+

1

𝑟′

𝜕𝑐1
′

𝜕𝑟′
) + 𝑚1

′                       (16) 

 
where 𝑐1

′  is the concentration of nanoparticles, 𝐷1
′  is the nanoparticle diffusivity and 𝑚1

′  is the rate 
of generation or degeneration of nanoparticles in the capillary region. 

The boundary conditions for the diffusion of nanoparticles displaying the axis-symmetricity are 
expressed as 

 
𝜕𝑐1
′

𝜕𝑟′
= 0  at 𝑟′ = 0                        (17) 

 
The equations for the tissue region (𝑅0 < 𝑟

′ < 𝑅0 + ℎ′) 
Following the Darcy law, the axial and radial components of velocity in the tissue region are given 

as 
 

𝑢′̅=−
𝑘0

𝜇𝑛𝑓

𝜕𝑝′̅̅ ̅

𝜕𝑧′
           and         𝑣 ′̅ =−

𝑘0

𝜇𝑛𝑓

𝜕𝑝′̅̅ ̅

𝜕𝑟′
                     (18) 

 
Using these in the equation of continuity, we get the Laplace’s equation for the pressure 

distribution in the porous tissue region as 
 

∇2𝑝′̅ = 0                         (19) 
 

No flux condition at the outer wall of the tissue since there is no flow of fluid outside the tissue 
gives 
 
𝜕𝑝′̅̅ ̅

𝜕𝑟′
= 0    at  𝑟′ = 𝑅0 + ℎ′                       (20) 

 
The axial pressure gradient at the end points of the tissue is zero which is described as 
 

𝜕𝑝′̅̅ ̅

𝜕𝑧′
= 0    at  𝑧′ = 0                        (21) 

 
𝜕𝑝′̅̅ ̅

𝜕𝑧′
= 0    at  𝑧′ = 𝐿′                        (22) 

 
We have considered a matching condition at the tissue and capillary interface 

 

𝑝′̅ = 𝑝′     at  𝑟′ = 𝑅0                        (23) 
 

The diffusion equation in the tissue region is given as 
 

0 =  𝐷2
′ (
𝜕2𝑐2

′

𝜕𝑟′2
+

1

𝑟′

𝜕𝑐2
′

𝜕𝑟′
) + 𝑚2

′                        (24) 



CFD Letters 

Volume 15, Issue 6 (2023) 130-153 

137 
 

 
where 𝑐2

′  is the concentration of nanoparticles, 𝐷2
′  is the nanoparticle diffusivity and 𝑚2

′  is the rate 
of generation or degeneration of nanoparticles in the tissue region.  

The no flux condition for diffusion defines the boundary condition as 
 

𝜕𝑐2
′

𝜕𝑟′
= 0  at  𝑟′ = 𝑅0 + ℎ′                       (25) 

 
The retention of nanoparticles as they pass from the capillary to the tissue region is given as 
 

𝑐1
′ = 𝛿′𝑐2

′     at   𝑟′ = 𝑅0                       (26) 
 
where 𝛿′ is the retention parameter. 
 

Radial diffusion of nanoparticles as they pass from capillary to the tissue region is given as 
 

−𝐷1
′ 𝜕𝑐1

′

𝜕𝑟′
= (1 −

1

𝛿′
) �̅�𝑎𝑣𝑔

′ 𝑐1
′ − 𝐷2

′ 𝜕𝑐2
′

𝜕𝑟′
   at   𝑟′ = 𝑅0                   (27) 

 
where �̅�𝑎𝑣𝑔

′  is the average radial velocity in the tissue region. 

 
The non-dimensional scheme is stated as: 

 

𝑟 =
𝑟′

𝑅0
 ,  𝑧 =

𝑧′

𝑅0
  ,  ℎ =
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𝐿′

𝑅𝑜
, 
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′𝑅𝑜
2

𝐷0𝐶0
,  𝑚2 =

𝑚2
′𝑅𝑜
2

𝐷0𝐶0
, 𝑐1 =

𝑐1
′

𝑐0
, 𝑐2 =

𝑐2
′

𝑐0
, 𝑃𝑒 =

𝑢𝑎𝑣𝑔𝑅0

𝐷0
,𝛿 =

𝛿′

𝑅0
                   (28) 

 
where is 𝑢𝑎𝑣𝑔 reference velocity, 𝐷0 is reference diffusivity, 𝑐0 is reference concentration. 𝑃𝑒 is the 

Peclet number and 𝑅𝑒 is the Reynolds number. 𝜌𝑓 is the density of the blood.  

