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This research paper aims at finding the analytic solution for an oscillatory flow of 
couple stress fluid flow over a contaminated fluid sphere, filled with a couple stress 
fluid which is considered with interfacial slip on the boundary. The stream functions 
and drags related to the findings were analytically obtained. The special cases as a 
result of this are deduced for drag force which satisfies with the available data 
mentioned in the literature. The numerical values that were obtained are represented 
in both tabular and graphical forms for ease of representation. It has also been 
observed that in the case of viscous fluid, there is an inverse relation between real 
drag, slip parameter and viscosity ratio. It was also found that, there is a direct relation 
between imaginary drag, slip parameter and viscosity ratio respectively. For instance, 
in the case of the couple stress fluid, at lower values of the couple stress parameter 
there is a reduction in real drag, and an increase in imaginary drag respectively. These 
findings can result in future research considering body forces and other non-
Newtonian fluids. 
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1. Introduction 
 

Generally mass flow rate of a fluid affected by the solid particles (contaminants), presented in the 
form of bubbles and drops. The mass transfer of fluid flows between different places depends on 
many factors. The bubbles column observed in many industrial applications such as chemical, 
biochemical, wastewater treatment, food and pharmaceutical industries were reported by 
Asgharpour et al., [1], and Nalajala & Kishore [2].  

Ashmawy [3] developed mathematical equation which is used to study the behaviour of viscous 
fluids, subjected to torque was analysed by general Laplace transform technique applied on sphere. 
Happel and Brenner [4] described about the slip condition in their monograph. 

Sherief & El-Sapa [5] considered the slow oscillatory motion of a spherical particle immersed in a 
fluid with a semi-infinite viscosity that is enclosed by an impermeable plane wall using no-slip 
kinematic condition and analytically evaluated its drag force. Faltas & El-Sapa [6] studied the 
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rectilinear oscillations of two spherical particles at low Reynolds number by using the collocation 
method. Rao & Rao [7] described the rectilinear and rotary oscillatory flows behaviour on a sphere 
along the diameter at no-slip condition. The couple of rotatory flow and drag by rectilinear 
oscillations are computed analytically. Charya & Iyengar [8] in their work, analyzed the effect of 
micro-polarity, frequency and geometric parameters on drag experienced by oscillatory flows on 
sphere and spheroidal shaped bodies.  

Sadhal & Johnson [9] studied the creeping flow through a drop or a bubble of liquid, which has 
partly contaminated interfaces in an insoluble fluid which experiences the drag force. Vasconcelos et 
al., [10] considered the effect of different bubble contractors on mass transfer coefficients. The work 
revealed the results of bubble contamination and sudden surface transition influence on the mass 
transfer when it reaches a stationary condition. Alves et al., [11] developed the simplified static cap 
model used to express both gas-liquid mass transfers and drag coefficient in terms of bubble 
contamination kinetics. Kishore et al., [12] have considered power law fluid flow over a moving liquid 
drop at intermediate Reynold numbers. They resolved the continuity and momentum equations 
using a simplified marker and cell (SMAC) algorithm developed based on the finite difference 
method. Saboni et al., [13] in their study observed the flow significantly effected both the Reynold 
number and the static cap segment. They also investigated the coefficient of drag, which, under the 
conditions of a stable static cap and a specific viscosity ratio, is inversely proportional to Reynolds 
number. Saboni et al., [14] conducted a numerical study to find the contamination effects on mass 
transfer of a fluid sphere, whose viscosity ratio was considered between dispersed and continuous 
phases. Additionally, their work discussed how the static cap angle affected mass transfer from the 
fluid sphere to the surrounding fluid for all Peclet numbers. Sharanya et al., [15] in their work 
concluded about the effect of droplet movement in stretching and shrinkage condition. The analytical 
results clearly show that, a droplet migration velocity is mainly depended on thermal gradients. The 
behaviour of thermo-capillary stresses and the surfactant contaminates on the surface of a viscous 
spherical droplet was critically analysed. Ramana & Kumar [16], and Murthy & Kumar [17], respective 
works reported the estimating stream and vorticity functions for Stokes viscous uniform flow past a 
partially surfactant contaminated fluid sphere with slip and no-slip boundary conditions respectively. 
Kunche et al., [18,19] obtained exact solution for uniform flow of micropolar fluid past a 
contaminated fluid drop and liquid drop with slip condition over the surface respectively. 

Maiti & Misra [20] investigated how the particle size effects the physiological flow of blood in the 
microcirculatory system. The analytical and numerical analysis were done to study the effect of 
various parameters on physiological flow having high wavelength and small Reynold number. Akbar 
et al., [21] investigated the effects of radiation and thermal diffusion on the mixed convection flow 
of couple stress fluid through a channel. The similarity transformation function was used to govern 
and transform the non-linear partial differential equations into ordinary differential equations. 
Shehadeh & Ashmawy [22] discussed about the influence of a non-dimensional torque on a couple 
stress fluid flow past a spherical surface with rotary oscillations over it. Prasad et al., [23] developed 
a mathematical model to study the behaviour of blood flow between two layers comprising of core 
and peripheral regions. Assumptions also made that, core region fluid has couple stress fluid (CSF) 
with nanoparticles and peripheral region fluids are considered as Newtonian fluids. Rahul [24] 
discussed about the effect of various parameters on thermal instability of a couple stress fluid. The 
analytical method was used to obtain the solution. Devi et al., [25,26], have obtained an exact 
solution for CSF flow beyond a fluid drop filled with a CSF and a partially contaminated non-
Newtonian fluid sphere using with a slip condition and illustrated the drag force analytically.  

Palaiah et al., [27] investigated about the effect of dissipative free convection couple stress fluid 
flow over a cylinder under the action of magnetic field, thermal radiation and porous medium. Kumar 
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et al., [28] developed the couple stress model useful in converting the governing partial differential 
equations into non-linear ordinary differential equations with suitable boundary conditions. 
Muhammed et al., [29] discussed on impact of squeezing flows which finds numerous applications in 
biological, mechanical and medical engineering. Reddy et al., [30,31], work reported on unsteady 
hydro-magnetic CSF flow passed in a vertical cylinder was analyzed using the thermodynamic 
concept. Basha et al., [32] developed couple stress liquid circulation equations over a vertical cylinder 
which were computationally solved by using the finite difference technique.  

