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In this article, the impact of MHD Casson Nanofluid boundary layer flow, over an 
inclined extending surface with thermal radiation, heat source/sink, Soret and Dufour, 
is scrutinized. The model used in this study is based on the Buongiorno model of the 
thermal efficiencies of the fluid flows in the presence of Brownian motion and 
thermophoresis properties. The non-linear problem for Casson Nanofluid flow over an 
inclined channel is modeled to gain knowledge on the heat and mass exchange 
phenomenon, by considering important flow parameters of the intensified boundary 
layer. The governing non-linear partial differential equations are changed to ordinary 
differential equations and are afterward illustrated numerically by the homotopy 
analysis method (HAM). Numerical and graphical results are also presented in tables 
and graphs. It has been noticed that increasing the inclination parameter reduces the 
amount of friction experienced by the surface, but it has the opposite effect on the 
Nusselt number and the Sherwood number. In the concentration field, the inclination 
parameter reveals a decreasing trend, in contrast to the chemical reaction rate 
parameter, which reveals an increasing trend in the opposite direction. Likewise, the 
present results are noticed to be in an excellent agreement with those offered 
previously by other authors. Finally, some of the physical parameters in this study, 
which can serve as improvement factors for heat mass transfer and thermophysical 
characteristics, make nanofluids premium candidates for important future engineering 
applications.  
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1. Introduction 
 

In recent times, nanofluid has accomplished an incredible position among scientists because of 
its dynamic thermal performance and notable potential in the number of heat transfers without any 
pressure drops. Nanofluid is a formula of various nanoparticles, containing Al2 O3, Cu, CuO, in a base 
liquid, for example, oil, water, ethylene glycol, and so forth. It is investigated through examination 
that the thermal conductivity of base fluid is usually not exactly the same as the nanofluid, Choi and 
Eastman [1]. Nanofluid is used as a working fluid (base fluid) due to its high thermal conductivity. 
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Buongiorno [2] examined the causes that perform a key job in the advancement of nanofluid’s 
thermal conductivity. He perceived that the Brownian movement and thermophoresis effects in 
conventional fluid play an important role to enhance the thermal conductivity of the fluid.  

According to Eastman et al., [3], the thermal conductivity of nanofluids based on ethylene glycol 
and incorporating copper nanoparticles was improved. Qasim et al., [4] studied the combined effects 
of heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s 
model. Flow of a power-law fluid film on un unsteady stretching surface was addressed by Andersson 
et al., [5]. The steady flow of nanofluid on stretching sheet was examined by Khan and Pop [6] Over 
the past few years, numerous researchers have examined the various fluid flow and heat transfer 
behaviours of nanofluids [7-9] and noticed that they can achieve improved heat transfer coefficients.  

According to the viscosity rule, fluids are divided into two categories: Newtonian fluids and non-
Newtonian fluids. Non-Newtonian fluids are used widely in production and engineering, which has 
stimulated research in this area. The most significant non-Newtonian fluids are Eyring-Powell fluid, 
micropolar fluid, Walters-B fluid, and Casson fluid. It is challenging to capture all those properties of 
various non-Newtonian fluids in a single constitutive equation because of the nonlinearity between 
the stress and the rate of strain for non-Newtonian fluids. This has drawn academics' focus to the 
study of non-Newtonian fluids' flow dynamics. The Casson fluid is one among the Non-Newtonian 
fluids. A shear-thinning liquid known as Casson fluid is described as having a yield stress below which 
no flow occurs, an infinite viscosity at zero rate of shear, and zero viscosity at infinite rate of shear by 
Arab et al., [10]. By taking into account the Soret-Dufour effects, Ali et al., [11] investigated the 
Casson fluid flow on a slanted sheet. The Casson fluid flow on vertically inclined sheets was 
researched by Manideep et al., [12]. The influence of chemical reaction on Casson fluid flow on an 
inclined plate was examined by Shamshuddin et al., [13]. Vijayaragavan and Kavitha [14] investigated 
the Casson fluid flow over an inclined plate. By taking into account the hall current, Prasad et al., [15] 
considered the Casson fluid flow across an inclined sheet. The inclined Casson fluid flow on a 
permeable sheet was researched by Jain and Parmar [16]. By taking into account the inclined angle 
result, Sailaja et al., [17] examined the Casson fluid flow on a vertical sheet. Rawi et al., [18] extended 
the Sailaja et al., [17] by considering over an inclined surface.  The Casson fluid flow on a vertically 
inclined sheet was discussed by Raju et al., [19]. Blood flow modelling is better suited to the Casson 
fluid model [20, 21]. The work of Mahabaleshwar et al., [22-29] on Casson nanofluid, MHD flow micro 
polar fluid, and the MHD nanofluid through a permeable and also stretching/shrinking surface, a 
horizontal surface with a radiating effect with mass transpiration, is well-documented. 

