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This paper examined the significance of Cattaneo-Christov's theories on the flow of 
chemically reacting fluid past a stretching surface with thermophysical parameters. 
The mathematical modelling of the physical problem was represented by partial 
differential equations. The set of partial differential equations was simplified by 
employing suitable similarity variables to obtain the system of coupled nonlinear 
ordinary differential equations. The transformed equations were later solved using the 
spectral relaxation method. The spectral relaxation method employs the basic concept 
of the Gauss-Seidel relaxation techniques. The outcome of this method was presented 
in graphs and tables. The thermal radiation parameter was found to enhance the 
velocity and temperature distributions. Also, the effect of the magnetic field parameter 
was found to decline the velocity profile. It was found that the Brownian motion 
parameter greatly influences the velocity as well as temperature profiles. 
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1. Introduction 
 

Cattaneo-Christov thermal flux system is utilized to designate the thermal transfer in viscoelastic 
flow encouraged by an exponentially extending mass. Idowu et al., [1] have demonstrated that flow 
dissipation can be communicated by altering viscosity and heat conductivity. The MHD Falkner-Skan-
Sutterby nanofluid was studied using the nanofluid model and the Cattaneo-Christov heat flux theory 
by Khan et al., [2]. Williamson hybrid engine oil nanofluids and Cattaneo-Christov heat flux. The MHD 
Casson-Ferro fluid's heat radiative transport was modelled numerically by Ali and Sandeep [3]. Zhang 
and colleagues [4] investigated the melting heat reaction in a von Karman circulating motion of hybrid 
nanofluids by employing a Cattaneo-Christov heat flux. The Cattaneo-Christov model and a chemical 
process on an exponentially stretchable surface were used by Hayat and Nadeem [5] to address the 
motion of 3D Eyring-Powell. The Cattaneo-Christov model was used to investigate the flow of Carreau 
fluid across a thin sheet of material. The Cattaneo-model Christov's was used in the work of Shihao 
et al., [6] to connect viscoelastic fluid flow with heat transport processes. The importance of the 
Cattaneo-Christov heat flux model was examined by Tanveer et al., [7]. Upadhya et al., [8] 
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investigated the effect of MHD motion past a stretchy cylinder on heat flux changed into a Fourier 
form. An unstable fluid flow was studied by Falodun et al., [9]. 

The magnetic and electric field-induced flow of highly conducting fluids is explained by MHD. 
Astrophysicists and geophysicists use a variety of techniques to study astrophysics, geophysics, MHD 
power generation and heat exchanger design. A large number of researchers have investigated MHD 
flows on non-Newtonian fluids over stretched surfaces. Plasma research, flow meters, aerodynamics, 
and solar energy devices are examples of MHD processes. As a result of the wide range of MHD 
applications, the studies listed below have documented the flow phenomena associated with MHD. 
In their paper, Alao et al., [10] studied the flow of a chemically reactive fluid past a half-infinite 
upright plate with heat radiation and Soret-Dufour significance. Multiple slides on the relevance of 
MHD and the non-Newtonian flow of nanofluids across a stretchable cylinder were explored by Tlili 
et al., [11]. According to Salawu and Dada [12], different thermo-physical variables affected magnetic 
inclination and dissipation in an area outside the Darcy zone. The Peristalsis of a fluid with chemical 
reaction, wall characteristics, and heat plus mass transportation was studied by Tanveer et al., [7]. 
Geometries for MHD Cattano-Christov flow with Brownian motion and thermophoresis were shown. 
According to Karimi et al., [13], the MHD nano layer travels via elastic surfaces in a permeable 
medium. Using a stretchy sheet, Ramana Reddy et al., [14] investigated the effects of MHD on the 
simultaneous flow of Casson and Maxwell fluids. MHD mass transport via a slanting plate with 
thermophoresis, a non-constant heat source/sink, chemical reaction, and Soret-Dufour significance 
was studied by Mondal et al., [15]. Ramzan et al., [16] used heat transport analysis across a stretchy 
sheet with thermal and velocity slip limitations to investigate MHD hybrid nanofluids with heat 
transport. According to Waqas et al., [17], MHD flow over a circulating disk of hybrid nanofluids is 
important. In 2018, Fagbade et al., [18] elucidated the MHD flow of viscosity-elastic fluid past an 
accelerating penetrable surface. The unsteadiness of MHD heat transfer layer motion in an 
electrically conducting and noncompressible fluid was studied by Falodun and Fadugba [19]. A 
thermally stratified porous medium was studied by Falodun and Omowaye [20] for MHD convective 
double-diffusive flow. Alias et al., [21] considered the flow past a fixed vibrating drilling riser and 
proposed the auxiliaries required in a laminar flow. Khan et al., [22], Ouru et al., [23], Koriko et al., 
[24], Oke [25], Juma et al., [26,27], Ali et al., [28] and Aljaloud et al., [29] considered MHD flows in a 
double stratified micropolar fluid, a stagnation point flow, over an inclined surface, over a 
nonuniform surface and in a porous cylindrical tank. 