Using the above non-dimensional scheme, the transformed equations are stated as 
 
𝜕𝑢

𝜕𝑧
+
𝑣

𝑟
+
𝜕𝑣

𝜕𝑧
= 0                        (29) 

 
𝜕𝑝

𝜕𝑧
= −

1

𝑅𝑒
 
1

𝑟
 
𝜕

𝜕𝑟
 (𝑟𝜏)                        (30) 

 

𝑃𝑒 𝑢 
𝜕𝑐1

𝜕𝑧
= 𝐷1 (

𝜕2𝑐1

𝜕𝑟2
+
1

𝑟

𝜕𝑐1

𝜕𝑟
) + 𝑚1                     (31) 

 
∇2�̅� = 0                         (32) 
 

0 = 𝐷2 (
𝜕2𝑐2

𝜕𝑟2
+
1

𝑟

𝜕𝑐2

𝜕𝑟
) + 𝑚2                       (33) 

 
Using the above non-dimensional scheme, the transformed non-dimensional boundary 

conditions are stated as 
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𝜕𝑢

𝜕𝑟
= 0   at  𝑟 = 0                        (34) 

 

𝑢 + 
𝑘0

𝜇0
 
𝜕�̅�

𝜕𝑧
= −𝜎 

𝜕𝑢

𝜕𝑟
  at   𝑟 = 1                      (35) 

 
𝑣 = 0    at   𝑟 = 0                        (36) 
 

𝑣 = −
𝑘0

𝜇0

𝜕�̅�

𝜕𝑟
    at  𝑟 = 1                      (37) 

 
𝜕�̅�

𝜕𝑟
= 0   at   𝑟 = 1 + ℎ                       (38) 

 
𝜕�̅�

𝜕𝑧
= 0   at   𝑧 = 0                        (39) 

 
𝜕�̅�

𝜕𝑧
= 0   at   𝑧 = 𝐿                        (40) 

 
𝑝 =  𝑝𝐴  at   𝑧 = 0                        (41) 
 
𝑝 =  𝑝𝑣  at   𝑧 = 𝐿                        (42) 
 
�̅� = 𝑝    at    𝑟 = 1                        (43) 
 
𝜕𝑐1

𝜕𝑟
= 0 at    𝑟 = 0                        (44) 

 
𝜕𝑐2

𝜕𝑟
= 0 at    𝑟 = 1 + ℎ                       (45) 

 
𝑐1 = 𝛿𝑐2   at  𝑟 = 1                        (46) 
 

−𝐷1
𝜕𝑐1

𝜕𝑟
= 𝑃𝑒 (1 −

1

𝛿
) �̅�𝑎𝑣𝑔𝑐1 −𝐷2

𝜕𝑐2

𝜕𝑟
     at  𝑟 = 1                    (47) 

 
3. Solution 
3.1 Analytical Method and Solution 
 

The solution of the transformed governing Eq. (29) to Eq. (33) using the boundary conditions Eq. 
(34) to (47) is given as: 

Eq. (32) is Laplace’s equation in cylindrical coordinates. It is solved for �̅� which describes the 
pressure in tissue region applying the boundary conditions in Eq. (38) to Eq. (40) using the method of 
separation of variables. We get the value of �̅� in terms of 𝐴𝑛 which will be obtained using the 
matching condition at the tissue and capillary interface. 

 

�̅� = ∑ 𝐴𝑛
∞
𝑛=1 [𝐼0(𝑟𝛾) −

𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)] sin (

𝑛𝜋

𝑙
) 𝑧                    (48) 

 
where 𝐼0, , 𝐾0 and 𝐼1, 𝐾1 represent modified Bessel’s function of zeroth order and first order 
respectively. 
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The Jeffrey fluid equation for shear stress with varying viscosity including nanoparticle shape 
parameter given as 

 

𝜏 =
𝜇𝑓(1+𝐴𝜙)

1+𝜆
{1 + 𝑘 − 𝑘𝑟𝑚}(−

𝜕𝑢

𝜕𝑟
)                      (49) 

 
Solving Eq. (30) for finding the value of velocity or 𝑢 in the capillary region, applying the Jeffrey 

fluid equation given by Eq. (49) and the boundary condition Eq. (34), we get 
 

𝑢 =
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)

𝜕𝑝

𝜕𝑧
(
𝑟2

2
−
𝑟2𝑘

2
+
𝑘𝑟𝑚+2

𝑚+2
) + 𝐸𝑛                     (50) 