Narla et al., [33,34], developed a mathematical model to analyze the micro polar fluid flows in 
heat transfer applications. Akram et al., [35-37], reported works about the electro-osmatic based 
flows were analyzed with their developed mathematical models. Bhandari et al., [38-40], discussed 
about the kinematics of the membrane-based flow model and their pumping characteristics were 
discussed. Ram et al., [41] to demonstrate the viscoelastic nature of saliva, the Jeffrey fluid model is 
taken into consideration. Analytical solutions are chosen under the assumption that the flow is 
creeping and has a long wavelength and low Reynolds number. 

Lu et al., [42] developed a mathematical model which was used to study the electro-osmatic flows 
found in curved micro-vessels. Tripathi et al., [43] present study, therefore, aims to investigate how 
temperature may affect virus transmission in peristaltic blood vessels and, furthermore, how virus 
density and particle diameter will affect the transmission of the virus from an infected person to a 
non-infected person. Shaw et al., [44] analytically, the Bessel function is used to solve the governing 
equations for blood flow and the motion of magnetic nanoparticles. 

The available literature focused mainly on oscillating flows, contaminated fluid sphere and couple 
stress fluid on different geometries with slip and no-slip conditions. The mentioned works have not 
addressed much on rectilinear oscillation of a couple stress fluid flows on a surfactant (contaminated) 
fluid sphere with slip condition. The present work mainly focuses on how to obtain an analytical 
solution for industrial applications, found in different categories of flows likely oscillatory flow of 
viscous fluid flow over a contaminated fluid sphere and oscillatory flow of couple stress fluid flow 
over a contaminated fluid sphere. Hence, the combination of couple stress fluid flow with 
contaminants is the new study. This study fills the research gap and it shows the new directions to 
the researchers to work more in this area.  

The paper is organised as follows: 
I. Oscillatory flow of viscous fluid flow over a contaminated viscous fluid sphere. 

II. Oscillatory flow of couple stress fluid flow past a contaminated couple stress fluid sphere. 
 
2. Methodology 
2.1 Oscillatory Flow of Viscous Fluid Flow Over a Contaminated Viscous Fluid Sphere 
2.1.1 Formulation of the problem 
 

Consider an oscillatory flow of viscous fluid flow over a contaminated fluid sphere that is fixed in 
a stream of viscous fluid. The flow is assumed to be axisymmetric and incompressible. The surfactants 
(contamination) in the flow are accumulated at the rare end forming a cap region. 𝑥0 is a varying 
point in between -1 to 1. The region which is contaminated is known as cap region (𝑥0 < 𝑥 ≤ 1) and 
the remaining portion (−1 < 𝑥 ≤ 𝑥0) is no cap region. Geometry is given in Figure 1: 
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Fig. 1. Geometry of oscillatory viscous fluid flow over a 
contaminated viscous fluid sphere 

 

The governing equations for the flow of an incompressible viscous fluid with no body forces are, 
continuity equation: 
 
𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑞̅) = 0             (1) 

 
and the momentum equation:  
 

𝜌
𝑑𝑞̅

𝑑𝑡
= −𝛻𝑃 +  𝜇(𝛻 × 𝛻 × 𝑞̅)            (2) 

 
Due to the geometrical shape of the present problem, we choose spherical coordinate system for 

reference. The scale factors for the system are, ℎ1 = 1, ℎ2 =  𝑅,   ℎ3 = 𝑅 𝑠𝑖𝑛𝜃. Spherical coordinate 
system with origin at the center of the sphere and Z-axis along the flow direction is considered.  

In axisymmetric flow the velocity components U, V are expressed as 
 

𝑈(𝑟, 𝜃) =
1

𝑅2𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝜃
;  𝑉(𝑟, 𝜃) =  

−1

𝑅 𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝑅
. 

 
Velocity field suitable for this oscillating flow are considered in the form, 
 

𝑞̅ =  𝛻 × (
Ѱ𝑒̅∅

  ℎ3
) 𝑒𝑖𝜔𝑡 = (

1

𝑅2𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝜃
𝑒𝑟 −

−1

𝑅 𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝑅
𝑒𝜃) 𝑒𝑖𝜔𝑡.                                (3) 

 

∴ 𝛻 × 𝑞̅ =  − (
E0

2Ѱ

  ℎ3
) 𝑒̅∅𝑒𝑖𝜔𝑡;              (4) 

 
Where, p is hydro-static pressure at any point, 𝜌 is  the fluid density, 𝑞̅ is the fluid velocity, 𝜇  is 

viscosity co-efficient, 𝑓 ̅is body force per unit mass, 𝜂 is couple stress viscosity coefficient, 𝛾1, 𝛾2  are 
roots of the given equation for stream functions, 𝑈∞ is velocity at infinity, 𝜔 is oscillation frequency 
parameter, e is couple stress parameter, t is time. 

Eliminating pressure P and Eq. (2) reduces to  
 

𝐸0
2 [𝐸0

2 −
𝛾1

2

𝑎2] Ѱ(𝑟, 𝜃) = 0, where 𝐸0
2  ≡

𝜕2

𝜕𝑅2 + 
1

𝑅2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑅2

𝜕

𝜕𝜃
.       (5) 
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The non-dimensional scheme is taken as 
 

𝑅 = 𝑎𝑟;  Ѱ = 𝜓𝑈∞𝑎2;  𝑃 = 𝑝
𝑈∞𝜇

𝑎
; 𝐸0

2 =  
𝐸2

𝑎2
;  𝑈 = 𝑢𝑈∞;  𝑉 =  𝑣𝑉∞ 

 
Using above in Eq. (5) reduces to 

 
𝐸2[𝐸2 − 𝛾1

2] 𝜓(𝑟, 𝜃) = 0,            (6) 
 

where 𝐸2  ≡
𝜕2

𝜕𝑟2 +  
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
,  𝛾1

2 =
𝑖𝜌𝜔

𝜂
. With 𝑥 = cos 𝜃, we get  𝐸2  ≡

𝜕2

𝜕𝑟2 + 
1−𝑥2

𝑟2

𝜕2

𝜕𝑥2. 