Reddy and Chamkha [30] studied the Soret-Dufour effects on an MHD convective flow of Al2O3-
water and TiO2-water nanofluids past a stretching sheet. Rashidi et al., [31] did a comprehensive 
review on energy analysis of shell and tube heat exchangers. Farooq et al., [32] recently examined 
the computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy 
generation. Bhatti et al., [33] studied natural convection non-Newtonian EMHD dissipative flow 
through a microchannel containing a non-Darcy porous medium using homotopy perturbation 
method. Waqas et al., [34] explored Cattaneo-Christov heat flux and entropy generation on hybrid 
nanofluid flow in a nozzle of a rocket engine with melting heat transfer. The impact of MHD radiative 
flow of hybrid nanofluid over a rotating disk was investigated by Waqas et al., [17]. Farooq et al., [35] 
studied the thermally radiative bioconvection flow of Carreau nanofluid with modified Cattaneo-
Christov expressions and an exponential space-based heat source. Li et al., [36] explored the 
numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal 
radiation and Wu’s slip. Dawar et al., [37] studied a convective flow of Williamson nanofluid through 
cone and wedge with non-isothermal and non-isosolutal conditions. Alqahtani et al., [38] used 
molecular dynamics to estimate the atomic arrangements in a fluid by considering the effects of 
atomic obstacle size on the hydrogen flow inside a nanochannel. Hejazi et al., [39], Li et al., [40] and 
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Oke [41, 42] investigated the flows of nanofluids by considering several factors; including inclined 
surface slip with fractional derivatives, vacancy defect, nonuniform surface and rotating surface. Oke 
[43] proposed a modified Eyring Powell fluid and identified that the fluid can exhibit both shear 
thickening and shear thinning properties. Vaidya et al., [44] investigated the flow of reactive 
peristaltic nanofluid through an inclined channel under the influence of non-constant thermal 
conductivity and Vyakaranam [45] examined the Casson-based nanofluid in a permeable surface. A 
further study was carried out by Tan Jian et al., [46] to unravel the self-diffusion of nanoparticles by 
using dissipative particle dynamics. Recently, Oke et al., [47] explored the influence of thermal 
radiation on water-based nanofluids over an exponentially stretching and rotating plate. 

In literature, studies have been conducted on Cattaneo-Christov heat flux in the presence of heat 
generation, viscous dissipation and Brownian motion. Most of the aforementioned studies ignored 
the electromagnetic force as well as the permeability surface. This serves as the gap in this 
investigation. In the physical configuration, the porous medium is considered within the stretching 
surface where the electromagnetic force is imposed. The formulated partial differential equations 
were solved numerically. The numerical outcomes were presented in the form of graphs and tabular 
forms. The objectives of this study are: 

 
i. To formulate a mathematical model for a chemically reacting nanofluid flow past a 

stretching sheet with Joule heating. 
ii. To obtain the solution of the model by utilizing the spectral relaxation method. 

iii. To present outcomes of the simulations as graphs and extensively discuss the outcomes 
from the physical point of view. 

 
2. Methodology  
2.1 Mathematical Analysis 
 

Consider a steady, laminar, viscous and incompressible nanofluid flow past a vertical porous plate 
in this paper (see Figure 1). The heat transfer process was examined in the presence of heat 
generation and thermal radiation. The temperature 𝑇𝑤 was found to be very effective at the wall 
while far away temperature 𝑇∞ from the boundary layer is not effective within the boundary layer. 
Due to the theory Cattaneo-Christov, the Fourier heat flux is put into consideration. However, the 
nanofluid is examined to be viscous such that the viscous dissipative energy is considered in this 
study. In the energy transport, the Joule heating was examined on the fluid temperature gradient. 
The boundary layer approximation is valid and the governing equations are: 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                         (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈ℎ𝑓

𝜕2𝑢

𝜕𝑦2
+

𝜎ℎ𝑛𝑓

𝜌ℎ𝑛𝑓

(𝐸0𝐵0 − 𝐵0
2𝑢) −

𝜂0

𝜌ℎ𝑛𝑓

𝜕3𝑢

𝜕𝑦3
−

𝜈

𝐾
𝑢                                                          (2) 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2
+