 
Now solving Eq. (29) to find the value of pressure in the capillary region or 𝑝, applying the 

boundary conditions Eq. (35) to Eq. (37), Eq. (41) and Eq. (42), we get 
 

𝑝 =
1

(
1

6
−
𝑘

6
+

𝑘

(𝑚+2)(𝑚+4)
)

2(1+𝐴𝜙)𝑘0

𝑅𝑒(1+𝜆)
∑ 𝐴𝑛 [𝛾

𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾) − 𝛾𝐼1(𝛾)] (

𝑙2

𝑛2𝜋2
) (− sin

𝑛𝜋𝑧

𝑙
)∞

𝑛=1 − 𝑧
(𝑝𝐴−𝑝𝑣)

𝑙
+

𝑝𝐴                          (51) 
 

Using condition in Eq. (43) to find the value of 𝐴𝑛 from Eq. (48) and Eq. (51), we get 
 

𝐴𝑛 =
(
2

𝑛𝜋
(
𝑧(𝑝𝐴−𝑝𝑉)

𝑙
−𝑝𝐴)(1−cos

𝑛𝜋

𝑙
)+

2

𝑛2𝜋2
(𝑝𝐴−𝑝𝑉) sin

𝑛𝜋

𝑙
)

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

                 (52) 

 

Using the above value of 𝐴𝑛, the value of 
𝜕𝑝

𝜕𝑧
 will be calculated. Now putting the value of 

𝜕𝑝

𝜕𝑧
 in 

condition Eq. (35) we get the value of 𝐸𝑛 as 
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𝐸𝑛 = −
𝑘0

𝜇𝑓

(

 
 
 

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)∑

2

𝑛𝜋
(1−cos

𝑛𝜋

𝑙
)(
𝑃𝐴−𝑃𝑉

𝑙
) sin

𝑛𝜋𝑧

𝑙
∞
𝑛=1 )

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

+ (𝐼0(𝑟𝛾) −

𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)∑ 𝐴𝑛

𝑙

𝑛𝜋
cos

𝑛𝜋𝑧

𝑙
∞
𝑛=1 )

)

 
 
 

+ (1𝑘 +
𝑘

𝑚+2
)

𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)

(

  
 (𝑝𝑉−𝑝𝐴)

𝑙
−

(
1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

)∑
2

𝑛𝜋
(1−cos

𝑛𝜋

𝑙
)(
𝑃𝐴−𝑃𝑉

𝑙
)∞

𝑛=1

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

−

(
1

(
1

6
−
𝑘

6
+

𝑘

(𝑚+2)(𝑚+4)
)

2(1+𝐴𝜙)𝑘0

𝑅𝑒(1+𝜆)
)∑ 𝐴𝑛

∞
𝑛=1

𝑙

𝑛𝜋
cos

𝑛𝜋𝑧

𝑙

)

  
 
− 𝜎

𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
(𝑝𝑉−𝑝𝐴)

𝑙
−

(
1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

)∑
2

𝑛𝜋
(1−cos

𝑛𝜋

𝑙
)(
𝑃𝐴−𝑃𝑉

𝑙
)∞

𝑛=1

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6
−
𝑘
6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

−

(
1

(
1

6
−
𝑘

6
+

𝑘

(𝑚+2)(𝑚+4)
)

2(1+𝐴𝜙)𝑘0

𝑅𝑒(1+𝜆)
)∑ 𝐴𝑛

∞
𝑛=1

𝑙

𝑛𝜋
cos

𝑛𝜋𝑧

𝑙
)                   (53) 

 
The value of �̅�𝑎𝑣𝑔 is calculated as 

 

�̅�𝑎𝑣𝑔 =
1

𝑙
∫ �̅�𝑑𝑧
1

0
                        (54) 

 
we get  
 

�̅�𝑎𝑣𝑔 = −
𝑘0

𝜇𝑓𝑙

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾))

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6−
𝑘
6+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