The solutions of 𝜓 which are regular for external no-cap flow 𝜓𝑒𝑛 (−1 < 𝑥 ≤ 𝑥0), internal no-
cap flow  𝜓𝑖𝑛(−1 < 𝑥 ≤ 𝑥0)  and external cap flow 𝜓𝑒𝑐  (𝑥0 < 𝑥 ≤ 1), internal cap flow 𝜓𝑖𝑐 (𝑥0 <
𝑥 ≤ 1)  regions (by the method of separation of variables) are [16]: 
 

𝜓𝑒(𝑟, 𝑥) = {
𝜓𝑒𝑛(𝑟, 𝑥)𝐺2(𝑥),  𝑓𝑜𝑟 − 1 < 𝑥 ≤ 𝑥0  (𝑛𝑜 − 𝑐𝑎𝑝 𝑟𝑒𝑔𝑖𝑜𝑛)

𝜓𝑒𝑐(𝑟, 𝑥)𝐺2(𝑥), 𝑓𝑜𝑟 𝑥0  < 𝑥 ≤ 1(𝑐𝑎𝑝 𝑟𝑒𝑔𝑖𝑜𝑛)
       (7) 

 

𝜓𝑖(𝑟, 𝑥) = {
𝜓𝑖𝑛(𝑟, 𝑥)𝐺2(𝑥), 𝑓𝑜𝑟 − 1 < 𝑥 ≤ 𝑥0  (𝑛𝑜 − 𝑐𝑎𝑝 𝑟𝑒𝑔𝑖𝑜𝑛)

𝜓𝑖𝑐(𝑟, 𝑥)𝐺2(𝑥), 𝑓𝑜𝑟 𝑥0  < 𝑥 ≤ 1(𝑐𝑎𝑝 𝑟𝑒𝑔𝑖𝑜𝑛)
       (8) 

 
2.1.2 Solution of the problem 
 

The solutions of Eq. (6) which are regular for external flow of cap and no cap regions are 
(𝜓𝑒𝑐

′  & 𝜓𝑒𝑛
′ ) and for internal flow of cap and no cap regions are (𝜓𝑖𝑐

′  & 𝜓𝑖𝑛
′ ) given by:  

 

𝜓𝑒𝑛
′ = [𝑟2 +

𝑏1

𝑟
+ 𝑐1√𝑟  𝐾3

2

(𝛾1𝑒𝑛𝑟)] 𝐺2(𝑥)            (9) 

 

𝜓𝑖𝑛
′ = [𝑏2 𝑟2 + 𝑐2√𝑟 𝐼3

2

(𝛾1𝑖𝑛𝑟)]  𝐺2(𝑥)                     (10) 

 

𝜓𝑒𝑐
′ = [𝑟2 +

𝑏3

𝑟
+ 𝑐3√𝑟  𝐾3

2

(𝛾1𝑒𝑐𝑟)] 𝐺2(𝑥) and                    (11) 

 

𝜓𝑖𝑐
′ = [𝑏4 𝑟2 + 𝑐4√𝑟 𝐼3

2

(𝛾1𝑖𝑐𝑟)]  𝐺2(𝑥)                     (12) 

 

where 𝐾3

2

(𝑥) and 𝐼3

2

(𝑥)  are modified Bessel’s functions of order 
3

2
 and 𝐺2(𝑥) =

1

 2
 (1 − 𝑥2) is 

Gegenbauer polynomial of order 2. 
In a cap region 𝑏4 = 𝑐4 = 0 𝑖. 𝑒., 𝜓𝑖𝑐

′ = 0. The parameters 𝑏1, 𝑐1, 𝑏2, 𝑐2, 𝑏3, 𝑐3 are obtained by 
implementing the following boundary conditions on Eq. (9) - Eq. (12).  
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I. Regularity conditions: 
 

a) 𝑙𝑖𝑚
𝑟→∞

𝜓𝑒
′ =

1

2
𝑟2 𝑠𝑖𝑛2 𝜃 (outside the region) 

 
b) 𝑙𝑖𝑚

𝑟→0
𝜓𝑖

′ = 𝐹𝑖𝑛𝑖𝑡𝑒 (inside the region) 

(13) 

 
II. Impermeability condition: on the boundary Normal velocity is zero. 

 
𝜓𝑒𝑛

′ =  𝜓𝑒𝑐
′ = 𝜓𝑖𝑛

′ =  𝜓𝑖𝑐
′ = 0, on r = 1                     (14) 

 
III. Slip condition: Tangential velocity is proportional to the tangential shear along the clear 

surface, i.e, [4,18] 
 
𝜏𝑟𝜃𝑒 =  𝜀(𝑞𝜃 − 𝑉𝜃𝑖).                       (15) 
 

IV. Shear stress continuous at the interface of the fluid sphere i.e., 
 
𝜏𝑟𝜃𝑒 =  𝜏𝑟𝜃𝑖.                        (16) 
 
Using the boundary condition of Eq. (13) to Eq. (16) equations substituted in Eq. (9) to Eq. (12), the 
following system of equations were obtained 
 
𝑏1 = −1 − 𝑐1

′ ,  
 
𝑏2 = −𝑐2

′ ,  
 
𝑏3 = −1 − 𝑐3

′ ,  
 

𝑏1(4 + 𝑠) + (𝑐1
′ )(2 + 𝛾1𝑒𝑛

2 + (2 +

𝑠)𝛥1(𝛾1𝑒𝑛)) + 2𝑠𝑏2 − 𝑠𝑐2
′ 𝛥2(𝛾1𝑖𝑛) = 2𝑠 + 2;  

 