𝜇𝑛𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓
(

𝜕𝑢

𝜕𝑦
)

2

+
𝜎ℎ𝑛𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓
𝑢2 +

𝑄0

(𝜌𝑐𝑝)ℎ𝑛𝑓

(𝑇 − 𝑇∞)

− 𝛽1 [𝑢
𝜕𝑢

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝑢

𝜕𝑣

𝜕𝑥

𝜕𝑇

𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕𝑇

𝜕𝑥
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑢2

𝜕𝑇

𝜕𝑥2

+ 𝑣2
𝜕2𝑇

𝜕𝑦2
]                                                                                                                                  (3) 

 
The associated boundary conditions are: 

  
𝑢 = 𝑏𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤,    𝑎𝑡    𝑦 = 0                                                                                               (4) 
 
𝑢 = 𝑣 = 0, 𝑇 ⟶ 𝑇∞,    𝑎𝑠    𝑦 ⟶ ∞                                                                                                        (5) 
 
The following suitable similarity transformations are defined to simplify the current model: 

  

𝜂 = 𝑦√
𝑏

𝜈
, 𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝑢 = 𝑏𝑥𝑓′(𝜂), 𝑣 = −√𝑏𝜈𝑓(𝜂)                                              (6) 

  
Using Eq. (6) on Eq. (1)-Eq. (4) subject to (5) to obtain:  
 

𝑓′′′ +
𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
[𝑓𝑓′′ − 𝑓′2

− 𝐾𝑓𝑖𝑣 + 𝑀𝑞(𝐸 − 𝑓′) +
1

𝑃𝑜
𝑓] = 0                                                                (7) 

  
𝐾ℎ𝑛𝑓

𝑘𝑓
𝜃′′ + 𝑃𝑟

(𝜌𝑐𝑝)ℎ𝑛𝑓

(𝜌𝑐𝑝)𝑓
𝑓𝜃′ + 𝐸𝑐𝑃𝑟 [𝑀𝑞(𝐸 − 𝑓′)2 +

𝜇ℎ𝑛𝑓

𝜇𝑓
(𝑓′′)2] + 𝑄𝑃𝑟𝜃 − 𝛼1(𝑓𝑓′𝜃′ + 𝑓2𝜃′′)

= 0                                                                                                                                               (8) 
  
With the constraints:  

 
𝑓(0) = 𝑓𝑤, 𝑓′(0) = 1, 𝜃(0) = 1,                                                                                                     (9) 
 
𝑓(∞) = 0, 𝜃(∞) = 0                                                                                                                                (10) 
 
The thermophysical properties of the hybrid nanofluids are defined as follows:  

 

𝑘ℎ𝑓

𝑘𝑓
=

2𝜙1
𝑘𝑀𝑊𝐶𝑁𝑇

(𝑘𝑀𝑊𝐶𝑁𝑇 − 𝑘ℎ𝑓)
− 𝜙1 + 1 − ln

𝑘𝑀𝑊𝐶𝑁𝑇 + 𝑘ℎ𝑓

2𝑘ℎ𝑓

2𝜙1

𝑘ℎ𝑓

(𝑘𝑀𝑊𝐶𝑁𝑇 − 𝑘ℎ𝑓)
− 𝜙1 + 1 − ln

𝑘𝑀𝑊𝐶𝑁𝑇 + 𝑘ℎ𝑓

2𝑘ℎ𝑓

,                     

 

𝑘ℎ𝑛𝑓

𝑘ℎ𝑓
=

2𝜙2
𝑘𝑆𝑊𝐶𝑁𝑇

(𝑘𝑀𝑊𝐶𝑁𝑇 − 𝑘ℎ𝑓)
− 𝜙2 + 1 − ln

𝑘𝑆𝑊𝐶𝑁𝑇 + 𝑘ℎ𝑓

2𝑘ℎ𝑓

2𝜙2

𝑘ℎ𝑓

(𝑘𝑆𝑊𝐶𝑁𝑇 − 𝑘ℎ𝑓)
− 𝜙2 + 1 − ln

𝑘𝑆𝑊𝐶𝑁𝑇 + 𝑘ℎ𝑓
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(𝜌𝑐𝑝)ℎ𝑛𝑓

(𝜌𝑐𝑝)𝑓
= [(1 − 𝜙2) (1 − (1 −

(𝜌𝑐𝑝)𝑆𝑊𝐶𝑁𝑇

(𝜌𝑐𝑝)𝑓
) 𝜙1 + 𝜙2

(𝜌𝑐𝑝)𝑀𝑊𝐶𝑁𝑇

(𝜌𝑐𝑝)𝑓
)] 