[−∑ (2𝑙 (
𝑝𝐴−𝑝𝑉

𝑙
− 𝑝𝐴) (1 − cos

𝑛𝜋

𝑙
) +

2

𝑛𝜋
(𝑝𝐴 −

∞
𝑛=1

𝑝𝑉) sin
𝑛𝜋

𝑙
) cos

𝑛𝜋

𝑙
+ ∑ (−2𝑙𝑝𝐴 (1 − cos

𝑛𝜋

𝑙
) +

2

𝑛𝜋
(𝑝𝐴 − 𝑝𝑉) sin

𝑛𝜋

𝑙
)∞

𝑛=1 ] +

 
∑ (

2𝑙2

𝑛𝜋
(
𝑝𝐴−𝑝𝑉

𝑙
)(1−cos

𝑛𝜋

𝑙
))sin

𝑛𝜋

𝑙
∞
𝑛=1

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6−
𝑘
6+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

                    (55) 

 
Now we have to find the concentration of nanoparticles in the capillary 𝑐1 and the tissue 𝑐2. We 

have employed Taylor’s dispersion model to solve the diffusion equation.  It is assumed that the 
concentration is symmetrical about the axis of the capillary. The mean radial velocity  �̅�𝑎𝑣𝑔 is constant 
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across 𝑙 in Eq. (55), therefore the diffusion of nanoparticles in chiefly dependent on the radial 

variation of 𝑐1 and 𝑐2. Hence, integrating Eq. (31) while treating 
𝜕𝑐1

𝜕𝑧
 as constant, and using boundary 

condition Eq. (44) we get an equation in 𝑐1and 𝑐2; integrating Eq. (33) using boundary condition Eq. 
(45) to Eq. (47) we get another equation in 𝑐1and 𝑐2 . Solving both of them simultaneously, we get 
𝑐1and 𝑐2as 

 

𝑐1 =
𝑃𝑒

𝐷1

𝜕𝑐1

𝜕𝑧
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(−

𝑟4

32
+
𝑘𝑟4

32
−

𝑘𝑟(𝑚+4)

(𝑚+2)(𝑚+4)2
)𝐹𝑛 − 𝐺𝑛

𝑟2

4
) +

𝑚1

4𝐷1
𝑟2 −

1

𝑃𝑒(1−
1

𝛿
)�̅�𝑎𝑣𝑔

(
𝑚2

2
−
𝑚2

2𝑟
(1 +

ℎ)3 +
𝑚1

𝐷1
+

1

𝐷1
(
𝜕𝑐1

𝜕𝑧

𝑃𝑒

𝐷1
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
1

8
−
𝑘

8
+

𝑘(𝑚+3)

(𝑚+2)(𝑚+4)2
)𝐹𝑛 −

𝐺𝑛

2
))) −

𝑚1

4𝐷1
+ (

𝜕𝑐1

𝜕𝑧

𝑃𝑒

𝐷1
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
1

32
−

𝑘

32
+

𝑘

(𝑚+2)(𝑚+4)2
)𝐹𝑛 −

𝐺𝑛

4
))                       (56) 

 

𝑐2 = −
𝑚2

6𝐷2
𝑟3 +

𝑚2

𝐷2

(1+ℎ)3

2
log 𝑟 +

𝑚2

6𝐷2
−

𝑚1

4𝛿𝐷1
+
1

𝛿

𝜕𝑐1

𝜕𝑧

𝑃𝑒

𝐷1
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
1

32
−

𝑘

32
+

𝑘

(𝑚+2)(𝑚+4)2
)𝐹𝑛 −

𝐺𝑛

4
)) −

1

𝛿
(

1

𝑃𝑒(1−
1

𝛿
)�̅�𝑎𝑣𝑔

(
𝑚2

2
−
𝑚2

2𝑟
(1 + ℎ)3 +

𝑚1

𝐷1
+

1

𝐷1
(
𝜕𝑐1

𝜕𝑧

𝑃𝑒

𝐷1
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
1

8
−
𝑘

8
+

𝑘(𝑚+3)

(𝑚+2)(𝑚+4)2
)𝐹𝑛 −

𝐺𝑛

2
))) −

𝑚1

4𝐷1
+ (

𝜕𝑐1

𝜕𝑧

𝑃𝑒

𝐷1
(
𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
(
1

32
−

𝑘

32
+

𝑘

(𝑚+2)(𝑚+4)2
) 𝐹𝑛 −

𝐺𝑛

4
)))                 (57) 

 
where 
 

𝐹𝑛 =
𝑝𝑉−𝑝𝐴

𝑙
−

(
1

(
1
6−
𝑘
6+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

)∑
2

𝑛𝜋
∞
𝑛=1 (1−cos

𝑛𝜋

𝑙
)(
𝑝𝐴−𝑝𝑉

𝑙
)

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6−
𝑘
6+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