Thin fluid flow along an inclined plate has become the subject of more and more studies in recent 
years. This is because it is important in many physical and engineering settings. These studies are 
needed to help the theory and applications of thin-film technology in many real-world situations 
make more sense and move forward. Some examples are the movement of synovial fluid, heat 
exchangers, lubrication, and the electroplating of surfaces. 

 Kay et al., [30] proposed the ecological model-based on thin film flow analysis over heated 
inclined plane. In order to solve the spreading thin fluid problem, Alharbi and Naire [31] developed 
the R-adaptive mesh method, which takes into account the surface tension at the free surface. A 
numerical analysis of a thin fluid flow with an outflow down an inclined surface was provided in a 
work by Shuaib et al., [32]. Experimental results of the thin fluid flow behaviour on the inclined plate 
were presented by Yu and Cheng [33]. Rafique et al., [34] studied the numerical procedure on Casson 
nanofluid flow over a non-linear inclined surface in presence of Soret and Dufour effects by Keller-
Box method. Recently, different scholars investigated the nanofluid flow on different models, as 
some of them are given in references [35-37]. 



CFD Letters 

Volume 15, Issue 7 (2023) 42-60 

44 
 

Many chemical engineering processes use double diffusive flow (heat and mass transfer). Because 
of temperature and concentration gradients, buoyancy drives the flow of heat and mass. The 
simultaneous occurrence of mass and heat transfer in a fluid under motion complicates the 
relationships between the driving potentials and the energy fluxes. The Soret or thermal-diffusion 
effect is the mass fluxes produced by temperature gradient, whereas the Dufour or diffusion-thermal 
effect is the energy flux caused by composition gradient. Due to their smaller order of magnitude as 
presented by Fick's laws, the effects of both Soret and Dufour have historically received little 
attention. The Soret effect has been used to separate isotopes. According to Alao et al., [38], Soret 
and Dufour have opposing effects on the velocity, temperature, and concentration boundary layers. 
On steady MHD convective flow, Omowaye et al., [39] presented the Dufour and Soret effects on 
convective flow of fluid through a permable medium with temperature dependent viscosity using 
HAM method. The study came to the conclusion that an increase in the Dufour number decreases 
the rate of heat transfer and skin friction coefficient.  Amanulla et al., [40] developed a model on 
MHD Prandtl fluid flow past an isothermal permeable sphere with slip conditions. Using Buongiorno's 
nanofluid model, Ahmed and Rashed [41] investigated MHD natural convection in wavy enclosures 
filled with a porous medium that generates heat. 

To the best of our awareness, very less research has been conducted on Casson nanofluid towards 
an inclined stretching surface while taking into account thermal radiation, heat source, chemical 
reaction, Brownian motion, and the effects of Soret and Dufour. This investigation was motivated by 
Liao's homotopy analysis method, which was applied in that study. The model under consideration 
is newly developed from Rafique et al., [34] and results obtained from the current study are new. In 
this work, we found that the Dufour effect reduces the Nusselt and Sherwood number due to Soret 
impact. A non-linear form of radiative heat exchange also enhances the fluid temperature. In the 
future, it can be extended on an exponentially inclined stretching surface. 
 
2. Physical and Mathematical Model  
 

Considered here is the continuous flow of a two-dimensional boundary layer of Casson Nano fluid 
over a non-linear surface that extends at an angle  . It is assumed that the extending and free 

stream velocities are, respectively,   m

w axxu   and   0 xu . Where, with "a" assumed to be 

constant, x is the coordinate that has been dignified in the direction of the surface that is expanding. 
We are going to suppose that there is an external transverse magnetic field that is normal to the flow 
route. It is important to take into account the Brownian motion and the thermophoresis effects. The 

temperature T and C the nano particle fraction at the wall adopt the constant values  wT  and wC , 

whereas the ambient forms for the nanofluid mass and temperature fractions C  and T  are 

completed as y approaches to immensity, as illustrated in Figure 1. 
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Fig. 1. Geometry of the physical model and the coordinate system 