4𝑏1 + 𝑐1
′ (2 + 𝛾1𝑒𝑛

2 + 2𝛥1(𝛾1𝑒𝑛)) − 𝜇(−2𝑏2 +

𝑐2
′ (2 + 𝛾1𝑖𝑛

2 + 2𝛥2(𝛾1𝑖𝑛))) = 2;  
 

𝑏3(2 + 𝑠 − 𝛾1𝑒𝑛
2 − (2 + 𝑠)𝛥1(𝛾1𝑒𝑛)) − 𝛾1𝑒𝑐

2 −
(2 + 𝑠)𝛥3(𝛾1𝑒𝑐) = 2𝑠 + 4;  

(17) 

 

Where, 𝑐1
′ = 𝑐1 𝐾3

2

(𝛾1𝑒𝑛); 𝑐2
′ = 𝑐2 𝐼3

2

(𝛾1𝑖𝑛);  𝑐3
′ = 𝑐3 𝐾3

2

(𝛾1𝑒𝑐), slip parameter = 𝑠 =
𝜀𝑎

𝜇
, viscosity 

ratio 𝜇 =
𝜇𝑖

𝜇𝑒
. 

Solving Eq. (17) analytically, resulted to  
 

𝑏1 =  
(2𝑠+4+𝛾1𝑒𝑛

2 +(2+𝑠)𝛥1(𝛾1𝑒𝑛))𝑞2
′ −(4+𝛾1𝑒𝑛

2 +2𝛥1(𝛾1𝑒𝑛))𝑗2
′

𝜙′ ;  
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𝑏2 =  
(4+𝛾1𝑒𝑛

2 +2𝛥1(𝛾1𝑒𝑛))𝑗1
′−(2𝑠+4+𝛾1𝑒𝑛

2 +(2+𝑠)𝛥1(𝛾1𝑒𝑛))𝑞1
′

𝜙′ ;  

 

𝑏3 =  
2𝑠+4+𝛾1𝑒𝑐

2 +(2+𝑠)𝛥3(𝛾1𝑒𝑐)

𝑗3
′ ;  

 
where,  𝜙′ =  𝑗1

′𝑞2
′ − 𝑗2

′ 𝑞1
′ , 

 
𝑗1

′ = [𝑠 + 2 − 𝛾1𝑒𝑛
2 − (2 + 𝑠)𝛥1(𝛾1𝑒𝑛)]; 

 
𝑗2

′ = 𝑠 [𝛥2(𝛾1𝑖𝑛) + 2]; 
 
𝑞1

′ = [−𝛾1𝑒𝑛
2 − 2𝛥1(𝛾1𝑒𝑛) + 2];  

 

𝑞2
′ =  𝜇[4 + 𝛾1𝑖𝑛

2 + 2𝛥2(𝛾1𝑖𝑛)]; 
 
𝑗3

′ = [𝑠 + 2 − 𝛾1𝑒𝑐
2 − (2 + 𝑠)𝛥3(𝛾1𝑒𝑐)]. 

 
Thus, external and internal flow stream functions are derived. 

 
2.1.3 Drag force on a fluid sphere 
 

The drag force in limit form on a body, which is placed in an oscillatory flow, is 
 

𝐷𝑔 = iρ𝜔𝑈𝑉 + 4πiρ𝜔 lim
r⟶∞

[
𝑟(𝜓𝑒

′ −𝜓∞
∗ )

 sin 2 θ
] 𝑒𝑖𝜔𝑡.                  (18) 

 
Where, 𝜓∞

∗  denotes the stream function correlate with the fluid motion at infinity [4]. 𝐷𝑔 is drag 

force, 𝜃 is real drag coefficient, 𝜃1 is imaginary drag coefficient. 

Substituting Eq. (9), Eq. (11), Eq. (13) and 𝑉 =
4

3
𝜋𝑟3 in Eq. (18) we get, 

 

𝐷𝑔 =
4

3
𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡((𝑏1 + 𝑐1

′ + 1) + (𝑏3 + 𝑐3
′ + 1)) + 2𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡(𝑏1 + 𝑏3), 

 

= 2𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡(𝑏1 + 𝑏3), (since using Eq. (17))                   (19) 
 

= −2𝜋𝑖𝜌𝜔(𝑖𝜃 + 𝜃1)(𝑏1 + 𝑏3)𝑒𝑖𝜔𝑡 .                                  (20) 
 
with 𝜇 → ∞, 𝑠 → ∞ oscillatory viscous flow on the solid sphere with no-slip condition results are 
obtained, which correlate to the results of Lakshmana Rao & Rao [7]. 

In addition, we have obtained drag force of oscillatory flow of couple stress fluid flow past a 
contaminated couple stress fluid sphere.  
 
2.2 Oscillatory Flow of Couple Stress Fluid Flow Past a Contaminated Couple Stress Fluid Sphere 
2.2.1 Formulation of the problem 

 
Consider a contaminated fluid sphere with couple stress fluid inside it, is placed in an oscillatory 

couple stress fluid flow with a uniform velocity far away from it. The flow is assumed incompressible, 
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and axisymmetric. Geometry is given in Figure 2. 
 