−

           (
1

(
1

6
−
𝑘

6
+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0

𝑅𝑒(1+𝜆)
∑ 𝐴𝑛

𝑙

𝑛𝜋
cos

𝑛𝜋

𝑙
𝑧∞

𝑛=1 )                    (58) 

 

𝐺𝑛 = −
𝑘0

𝜇𝑓
(

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾))∑

2

𝑛𝜋
(1−cos

𝑛𝜋

𝑙
)∞

𝑛=1
𝑝𝐴−𝑝𝑉

𝑙
sin

𝑛𝜋

𝑙
𝑧

(𝐼0(𝑟𝛾)−
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)+

1

(
1
6−
𝑘
6+

𝑘
(𝑚+2)(𝑚+4)

)

2(1+𝐴𝜙)𝑘0
𝑅𝑒(1+𝜆)

(𝛾
𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾1(𝛾)−𝛾𝐼1(𝛾)))

+ (𝐼0(𝑟𝛾) −

𝐼1(1+ℎ)𝛾

𝐾1(1+ℎ)𝛾
𝐾0(𝑟𝛾)) ∑ 𝐴𝑛

𝑙

𝑛𝜋
cos

𝑛𝜋𝑧

𝑙

∞
𝑛=1 )− (1 − 𝑘 +

𝑘

𝑚+2
)

𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
𝑎2 − 𝜎

𝑅𝑒(1+𝜆)

2𝜇𝑓(1+𝐴𝜙)
𝑎2                 (59) 

 
3.2 Finite Difference Method 
 

The current problem was also solved using finite difference scheme for solving coupled partial 
differential equation [31] using MATLAB. The finite difference equations and boundary conditions 
are stated below: 
 
𝑢𝑚+1−𝑢𝑚

2(𝑧𝑚+1−𝑧𝑚)
+
𝑣𝑛

𝑟𝑛
+

𝑣𝑚+1−𝑣𝑚

2(𝑧𝑚+1−𝑧𝑚)
= 0                      (60) 

 
𝑝𝑚+1−𝑝𝑚

2(𝑧𝑚+1−𝑧𝑚)
= −

1

𝑅𝑒
 

1

𝑟𝑛+1−𝑟𝑛
 

1

2(𝑟𝑛+1−𝑟𝑛)
 (𝜏𝑛+1𝑟𝑛+1 − 𝜏𝑛𝑟𝑛)                   (61) 
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𝑃𝑒(𝑢𝑛 )(
𝑐1,𝑛+1−𝑐1,𝑛

2(𝑧𝑚+1−𝑧𝑚)
) = 𝐷1 (

𝑐1,𝑛−1−2𝑐1,𝑛+𝑐1,𝑛+1

(𝑟𝑛+1−𝑟𝑛)2
+

1

𝑟𝑛+1−𝑟𝑛

𝑐1,𝑛+1−𝑐1,𝑛

2(𝑟𝑛+1−𝑟𝑛)
) + 𝑚1                 (62) 

 
∇𝑛,𝑚
2 𝑝𝑛,𝑚̅̅ ̅̅ ̅̅ = 0                         (63) 

 

0 = 𝐷2 (
𝑐2,,𝑛−1−2𝑐2,𝑛+𝑐2,𝑛+1

(𝑟𝑛+1−𝑟𝑛)2
+

1

𝑟𝑛+1−𝑟𝑛

𝑐2,𝑛+1−𝑐2,𝑛

2(𝑟𝑛+1−𝑟𝑛)
) + 𝑚2                   (64) 

 
𝑢2−𝑢1

2(𝑟2−𝑟1)
= 0   at  𝑟1 = 0                       (65) 

 

𝑢1 + 
𝑘0

𝜇0
 
�̅�𝑚+1−�̅�𝑚

2(𝑧𝑚+1−𝑧𝑚)
= −𝜎

𝑣2−𝑣1

2(𝑟2−𝑟1)
   at   𝑟1 = 0                    (66) 

 
𝑣1 = 0   at   𝑟1 = 0                        (67) 
 

𝑣𝑛 = −
𝑘0

𝜇0

�̅�𝑛+1−�̅�𝑛

2(𝑟𝑛+1−𝑟𝑛)
    at   𝑟𝑛 = 𝑛                      (68) 

 
�̅�𝑛+1−�̅�𝑛

2(𝑟𝑛+1−𝑟𝑛)
= 0   at     𝑟𝑛 = 𝑛 + ℎ                      (69) 