 
Using these assumptions, the modelled governing equations are defined as follows [6, 34] 
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For the sake of this discussion, the Rosseland approximation (for radiation flux) is defined as 

follows: 
 

.
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4
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                                                                                                                         (5) 

 

where k  is the average absorption coefficient,   is the Stefan-Boltzmann constant, and 4T  is a 
linear function of temperature (the temperature gradient inside the flow). We obtain after filtering 

out the 4T 's higher-order terms in the Taylor series expansion of 
 

4 3 44 3T T T T                                                       (6) 
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Then, with the help of Eqs. (6) and (7), we obtain 
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here u  and v  are the velocity components in the x  and y  directions, respectively, g  is the 

acceleration due to gravity,  0B  is the identical magnetic field strength,   is the electrical 

conductivity,   is the viscosity,  f  is the density of the base fluid,  p  is the density of the 

nanoparticle,    is the Casson parameter,  t  is the coefficient of thermal expansion, c   is the 

coefficient of concentration expansion, BD   is the Brownian diffusion coefficient and TD   is the 

thermophoresis diffusion coefficient,  k  is the thermal conductivity,  
p

c   is the heat nanoparticles 

capacitance,   fc  is the base fluid heat capacitance, 
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  is the thermal diffusivity 

constraint, 
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C

C





   is the proportion of the nanoparticle's effective heat capacity to the total 

heat capacity of the fluid., rK is the  chemical reaction (destructive) constraint. 

 
The subjected boundary conditions are Ref. [34]: 
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A reduction is made from the non-linear partial differential equations to the non-linear ordinary 

differential equations. For that purpose, the stream function  yx,   is defined as: 
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The continuity equations are considered to be satisfied in their entirety when defined.  

 
The other features were measured according to Ref. [34]. The below formulas were applied for 

simplifying the equations Ref. [34]: 
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So, the final form of equations contains three scalars which should be calculated for each node 

Ref. [34]: 
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In this case, primes indicate the differentiation with respect to  , the buoyancy consideration 

, the solutal buoyancy consideration  , the magnetic parameter, which is referred to as the 
Hartmann number is M, the kinematic viscosity of the liquid v , the Prandtl number Pr, the Lewis 
number Le, the Brownian motion consideration Nb, the thermophoresis consideration Nt, the 
radiation consideration R, and the chemical reaction consideration  . 

 
The corresponding boundary conditions are transformed to: 
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For the sake of this particular problem, the definitions of skin friction, the Sherwood number, and 

the Nusselt number are as follows: 
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Expressions such as the dimensionless reduced Nusselt number  0 , the reduced Sherwood 

number  0 , and the skin friction coefficient fxC  can be defined as follows:                                                                
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where, Reynolds number (local) is defined as 
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2.1 HAM 
 

Following is a rundown of the initial guesses and linear operators that must be used in order to 
obtain the homotopic solutions of Eqs. (11)–(14).    
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where ( 1.0 to 7.0)jc j  are the subjective factors. 

 
In this step, the zeroth-order deformation equations are constructed. 
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When the value of   is equal to zero and one, we can get the resultant flow, thermal and volume 
fraction functions as 
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                                                                     (22) 

 
When a result,   as the acceleration changes from 0 to 1, the resulting solutions 

     ; , ; and ;f         of the original nonlinear differential equations might range from 

initial approximations to perfect solutions. 
 
with the help of series on Taylor’s model , we get     
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Where 
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                                                                       (26)

      
 

It is possible to achieve convergence of the series (22) to (25) by selecting appropriate initial 
approximations, auxiliary linear operators, and non-zero auxiliary parameters. 
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Nth-order deformation equations are as follows 
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N N N NL f f R                                                                (30) 

 

      2 1 2 ,N N N NL R                                                                        (31) 

 

      3 1 3 ,N N N NL R                                                                        (32) 

 
with the resulting frontier situations  
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where  
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2.2 The Solution Converges on the HAM Model 

 

Figure 2 depicts -curves, which can be used to determine appropriate values for certain 
parameters. The feasible range of the parameters is approximately [ 1.0,0.0] , as determined by a 

careful examination of the diagrammatic depiction. The outcomes converge when 0.45 in the 
region of  . Table 1 is the convergence of adopted approach. 