 
Fig. 2. Flow geometry of oscillatory CSF flow over a 
contaminated couple stress fluid sphere 

 

The field equations that determine couple stress fluid flow with no body forces is as follows: 
 

𝜌
𝑑𝑞̅

𝑑𝑡
= −𝛻𝑃 +  𝜇(𝛻 × 𝛻 × 𝑞̅) − 𝜂(𝛻 × 𝛻 × 𝛻 × 𝛻 × 𝑞̅).                  (21) 

 
Here 𝑞̅ is the fluid velocity, p is the pressure, 𝜌 is the density and 𝜇, 𝜂 are viscosity and couple 

stress viscosity coefficients. 
Velocity of oscillating flow are considered in the form, 

 

𝑞̅ =  𝛻 × (
Ѱ𝑒̅∅

  ℎ3
) 𝑒𝑖𝜔𝑡 = (

1

𝑅2𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝜃
𝑒𝑟 −

−1

𝑅 𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝑅
𝑒𝜃) 𝑒𝑖𝜔𝑡.                  (22) 

 

∴ 𝛻 × 𝑞̅ =  − (
E0

2Ѱ

  ℎ3
) 𝑒̅∅𝑒𝑖𝜔𝑡;   𝛻 × 𝛻 × 𝛻 × 𝑞̅ =  − (

E0
4Ѱ

  ℎ3
) 𝑒̅∅𝑒𝑖𝜔𝑡 .                 (23) 

 
Eliminating pressure P and reduces to Eq. (21) we get  

 
1

𝑅

𝜕𝑃

𝜕𝜃
=  

µ

𝑅 𝑠𝑖𝑛𝜃

𝜕(𝐸0
2Ѱ)

𝜕𝑅
−  

𝜂

𝑅 𝑠𝑖𝑛𝜃

𝜕(𝐸0
4Ѱ)

𝜕𝑅
.                                                  (24) 

 
After eliminating the pressure P, from Eq. (21) we get  

 

𝐸0
2 [𝐸0

2 −
𝛾1

2

𝑎2] [𝐸0
2 −

𝛾2
2

𝑎2] Ѱ(𝑟, 𝜃) = 0,                                 (25) 

 

where 𝛾1
2 + 𝛾2

2 =
µ𝑎2

𝜂
;  𝛾1

2𝛾2
2 =  

𝑖𝜌𝜔𝑎4

𝜂
.  

 
The following non-dimensional scheme is taken. 

 

𝑅 = 𝑎𝑟;  Ѱ = 𝜓𝑈∞𝑎2;  𝑃 = 𝑝
𝑈∞𝜇

𝑎
;  E0

2 =  
E2

𝑎2 ;  𝑈 = 𝑢𝑈∞;  V =  vV∞.  

 
The momentum equation of non-dimensional form is  
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𝐸2[𝐸2 − 𝛾1
2] [𝐸2 − 𝛾2

2]𝜓(𝑟, 𝜃) = 0                                 (26) 
 

where 𝐸2  ≡
𝜕2

𝜕𝑟2 +  
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
.  

With 𝑥 = cos 𝜃, we get  𝐸2  ≡
𝜕2

𝜕𝑟2 + 
1−𝑥2

𝑟2

𝜕2

𝜕𝑥2  

The solution of Eq. (26) by variable separable method, which are regular for external flow (𝜓e) 
and for internal flow (𝜓i) regions by super position process are given by: 
 

𝜓𝑒𝑛(𝑟, 𝑥) = [𝑟2 +
𝑏1

𝑟
+ 𝑐1√𝑟  𝐾3

2

(𝛾1𝑒𝑛𝑟) + 𝑑1√𝑟  𝐾3

2

(𝛾2𝑒𝑛𝑟)] 𝐺2(𝑥),                (27) 

 

𝜓𝑖𝑛(𝑟, 𝑥) = [𝑏2𝑟2 + 𝑐2√𝑟 𝐼3

2

(𝛾1𝑖𝑛𝑟) + 𝑑2√𝑟 𝐼3

2

(𝛾2𝑖𝑛𝑟)] 𝐺2(𝑥),                 (28) 

 

𝜓𝑒𝑐(𝑟, 𝑥) = [𝑟2 +
𝑏3

𝑟
 + 𝑐3√𝑟  𝐾3

2

(𝛾1𝑒𝑐𝑟) + 𝑑3√𝑟  𝐾3

2

(𝛾2𝑒𝑐𝑟)] 𝐺2(𝑥),                (29) 

 

𝜓𝑖𝑐(𝑟, 𝑥) = [𝑏4𝑟2 + 𝑐4√𝑟 𝐼3

2

(𝛾1𝑖𝑐𝑟) + 𝑑4√𝑟 𝐼3

2

(𝛾2𝑖𝑐𝑟)] 𝐺2(𝑥).                 (30) 

 

In a cap region, 𝑏4 = 𝑐4 = 𝑑4 = 0 , then 𝜓𝑖𝑐 = 0. The parameters b1, c1, d1, b2, c2, d2, b3, c3, d3, 
are obtained by implementing the following boundary conditions: 

I. Regularity conditions: 
 

a) 𝑙𝑖𝑚
𝑟→∞

𝜓e =
1

2
𝑟2 𝑠𝑖𝑛2 𝜃 (outside the region)  

 
b) 𝑙𝑖𝑚

𝑟→0
𝜓i = 𝐹𝑖𝑛𝑖𝑡𝑒 (inside the region).  

(31) 

 
II. Impermeability condition: on the boundary Normal velocity is zero. 

 
𝜓𝑒𝑛 =  𝜓𝑒𝑐 = 𝜓𝑖𝑛 =  𝜓𝑖𝑐 = 0,  on r = 1.                    (32) 
 

III. Slip condition: Tangential velocity is proportional to the tangential shear along the clear 
surface, i.e., [4,18] 

 
𝜏𝑟𝜃𝑒 =  𝜀(𝑞𝜃 − 𝑉𝜃𝑖)                        (33) 
 

IV. Shear stress continuous at the interface of the fluid sphere i.e., 
 
𝜏𝑟𝜃𝑒 =  𝜏𝑟𝜃𝑖.                                     (34) 
 

V. Type A (Hyper-stick) condition: Couple stresses on the sphere 𝑟 = 1 should vanish. 
Impermeability condition: on the boundary Normal velocity is zero. 
 