 
�̅�2−�̅�1

2(𝑧2−𝑧1)
= 0   at   𝑧1 = 0                       (70) 

 
�̅�𝑚+1−�̅�𝑚

2(𝑧𝑚+1−𝑧𝑚)
= 0   at   𝑧𝑚 = 𝐿                       (71) 

 
𝑝1 = 𝑝𝐴  at   𝑧1 = 0                        (72) 
 
𝑝𝑚 = 𝑝𝑣  at   𝑧𝑚 = 𝐿                        (73) 
 
𝑝𝑛̅̅ ̅ = 𝑝𝑛    at    𝑟𝑛 = 𝑛                        (74) 
 
𝑐1,2−𝑐1,1

2(𝑟2−𝑟1)
= 0 at    𝑟1 = 0                       (75) 

 
𝑐2,𝑛+1−𝑐2,𝑛

2(𝑟𝑛+1−𝑟𝑛)
= 0 at    𝑟𝑛 = 𝑛 + ℎ                      (76) 

 
𝑐1,𝑛 = 𝛿𝑐2,𝑛   at  𝑟𝑛 = 𝑛                       (77) 
 

−𝐷1
𝑐1,𝑛+1−𝑐1,𝑛

2(𝑟𝑛+1−𝑟𝑛)
= 𝑃𝑒 (1 −

1

𝛿
) �̅�𝑎𝑣𝑔𝑐1,𝑛 −𝐷2

𝑐2,𝑛+1−𝑐2,𝑛

2(𝑟𝑛+1−𝑟𝑛)
  at  𝑟𝑛 = 𝑛                  (78) 

 
The algorithm for solving the equations is given as: 

I. The radial domain is represented by a mesh of (n+1) grid points 0 = 𝑟0< 𝑟1< 𝑟2< 𝑟𝑛−1 < 𝑟𝑛=1. 
II. We seek the solution of u, 𝑐1and 𝑐2 at the mesh points for their respective regions. 

III. The difference Eq. (60) to Eq. (64) and boundary conditions Eq. (65) to Eq. (78) are used 
to obtain the values at each grid point applying Thomas algorithm for tridiagonal system 
of matrices. 
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Table 2 below compares the analytical and numerical values of nanofluid velocity in the capillary 
region and nanoparticle concentrations in the capillary and tissue region respectively.  
 

Table 2 
Comparison of the analytical and numerical values of nanofluid velocity in the 
capillary region and nanoparticle concentrations in the capillary and tissue region 
A=1.9, 𝜙=0.01,𝜆 =2.0, k=0.2, m=0.2 

r u (analytical) u (FDM) 𝑐1 (analytical) 𝑐1 (FDM) 𝑐2 (analytical) 𝑐2 (FDM) 

0.0 1.000000 1.000000 3.000000 3.000000 - - 
0.2 0.973920 0.973916 2.923761 2.923756 - - 
0.4 0.894162 0.894159 2.680182 2.680175 - - 
0.6 0.755945 0.755940 2.224670 2.224662 - - 
0.8 0.551593 0.551587 1.482907 1.482900 - - 
1.0 0.270171 0.270168 0.103251 0.103246 0.103251 0.103246 
1.2 - - - - 0.103228 0.103224 
1.4 - - - - 0.103208 0.103205 
1.6 - - - - 0.103193 0.103187 
1.8 - - - - 0.103180 0.103173 
2.0 - - - - 0.103169 0.103165 

 
Meanwhile Table 3 below gives the error analysis. 
 

Table 3 
Error analysis 
A=1.9, 𝜙=0.01,𝜆 =2.0, k=0.2, m=0.2 
r u 𝑐1 𝑐2 

0.0 0.000000 0.000000 - 
0.2 0.000004 0.000005 - 
0.4 0.000003 0.000007 - 
0.6 0.000005 0.000008 - 
0.8 0.000006 0.000007 - 
1.0 0.000003 0.000005 0.000005 
1.2 - - 0.000004 
1.4 - - 0.000003 
1.6 - - 0.000006 
1.8 - - 0.000007 
2.0 - - 0.000004 

 
4. Graphical Results and Discussions 
 

This section explains the graphical effect of relevant parameters on the profiles of velocity and 
concentration against radial direction. The observations are made on for different values of shape 
parameter of nanoparticles (𝐴), volume fraction of nanoparticles (𝜙), Jeffrey fluid parameter (𝜆), 
viscosity parameter (𝑘) and viscosity index (𝑚). Figure 2 until Figure 6 represent the graphs of velocity 
in capillary region against radial direction followed by Figure 7 until Figure 11 that represent the 
graphs of concentration of nanoparticles in capillary and tissue region against radial direction. 