 

(𝜌ℎ𝑛𝑓)

(𝜌𝑓)
= [(1 − 𝜙2) (1 − (1 −

(𝜌𝑐𝑝)𝑆𝑊𝐶𝑁𝑇

(𝜌𝑓)
) 𝜙1 + 𝜙2

(𝜌)𝑀𝑊𝐶𝑁𝑇

(𝜌𝑓)
)]          

 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1 − 𝜙1)2.5(1 − 𝜙2)2.5
,   𝑀𝑞 =

𝜎𝑓𝐵0
2

𝑏𝜌𝑓
,   𝐸𝑐 =

𝑢𝑤
2

𝑐𝑝(𝑇𝑤 − 𝑇∞)
,       

 

  𝛼1 = 𝛽𝑖𝑏,    𝐸 =
𝐸0

𝐵0𝑢𝑤
,    𝑃0 =

𝜇𝑓

𝐾𝜌𝑓
,   𝑃𝑟 =

𝜈𝑓

𝛼𝑓
,    𝑄 =

𝑄0

𝑏(𝜌𝑐𝑝)
𝑓

                 

 
where 𝑀𝑞 is magnetic, Ec is Eckert, 𝛼1 is thermal relaxation, E is the electric field factor, 𝑃0 is the 

porosity parameter, Pr is Prandtl, K is the couples stress term, and Q is the heat source or sink 
parameter.  
 

 
Fig. 1. Physical configuration 

 
2.2 Spectral Relaxation Method 
 

By using the SRM, the technique of Gauss-seidel relaxation is utilized in decoupling and linearizing 
the system of equations. The present iteration represented by 𝑟 + 1 is utilized on the linear terms 
while the previous iteration represented by 𝑟 is implemented on the nonlinear terms. The Chebyshev 
collocation approach is further employed on the iterated sequence of equations. See Oke [48] and 
Oke et al., [49] for a list of other possible methods. 

Going by the procedure of SRM on the transformed Eqs. (7) and (8) subject to Eq. (9) to obtain: 
 

𝑓′′′𝑟+1 + 𝑎0,𝑟𝑓′′𝑟+1 + 𝑎1,𝑟 + 𝑎2,𝑟𝑓𝑟+1
𝑣 + 𝑎3,𝑟 + 𝑎4,𝑟𝑓′𝑟+1 + 𝑎5,𝑟𝑓𝑟+1 = 0 

 
𝑏0,𝑟𝜃′′𝑟+1 + 𝑏1,𝑟𝜃′𝑟+1 + 𝑏2,𝑟 + 𝑏3,𝑟 + 𝑏4,𝑟 + 𝑏5,𝑟𝜃′𝑟+1 + 𝑏6,𝑟𝜃′′𝑟+1 = 0 

 
where coefficient parameters are defined as follows: 
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𝑎0,𝑟 =
𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
𝑓𝑟 ,   𝑎1,𝑟 = −

𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
𝑓′

𝑟
2

,   𝑎2,𝑟 = −𝐾
𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
,   𝑎3,𝑟 =

𝑀𝑞𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
𝐸 

 

𝑎4,𝑟 = −𝑀𝑞

𝜇𝑓𝜌ℎ𝑛𝑓

𝜇ℎ𝑛𝑓𝜌𝑓
,   𝑎5,𝑟 =

𝜇𝑓𝜌ℎ𝑛𝑓

𝑃𝑜𝜇ℎ𝑛𝑓𝜌𝑓
,   𝑏0,𝑟 =

𝐾ℎ𝑛𝑓

𝐾𝑓
,   𝑏1,𝑟 = 𝑃𝑟

(𝜌𝑐𝑝)ℎ𝑛𝑓

(𝜌𝑐𝑝)𝑓
𝑓𝑟 , 

 