𝜕[𝐸2𝜓]

𝜕𝑟
 = (

1

𝑟
 + 𝑒) 𝐸2𝜓  where  𝑒 =

𝜂′

𝜂
 is couple stress parameter.                  (35) 
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Using the boundary conditions (Eq. (31) to Eq. (35)) in Eq. (27) to Eq. (30) we get the following 
nine system of equations, 

 
𝑏1 + 𝑐1

′ + 𝑑1
′ = −1;  

 
𝑏2 + 𝑐2

′ + 𝑑2
′ = 0;   

 
𝑏3 + 𝑐3

′ + 𝑑3
′ = −1; 

  

𝑏1(6 + 𝑠) + 𝑐1
′ (𝛾1𝑒𝑛

2 + 4 + (2 + 𝑠)𝛥1(𝛾1𝑒𝑛) −
𝛾1𝑒𝑛

4

𝜆2 ) + 𝑑1
′ (𝛾2𝑒𝑛

2 + 4 + (2 +

𝑠)𝛥1( 𝛾2𝑒𝑛) −
𝛾2𝑒𝑛

4

𝜆2 )  

 

+2𝑠𝑏2 − 𝑠 𝑐2
′ 𝛥2(𝛾1𝑖𝑛) − 𝑑2

′ 𝑠 𝛥2(𝛾2𝑖𝑛) = 2𝑠;  
 

𝑏3(6 + 𝑠) + 𝑐3
′ (𝛾1𝑒𝑐

2 + 4 + (2 + 𝑠)𝛥3(𝛾1𝑒𝑐) −
𝛾1𝑒𝑐

4

𝜆2 ) + 𝑑3
′ (𝛾2𝑒𝑐

2 + 4 + (2 +

𝑠)𝛥3( 𝛾2𝑒𝑐) −
𝛾2𝑒𝑐

4

𝜆2 )  

 
= 2𝑠;  
 

6𝑏1 + 𝑐1
′ (4 + 𝛾1𝑒𝑛

2 + 2𝛥1(𝛾1𝑒𝑛) −
𝛾1𝑒𝑛

4

𝜆2 ) + 𝑑1
′ (4 + 𝛾2𝑒𝑛

2 + 2𝛥1(𝛾2𝑒𝑛) −
𝛾2𝑒𝑛

4

𝜆2 ) −  

𝜇𝑐2
′ (4 + 𝛾1𝑖𝑛

2 + 2𝛥2(𝛾1𝑖𝑛) −
𝛾1𝑖𝑛

4

𝜆2 ) − 𝜇𝑑2
′ (4 + 𝛾2𝑖𝑛

2 + 2𝛥1(𝛾2𝑖𝑛) −
𝛾2𝑖𝑛

4

𝜆2 ) = 0  

  
𝛾1𝑒𝑛

2 𝑐1
′ {𝛥1(𝛾1𝑒𝑛) + (1 + 𝑒)} + 𝛾2𝑒𝑛

2 𝑑1
′ {𝛥1(𝛾2𝑒𝑛) + (1 + 𝑒)} = 0; 

 

𝛾1𝑖𝑛
2 𝑐2

′ {𝛥2(𝛾1𝑖𝑛) + (1 + 𝑒)} + 𝛾2𝑖𝑛
2 𝑑2

′ {𝛥2(𝛾2𝑖𝑛) + (1 + 𝑒)} = 0  
; 
𝛾1𝑒𝑐

2 𝑐3
′ {𝛥3(𝛾1𝑒𝑐) + (1 + 𝑒)} + 𝛾2𝑒𝑐

2 𝑑3
′ {𝛥3(𝛾2𝑒𝑐) + (1 + 𝑒)} = 0; 

 

(36) 

 
Where, 𝑐1

′ = 𝑐1 𝐾3

2

(𝛾1𝑒𝑛), 𝑐2
′ = 𝑐2 𝐼3

2

(𝛾1𝑖𝑛),  𝑐3
′ = 𝑐3 𝐾3

2

(𝛾1𝑒𝑐), 𝑑1
′ = 𝑑1 𝐾3

2

(𝛾2𝑒𝑛), 𝑑2
′ =

𝑑2 𝐼3

2

(𝛾2𝑖𝑛), and 𝑑3
′ = 𝑑3 𝐾3

2

(𝛾2𝑒𝑐); slip parameter  𝑠 =
𝜀𝑎

𝜇
, viscosity ratio 𝜇 =

𝜇𝑖

𝜇𝑒
, 𝑒 =

𝜂′

𝜂
; with (η′ ≠

η).  
Solving Eq. (36), we get  

 

𝑏1 =  −1 + (ζ1 − 1)𝑑1
′ , 𝑐1

′ = −ζ1𝑑1
′  and 𝑑1

′ =  
−(3𝑠+6)𝑞4

′ +6𝑗5
′

𝜙
; 

 

𝑏2 = (ζ2 − 1 )𝑑2
′ , 𝑐2

′ =  −ζ2𝑑2
′   and 𝑑2

′ =  
(3𝑠+6)𝑞3

′ −6𝑗4
′

𝜙
;  

 

𝑏3 =  −1 + (𝜁3 − 1)𝑑3
′ , 𝑐3

′ = −𝜁3𝑑3
′   and 𝑑3

′ =  
3𝑠+6

𝑗6
′ ; 
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𝜁1 =
𝛾2𝑒𝑛

2 [∆1(𝛾2𝑒𝑛)+(1+𝑒)]

𝛾1𝑒𝑛
2 [∆1(𝛾1𝑒𝑛)+(1+𝑒)]

, 𝜁2 =
𝛾2𝑖𝑛

2 [∆2(𝛾2𝑖𝑛)+(1+𝑒)]

𝛾1𝑖𝑛
2 [∆2(𝛾1𝑖𝑛)+(1+𝑒)]

,  𝜁3 =
𝛾2𝑒𝑐

2 [∆3(𝛾2𝑒𝑐)+(1+𝑒)]

𝛾1𝑒𝑐
2 [∆3(𝛾1𝑒𝑐)+(1+𝑒)]

;  

 
where, 𝜙 =  𝑗4

′ 𝑞4
′ − 𝑗5

′ 𝑞3
′  

 

𝑗4
′ = [𝜁1 (−2 − 𝑠 + 𝛾1𝑒𝑛

2 + (2 + 𝑠)𝛥1(𝛾1𝑒𝑛) −
𝛾1𝑒𝑛

4

𝜆2
) + 𝑠 + 2 − 𝛾2𝑒𝑛

2 − (2 + 𝑠)𝛥1(𝛾2𝑒𝑛) +
𝛾2𝑒𝑛

4

𝜆2
] ; 