Figure 2 depicts velocity of nanofluid in capillary region against radial direction (𝑟)for different 
values of shape parameter (𝐴). It can be seen that lesser the value of shape parameter, greater is the 
axial velocity. Consequently, bricks that have least value of shape parameter, show greatest velocity. 
The consequence of the shape of nanoparticles on the velocity is because of the viscosity dependence 
on the shape parameter. Blades and cylinders have almost same viscosity in nanofluid due to 
elongated structures, thus they show overlapping profile for velocity. Similar results were given by 
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Madhura et al., [23]. Lee et al., [24], in their experimental study of nanoparticle diffusion through 
biological barriers like tissues, reported that rod-shaped nanoparticles had greater velocity than 
spherical shaped nanoparticles while diffusing. Thus, platelet shaped nanoparticles show least rise in 
velocity while brick shaped nanoparticles have maximum rise in velocity. Similar results were 
reported by Timofeeva et al., [25]. 

 

 
Fig. 2. Variation of velocity with radius for different shape parameter A of nanoparticles 

 

Figure 3 shows velocity in capillary region against radial direction (𝑟) for different values of 
volume fraction (𝜙) for brick shaped nanoparticles. The trend shows that the increase in the value of 
volume fraction of nanoparticles causes a decrease in the velocity of nanoparticles. This is so because 
as the volume fraction increases, the number of nanoparticles in the blood increases, which makes 
the nanofluid more viscous. Identical observations were given by Timofeeva et al., [25] in their 
experimental study. The enhancement in viscosity causes an enhancement in the friction force which 
causes a reduction in velocity. Thus, velocity increases with the decrease in the volume fraction. 
Similar observations were made by Ijaz and Nadeem [26]. 

 

 
Fig. 3. Variation of velocity with radius for different values of volume fraction φ of nanoparticles 
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Figure 4 shows velocity in capillary region against radial direction (𝑟) for different values of Jeffrey 
parameter (𝜆) for brick shaped nanoparticles. The graph shows that larger the value of Jeffrey 
parameter, larger the velocity. Jefferey parameter represents the ratio of relaxation to retardation 
time. Also, Jeffrey fluid show shear-thinning properties. Rise in Jeffrey parameter causes an increase 
in convection coefficient at a given temperature [2], which in turn increases the movement of 
nanoparticles in nanofluid, thus increasing their velocity. 

 

 
Fig. 4. Variation of velocity with radius for different values of Jeffrey parameter λ 

 
Figure 5 shows velocity in capillary region against radial direction (𝑟) for different values of 

viscosity parameter (𝑘) for brick shaped nanoparticles. The trend depicts that the velocity increases 
for increasing values of viscosity parameter. Viscosity parameter exhibits the behaviour of shear 
thinning fluids. As its value increases, the viscosity decreases and thus the velocity increases. 

 

 
Fig. 5. Variation of velocity against radius for different values of viscosity parameter k 

 
Figure 6 describes velocity in capillary region against radial direction (𝑟) for different values of 

viscosity index (𝑚) for brick shaped nanoparticles. The trend shows that greater the value of viscosity 
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index, greater the velocity of the nanofluid. The viscosity index is a measure of the constancy of the 
viscosity. The greater the viscosity index, lesser is viscosity affected by changes in temperature. This 
implies that at a given temperature, greater the viscosity index, lesser the viscosity and in turn, 
greater is the velocity of nanofluid. 

 

 
Fig. 6. Variation of velocity against radius for different values of viscoity index m 

 

Figures 7(a) and Figure 7(b) show concentration against radial direction (𝑟) for different values of 
shape parameter (𝐴) in capillary region and tissue region respectively. The trend shows that higher 
the value of shape parameter, greater the concentration. Thus, platelets show maximum rise in 
concentration and bricks show minimum rise in concentration. The high value of shape parameter 
depicts higher diffusion rates, thus higher concentrations. Results obtained are in accordance with 
the experimental results obtained by Lee et al., [24]. 