 

 
Fig. 2.  -curves of  '' 0f ,  ' 0  and '(0)  
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Table 1 
Convergence of solutions to HAM problems across a variety of orders of 
approximation when  

1.0, 0.5, 0.1, 0.9, Pr 2.0,

0.2, / 4.

fM m R Sr D Q Le

Nb Nt

  

 

          

    
 

Order )0(''f  )(' 0  '(0)  

5 0.976101 0.281246 1.81977 
10 

0.976165 0.278247 1.820326 
15 0.976174 0.277886 1.820271 
20 0.976172 0.277842 1.820276 
25 0.976172 0.277835 1.820277 
30 

0.976172 0.277834 1.820277 
35 0.976172 0.277834 1.820277 
40 0.976172 0.277834 1.820277 
45 0.976172 0.277834 1.820277 

 
Table 2 

Comparison of )0('  for different values of Nb  and Nt  when 

0, , 1,Pr 10, / 2.fM R Sr D m Le                

 

Nb  

 

Nt  

Rafique et al. [34] HAM 

)0('   ' 0  )0('   ' 0  

0.1 0.1 0.9524 2.1294 0.952428 2.129471 
0.2 0.2 0.3654 2.5152 0.365436 2.515266 
0.3 0.3 0.1355 2.6088 0.135545 2.608814 

 

The Values of )0('  and  ' 0  for different ranges of Nb  and Nt  are determined and 

compared to formerly existing work in Table 2. The current results are found to be in limiting sense 
agreement with the preceding results. 

 
3. Results and Discussion 
 

Here, we provide graphical and tabular interpretations of the features of physical variables such 
velocity, temperature, concentration, skin friction, Nusselt and Sherwood numbers. Some of the 
figures are generated by varying the value of a parameter within a predetermined range, while 
others, and are always maintained at the same value such as 

 

1.0, 0.5, 0.1, 0.9, Pr 2.0,

0.2, / 4.

fM m R Sr D Q Le

Nb Nt

  

 

          

    
 

 
An image of the effect of factor M on velocity profile is portrayed in Figure 3. According to Figure 

3, by improving the constraint M, the velocity outline reduces. Due to the magnetic field produces 
Lorentz force, by slowing down the speed of the liquid.   

On the other hand, the velocity profile slows down for large values of the non-linear stretching 
parameter m, shown in Figure 4. Physically, the momentum boundary layer thickness reduces for 
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higher values of m. The impact of the buoyancy factor   is shown in Figure 5. It is observed that the 
velocity profile rises by improving the buoyancy limit. It is due to the fact that buoyancy effect 
increases the strength of the fluid flow whereby the boundary layer thickness and velocity enhances. 

Figure 6 indicates that the velocity outline increases by enhancing the solutal buoyancy factor 
. Physically, the buoyancy parameter reduces the viscous forces whereby the velocity upturns. 

 

  
Fig. 3. Impact of M  on  'f   Fig. 4. Impact of m  on  'f   

  

Fig. 5. Impact of   on  'f   Fig. 6. Impact of   on  'f   

 
Figure 7 interprets the significance of inclination factor    on the velocity outline. It is perceived 

in Figure 7 that the velocity outline runs down by enhancing the values of  . Moreover, the 
circumstances indicate that the maximum gravitational force acts on flow in the case of  = 0, 
because in this state the sheet will be vertical. On the other hand, for  = 900, the sheet will be 
horizontal which causes the decline in velocity profile as the power of the bouncy forces drop. 

The effect of the Casson parameter   on the velocity parameter is presented in Figure 8. It is 

observed that for large values of the Casson parameter, the velocity profile decreases. The reason 
behind this behavior is that by increasing the values of the Casson parameter,   increases the fluid 

viscosity i.e., reducing the yield stress. Therefore, the momentum boundary layer thickness reduces. 
Figures 9-10 show the effect of the Brownian motion on the temperature and concentration 

profiles, respectively. The temperature sketch enlarges on enlarging Nb; on the other hand, 
concentration distribution enlightens a dissimilar style. Physically, the boundary layer heats up due 
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to the development in the Brownian motion which is inclined to transport nanoparticles from the 
extending sheet to the motionless liquid. Therefore, the absorption nanoparticle lessens. 