 
𝑗5

′ = 𝑠 [𝜁2(−𝛥2(𝛾1𝑖𝑛) − 2) + 2 + 𝛥2(𝛾2𝑖𝑛)]; 
 

𝑞3
′ = [𝜁1 (𝛾1𝑒𝑛

2 + 2𝛥1(𝛾1𝑒𝑛) −
𝛾1𝑒𝑛

4

𝜆2 − 2) + 2 − 𝛾2𝑒𝑛
2 − 2𝛥1(𝛾2𝑒𝑛) +

𝛾2𝑒𝑛
4

𝜆2 ]; 

 

𝑞4
′ =  𝜇 [𝜁2 (−4 − 𝛾1𝑖𝑛

2 − 2𝛥2(𝛾1𝑖𝑛) +
𝛾1𝑖𝑛

4

𝜆2
) + 𝛾2𝑖𝑛

2 + 4 + 2𝛥2(𝛾2𝑖𝑛) −
𝛾2𝑖𝑛

4

𝜆2
] ; 

 

𝑗6
′ = [𝜁3 (−2 − 𝑠 + 𝛾1𝑒𝑐

2 + (2 + 𝑠)𝛥3(𝛾1𝑒𝑐) −
𝛾1𝑒𝑐

4

𝜆2
) + 𝑠 + 2 − 𝛾2𝑒𝑐

2 − (2 + 𝑠)𝛥3(𝛾2𝑒𝑐) +
𝛾2𝑒𝑐

4

𝜆2
]. 

 
Thus, external and internal flow of stream functions is obtained. 

 
2.2.2 Drag force on a sphere 
 

The limit for the drag force on a body, which is placed in an oscillatory flow, is 
 

𝐷𝑔 = iρ𝜔𝑈𝑉 + 4πiρ𝜔 lim
r⟶∞

[
𝑟(𝜓𝑒

′ −𝜓∞
∗ )

 sin 2 θ
] 𝑒𝑖𝜔𝑡,                  (37) 

 
where 𝜓∞

∗  denotes the stream function correlate to the fluid motion at infinity [4]. 

Substituting Eq. (27), Eq. (29), Eq. (31) and 𝑉 =
4

3
𝜋𝑟3 in Eq. (37) we get, 

 

𝐷𝑔 =
4

3
𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡((𝑏1 + 𝑐1

′ + 𝑑1
′ + 1) + (𝑏3 + 𝑐3

′ + 𝑑3
′ + 1)) + 2𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡(𝑏1 + 𝑏3), 

 

= 2𝜋𝑖𝜌𝜔𝑒𝑖𝜔𝑡(𝑏1 + 𝑏3), (since using Eq. (36))                         (38) 
 

= −2𝜋𝑖𝜌𝜔(𝑖θ + θ1)(𝑏1 + 𝑏3)𝑒𝑖𝜔𝑡.                      (39) 
 
with 𝛾1 → ∞, 𝛾2 → ∞, 𝜇 → ∞, 𝑠 → ∞ oscillatory viscous flow on the solid sphere with no-slip 
condition results are obtained, which correlate to the results of Lakshmana Rao & Rao [7]. 
 
3. Results and Discussion 
3.1 Case 1: Oscillatory Flow of Viscous Fluid Flow Over a Contaminated Viscous Fluid Sphere 
 

The internal and external stream functions of Eq. (9) to Eq. (12) are computed using the boundary 
conditions from (13) - (16). The drag force of viscous fluid past a contaminated viscous fluid is 
computed and is given in Eq. (20). Real drag and imaginary drag values are evaluated and its variations 
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related to varied slip parameter and viscosity ratio (𝜇) are presented in Figure 3 and Figure 4, at fixed 
values to frequency parameters 𝜇 = 10, 𝜌 = 0.6, 𝜔 = 0.6, 𝑡 = 0.6. 

Real drag (𝜃) vs slip parameter (𝑠) at different viscosity ratio (𝜇) values are plotted in Figure 3. 
It was noticed that with a rise in slip parameter (𝑠) values there is a decrease in real drag (𝜃) and 
there is a decrease in the values of real drag (𝜃) with increase in values of viscosity ratio (𝜇). The 
numerical results are given in Table 1. 
 

 
Fig. 3. Real drag (𝜃) vs slip parameter (𝑠) for different 
viscosity ratio (𝜇)  at fixed values to frequency 
parameters 𝜇 = 10, 𝜔 = 0.6, 𝜌 = 0.6, 𝑡 = 0.6 

 
Table 1 
Real drag (𝜃) vs slip parameter (𝑠) for 
different viscosity ratio (𝜇)  at fixed values 
to frequency parameters 𝜇 = 10, 𝜔 =
0.6, 𝜌 = 0.6, 𝑡 = 0.6 
𝑠\𝜇 5 10 15 20 

2 -2.4662 -2.4633 -2.4623 -2.4617 
4 -2.5823 -2.5755 -2.5732 -2.572 
6 -2.6534 -2.6436 -2.6402 -2.6385 
8 -2.7015 -2.6893 -2.6851 -2.6829 

10 -2.7361 -2.7221 -2.7172 -2.7147 
12 -2.7622 -2.7468 -2.7413 -2.7385 
14 -2.7826 -2.766 -2.7601 -2.7571 
16 -2.7991 -2.7814 -2.7752 -2.772 

 

Imaginary drag (𝜃1) vs slip parameter (𝑠) at different viscosity ratio (𝜇) values are plotted in 
Figure 4. It was noticed that with rise in slip parameter (s) values there is rise in imaginary drag (𝜃1) 
and there is an increase in the values of imaginary drag (𝜃1) with a decrease in values of viscosity 
ratio (𝜇). The numerical results are given in Table 2. 
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Fig. 4. Imaginary drag (𝜃1) vs slip parameter (𝑠) for different 
viscosity ratio (𝜇)  at fixed values to frequency parameters 
𝜇 = 10, 𝜔 = 0.6, 𝜌 = 0.6, 𝑡 = 0.6  