𝑏2,𝑟 = 𝐸𝑐𝑃𝑟𝑀𝑞𝐸2,   𝑏3,𝑟 = −2𝐸𝐸𝑐𝑃𝑟𝑓′
𝑟+1

,   𝑏4,𝑟 = 𝐸𝑐𝑃𝑟𝑓′
𝑟+1
2

+ 𝐸𝑐𝑃𝑟
𝜇ℎ𝑛𝑓

𝜇𝑓
(𝑓′′)2, 

 
𝑏5,𝑟 = −𝛼1𝑓𝑟𝑓′𝑟+1, 𝑏6,𝑟 = −𝛼1𝑓𝑟+1

2  
 
3. Results 
  

This paper explored the numerical simulation of chemically reacting nanofluid flow past a 
stretching sheet with Joule heating effect. The model equations are a set of partial differential 
equations which were transformed into ordinary differential equations. The set of transformed 
equations was solved numerically by utilizing the spectral relaxation method. In Figure 2, the impact 
of the magnetic parameter (𝑀) on the velocity profile are illustrated. An increase in the velocity 
profile was observed because of an increase in the magnetic parameter. Due to the impact of 
electromagnetic force in the momentum equation, it weakens the Lorentz force produced by the 
imposed magnetic parameter. The Lorentz force is a drag-like force which always reduces the motion 
of an electrically conducting fluid. In Figure 2, an unstable effect is noticed as the magnetic parameter 
increases. 

Figure 3 shows the significance of the permeability parameter (Po) on the velocity profile. The 
permeability parameter gives an avenue for the flow of fluid particles easily in the boundary layer. 
Increasing the permeability parameter expands the holes and speeds up the fluid velocity. As a result 
of this, a higher permeability parameter leads to higher velocity and the hydrodynamic boundary 
layer thickness. From Figure 3, a drastic increase is observed very close to the wall while at the free 
stream, the effect was negligible. Figure 4 shows the impact of Prandtl number (Pr) on the velocity 
and temperature profiles respectively. On the velocity profile, a drastic increase in the profile is 
observed. As the dimensionless distance (𝜂) increases, a negligible effect of the Prandtl number was 
observed. The greater the Prandtl number in a flow phenomenon, the higher the thermal 
conductivity. Practically, a higher Pr leads to higher momentum diffusivity and thermal diffusivity. In 
Figure 4, a decrease in both velocity and temperature is observed. This implies that a higher Pr leads 
to greater thickness of both hydrodynamic and thermal boundary layer thickness. Figure 5 shows the 
significance of Eckert number (Ec) on velocity and temperature profiles. A higher value of Eckert 
number (Ec) is observed to increase the velocity and temperature profiles. Physically, an increase in 
Ec means an increase in heat energy within the boundary layer. The production of heat energy is 
maintained because of frictional heating. 
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Fig. 2. Effect of magnetic parameter on the velocity 
profile 

Fig. 3. Effect of permeability parameter on the 
velocity profile 

 

 
Fig. 4. Effect of Prandtl parameter on the velocity and temperature profiles 

 

 
Fig. 5. Effect of Eckert number on the velocity and temperature profiles 

 
Figure 6 shows the impact of heat generation parameter on the temperature profile. An increase 

in the heat generation parameter is observed to increase the temperature profile. Heat generation 
term finds significance whenever there is a higher temperature. Heat generation finds applications 
in the production of polymers. Physically, a higher value of the heat generation parameter gives an 
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increase to the thickness of the thermal boundary layer. Figure 7 shows the impact of heat flux 
parameter on the temperature profile. The heat flux parameter is the coefficient of the Cattaneo-
Christov heat flux theory from the Fourier law. An increase in the heat flux parameter is noticed to 
enhance the temperature and the entire boundary layer thickness. 

 

 
Fig. 6. Effect of heat generation parameter on the 
temperature profile 

 

 
Fig. 7. Effect of heat flux parameter on the velocity and temperature profiles 

 
4. Conclusion 
 

In this paper, the numerical simulation of a chemically reacting nanofluid flow past a stretching 
sheet with Joule heating has been considered. The chemically reacting nanofluid flow phenomenon 
was considered mathematically by using partial differential equations. The physics of the problem 
was examined by utilizing the spectral relaxation method. The graphical representation of each 
parameter is extensively discussed from the physical point of view. The key findings in the paper are: 

 
i. An increase in the magnetic parameter elevates the velocity profile. This is because the 

electromagnetic force greatly affects the Lorentz force by reducing the strength to cause 
an increase; 
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ii. The velocity of the fluids within the boundary layer increases because of expansion in 
the holes due to an increase in the permeability parameter; 

iii. An increase in the Prandtl number was observed to enhance the hydrodynamic and 
thermal boundary layer thickness; 

iv. An increase in the Eckert number (Ec) was noticed to increase the heat energy which 
enhances both hydrodynamic and thermal boundary thickness; and 

v. The heat flux of time relaxation was observed to increase the temperature and thermal 
boundary layer thickness. 
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