 

  
Fig. 7. Impact of   on  'f   Fig. 8. Impact of   on  'f   

 
 

Fig. 9. Impact of Nb  on     Fig. 10. Impact of Nb  on     

 
Figures 11-12 present temperature and concentration profiles for altered values of 

thermophoresis parameters Nt. It is perceived that both temperature and concentration contours 
upsurge by growing the thermophoresis parameter because thermophoresis causes the small 
particles to compel away from a warm surface to the cold one. 

Figure 13 shows that the temperature profile becomes large for larger values in parameter fD . 

This can be justified as an increase in the Dufour parameter, causing an increase in the concentration 
gradient, resulting in a mass diffusion taking place more rapidly. In this way, the rate of energy 
transfer related to the particles becomes higher. That is why the temperature profiles enhance. The 
impact of the Soret number Sr  on the concentration profile is observed similar to the impact of the 
Dufour number on the temperature profile. As parameter Sr increases, the concentration profile 
increases as displayed in Figure 14. 
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Fig. 11. Impact of Nt  on     Fig. 12. Impact of Nt  on    . 

 
 

Fig. 13. Impact of fD  on     Fig. 14. Impact of Sr  on     

 
Figure 15 displays the effect of the heat-generating parameter Q  on the temperature 

distribution. As can be observed, increasing the intensity of the heat source ( 0Q  ) results in a rise 

in temperature. This is because to the production of more heat in the thermal boundary layer, which 
is raising overall temperatures. As demonstrated in Figures 16 and 17, fields of temperature and 
nanoparticle concentration are plotted against Prandtl number Pr . Both the temperature and the 
concentration of nanoparticles in the boundary layer are demonstrated to decrease with increasing 
Prandtl number. Low thermal diffusivity at high Prandtl numbers causes thicker thermal and 
nanoparticle concentration boundary layers. Figure 18 provides a visual representation of the effect 
that the Lewis number Le has on the concentration field. As the Lewis number increases, the 
concentration field drops, resulting in low molecular diffusivity and a narrower boundary layer. 
Additionally, the weaker molecular diffusivity indicates that the boundary layer is getting thinner. 
Figure 19 illustrates the impact that a chemical reaction has on the concentration profile that is 
produced as a result. As the value of the chemical parameter goes up, one notices that the 
concentration profile is going in the opposite direction, dropping. This occurs as a result of the 
presence of a corrosive chemical, which causes the thickness of the solutal boundary layer to 
decrease while simultaneously increasing the mass transfer rates. 

The radiation parameter estimates the relevance of thermal radiation transmission in comparison 
to convective heat transfer. Thermal characteristics enhance of radiation parameter increases for 
nanoparticles tested scenarios studied, as shown in Figure 20. It is observed that thermal radiation 
has a greater impact on increasing the nanofluid temperature. Physically, strengthening radiative 
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features stimulate the molecule mobility within the fluid, resulting in heat energy being converted 
through frequent collisions between nanoparticles. 

 

  
Fig. 15. Impact of Q  on     Fig. 16. Impact of Pr  on     

  
Fig. 17. Impact of Pr  on     Fig. 18. Impact of Le  on     

  

Fig. 19. Impact of   on     Fig. 20. Impact of R  on     

 
From Figures 21 to 23, it is clear that an increase in the inclination angle   diminishes the skin 

friction coefficient and but has the opposite impact on the Nusselt and Sherwood numbers. Opposite 
trend is observed with M . 
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Fig. 21. Impact of   and M  on fC  Fig. 22. Impact of   and M  on 

xNu  

 
Fig. 23. Impact of   and M  on 

xSh  

 
4. Conclusions 
 

This study explored the combined effects of heat and mass transfer on Casson nanofluid flow 
over a non-linear inclined stretching sheet. Also discussed is the impact of heat 
generation/absorption and chemical reaction under the influence of the Soret and Dufour effects. 
The effects of adjusting various parameters are very much on purpose. The following are the 
significant conclusions drawn from the present investigation: 

I. When the values of magnetic field parameter is increased, the resulting effect is a reduction 
in velocity. 

II. The temperature rises as the Brownian motion parameter is allowed to rise to higher levels. 
III. It has been observed that an increase in the Dufour constraint values results in an increase in 

the temperature fields. 
IV. When the Casson fluid factor is increased, the velocity distribution becomes more uniform. 
V. The skin friction coefficient is reduced by an increase in the inclination parameter, which has 

the opposite effect on the Nusselt and Sherwood numbers. 
VI. The fluid flow distribution can be improved by increasing the values of both the buoyancy and 

the solutal buoyancy. 
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