 
Table 2 
Imaginary drag (𝜃1) vs slip parameter 
(𝑠) for different viscosity ratio (𝜇)  at 
fixed values to frequency parameters 
𝜇 = 10, 𝜔 = 0.6, 𝜌 = 0.6, 𝑡 = 0.6 
𝑠\𝜇 5 10 15 20 

2 6.5521 6.5443 6.5416 6.5394 
4 6.8605 6.8425 6.8363 6.8313 
6 7.0494 7.0234 7.0143 7.0069 
8 7.177 7.1447 7.1335 7.1242 
10 7.269 7.2318 7.2188 7.2081 
12 7.3385 7.2974 7.2829 7.2711 
14 7.3927 7.3485 7.3329 7.32 
16 7.4363 7.3894 7.3729 7.3593 

 

3.2 Case 2: Oscillatory Flow of Couple Stress Fluid Flow Past a Contaminated Couple Stress Fluid 
Sphere 
 

The internal and external stream functions Eq. (27) to Eq. (30) are computed using the boundary 
conditions from Eq. (31) to Eq. (35). The drag force of couple stress fluid flow past a contaminated 
couple stress fluid is computed and is given in Eq. (39). Real drag (𝜃)and imaginary drag (𝜃1) values 
are evaluated and its variations related to varied couple stress parameter and slip parameter values 
are presented in Figure 5 and Figure 6, at fixed values to frequency parameters 𝜇 = 10, 𝜆 = 0.258,
𝜌 = 0.6, 𝜔 = 0.6, 𝑡 = 0.6.  

Real drag (𝜃) vs couple stress parameter (𝑒) for different slip parameter (𝑠) values are arranged 
in Figure 5. It was noticed that at lower values of couple stress parameter (𝑒) i.e., less than 4 there 
is decrease in real drag (𝜃)  values after that there is a slight increasing real drag values and there 
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after the values got stable. Also noticed that with rise in slip parameter (𝑠) there is rise in real drag 
(𝜃) values. The numerical results are presented in Table 3. 

 

 
Fig. 5. Real drag (𝜃) vs couple stress parameter (𝑒) for 
different slip parameter (𝑠)  at fixed valuesto frequency 
parameters 𝜇 = 10, 𝜔 = 0.6, 𝜌 = 0.6, 𝜆 = 0.258, 𝑡 = 0.6 

 
Table 3  
Real drag (𝜃) vs couple stress parameter 
(𝑒) for different slip parameter (𝑠)  at fixed 
values to frequency parameters 𝜇 = 10,
𝜔 = 0.6, 𝜌 = 0.6 𝜆 = 0.258, 𝑡 = 0.6 
𝑒/𝑠 4 8 12 16 

2 -1.5934 -1.5924 -1.5903 -1.5868 
4 -1.5935 -1.5929 -1.5918 -1.5998 
6 -1.5935 -1.5929 -1.5916 -1.5994 
8 -1.5935 -1.5928 -1.5916 -1.5993 
10 -1.5935 -1.5928 -1.5915 -1.5992 
12 -1.5935 -1.5928 -1.5915 -1.5992 
14 -1.5935 -1.5928 -1.5915 -1.5992 
16 -1.5935 -1.5928 -1.5915 -1.5992 

 

Imaginary drag (𝜃1) vs couple stress parameter (𝑒) for different slip parameter (𝑠) values are 
arranged in Figure 6. It was noticed that at lower values of couple stress parameter (𝑒) i.e., less than 
4 there is rise in imaginary drag (𝜃1)  values after that there is a slight decrease in imaginary drag 
values. Also noticed that with rise in slip parameter (𝑠) there is a decrease in imaginary drag (𝜃1) 
values, there after the values are stable. The numerical results are presented in Table 4. 
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Fig. 6. Imaginary drag (𝜃1) vs couple stress parameter (𝑒) for 
different slip parameter (𝑠)  at fixed values to frequency 
parameters  𝜇 = 10, 𝜔 = 0.6, 𝜌 = 0.6, 𝜆 = 0.258, 𝑡 = 0.6 

 
Table 4  
Imaginary drag (𝜃1) vs couple stress 
parameter (𝑒) for different slip 
parameter (𝑠)  at fixed values to 
frequency parameters 𝜇 = 10, 𝜔 =
0.6, 𝜌 = 0.6, 𝜆 = 0.258, 𝑡 = 0.6 
𝑒/𝑠 4 8 12 16 

2 4.2332 4.2305 4.2251 4.2156 
4 4.2335 4.232 4.229 4.2236 
6 4.2334 4.2318 4.2284 4.2225 
8 4.2334 4.2318 4.2283 4.2223 
10 4.2334 4.2317 4.2283 4.2222 
12 4.2334 4.2317 4.2283 4.2222 
14 4.2334 4.2317 4.2282 4.2221 
16 4.2334 4.2317 4.2282 4.2221 

 

4. Conclusions 
 

In this study we have obtained an exact solution for oscillatory couple stress fluid flow past a 
contaminated couple stress fluid sphere with slip condition on its surface. In addition to this, the 
exact solutions were also obtained for the oscillatory flow of viscous fluid flow over a contaminated 
viscous fluid sphere. The drag force for the above cases were solved analytically and results were 
validated for special cases. After thorough analysis the following observations were obtained: 

In Viscous Fluid Case: 
I. there is an inverse relation between real drag (𝜃), slip parameter (𝑠), viscosity ratio (𝜇) 

respectively. 
II. there is direct relation between imaginary drag (𝜃1), slip parameter (𝑠), viscosity ratio (𝜇) 

respectively. 
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In Couple Stress Fluid Case: 
I. at lower values of couple stress parameter (𝑒) there is a reduce in real drag (𝜃), increase 

in imaginary drag (𝜃1) respectively. 
From the above-mentioned findings, it is evident that this study would be of relevance to the 

industry and academia. 
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