 

 
(a) 
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(b) 

Fig. 7. Variation of concentration with radius for different shape parameter A of nanoparticles 
in (a) Capillary region (b) Tissue region 

 
Figures 8(a) and Figure 8(b) display concentration against radial direction (𝑟) for different values 

of volume fraction (𝜙) in the capillary region and tissue region respectively for brick shaped 
nanoparticles. The trend depicts that higher the value of volume fraction, greater the concentration. 
Volume fraction represents value of volume of nanoparticles divided by the volume of all constituents 
of the nanofluid. Thus, increasing the volume fraction, increases the number of nanoparticles, which 
increases the concentration of nanoparticles. Analogous observations were given by Timofeeva et 
al., [25] in their experimental study. 

 

 
(a) 
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(b) 

Fig. 8. Variation of concentration with radius for different values of volume fraction φ of 
nanoparticles in (a) Capillary region (b) Tissue region 

 
Figures 9(a) and Figure 9(b) show concentration against radial direction (𝑟) for different values of 

Jeffrey parameter (𝜆) in the capillary region and tissue region respectively for brick shaped 
nanoparticles. The profiles depict decrease in concentration as the value of Jeffrey parameter 
increases. Since Jeffrey parameter represents the relaxation to retardation time, increase in its value 
will increase the convection which will lead increase in axial dispersion or axial velocity. Jeffrey fluids 
possess shear-thinning properties too. This will accredit to decay in concentration due to decrease in 
viscosity.  Parallel results were obtained by Chauhan and Tiwari [2]. 

 

 
(a) 
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(b) 

Fig. 9. Variation of concentration with radius for different values of Jeffrey parameter λ in 

(a) Capillary region (b) Tissue region 

 
Figure 10(a) and Figure 10(b) display concentration against radial direction (𝑟) for different values 

of viscosity parameter (𝑘) in the capillary region and tissue region respectively for brick shaped 
nanoparticles. The graphs show that increase in the value of viscosity parameter causes a decrease 
in concentration. Increase in the value of viscosity parameter increases the velocity which reduces 
the concentration due to decreasing viscosity [2]. So, reduction in viscosity parameter reduces the 
axial dispersion and hence increases the concentration. 

 

 
(a) 
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(b) 

Fig. 10. Variation of concentration with radius for different values of viscosity parameter k 
in (a) Capillary region (b) Tissue region 

 
Figure 11(a) and Figure 11(b)show concentration against radial direction (𝑟) for different values 

of viscosity index (𝑚) in the capillary region and tissue region respectively for brick shaped 
nanoparticles. The trend shows that with the increase in the value of viscosity index, the 
concentration decreases. The increase in the value of viscosity index causes an increase in the velocity 
that decreases the axial dispersion which in turn decreases the concentration. This is because the 
time taken in diffusion process increases due to the increase in viscosity index [2]. 

 

 
(a) 
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(b) 

Fig. 11. Variation of concentration against radius for different values of viscosity index m in 
(a) Capillary region (b) Tissue region 

 
5. Conclusion 
 

Nanoparticles have evinced as having befitting therapeutic applications for treating blockages in 
vasculature or killing diseased cells through agent-based approach or their direct usage as drugs. The 
diffusivity of nanoparticles is affected by shape of nanoparticle and the type of base fluid in which 
they are diffused. By present model we have analysed the effects of diffusion of nanoparticles in the 
capillary-tissue exchange system. Analytical expressions for velocity and concentration were derived. 
Efforts were also made to compare the results with the solution obtained using finite difference 
method. The effects of shape parameter of nanoparticles (𝐴), volume fraction of nanoparticles (𝜙), 
Jeffrey fluid parameter (𝜆), viscosity parameter (𝑘) and viscosity index (𝑚) on velocity and 
concentration of the nanoparticles were investigated. Major findings of the study are summarized as 
follows: 

I. The velocity decreases with the increase in the values of shape parameter and volume 
fraction. 

II. The maximum velocity is observed for brick shaped nanoparticles and minimum is 
observed for platelets. 

III. The velocity increases with the increase in the values of Jeffrey parameter, viscosity 
parameter and viscosity index. 

IV. The concentration increases with the increase in the value of shape parameter and 
volume fraction. 

V. The maximum concentration is observed for platelets and minimum is observed for bricks. 
VI. The concentration decreases with the increase in the values of Jeffrey parameter, viscosity 

parameter and viscosity index. 

For the therapeutic treatment involving the diffusion of nano-drugs in the circulatory system, the 
study of concentration of nanoparticles in the capillary-tissue exchange system is highly significant 
so that its therapeutic and toxic effects can be controlled accordingly. Also, the above model can be 
further developed for regulating nanoparticle clustering as they interact with the components of 
blood. 
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