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This study investigates the numerical solution of viscous sharp contraction flow using 
a time-step Taylor-Galerkin-pressure correction finite element method (T-G/P-C). Such 
a complex problfem displays a start-up, 4:1contraction creeping flow, shear viscosity 
and extensional viscosity responses. Here, inelastic shear-extensional viscosity model 
is proposed with a single power-index response and identical in shear and extension, 
namely Fit-I. In this context, extension rate and shear rate are defined by depending 
on the second and third invariants of the rate of deformation tensor. Employing (T-
G/P-C) method by combining with extensional and shear viscosity representation to 
treat such problem gives novel scenario. The interesting of this study lies in 
determining the efficient effect of relevant parameters of inelastic shear-extensional 
viscosity model on the solutions components, and rate of convergence issues. 
Attention also is paid to the impact of these parameters on the rate of convergence 
issues. 
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1. Introduction  
 

Non-Newtonian fluids play an important role in many chemical and industrial processes 
encountered in polymers, minerals, foods, and biological industries. In this type of fluid, the viscosity 
changes under the forces of stress. Thus, for that purpose fundamental constitutive equation is used 
to describe the viscosity of such fluid. Typical constitutive models to display the non-Newtonian 
behavior are power law, modified power law, Herschel–Bulkley model, cross model, Carreau model, 
Bird-Carreau, Carreau-Yasuda, Binding Model and Modified Casson [1-5]. Further, the non-
Newtonian fluids display either shear-thinning (viscosity decrease as shear increases) or shear 
thickening (viscosity increases as shear increases) natures. 

In the present work we explore inelastic fluid flow response. Thus, one of the most fundamental 
constitutive equations for such fluids, which depicts the shear viscosity and extensional viscosity 
responses is employed; called Fit I-model. Some details of this model are provided by Binding et al., 
[6] and Debbaut and Crochet [7]. Where the definition of shear and extensional viscosity is 
 

𝜇𝑠(𝛾̇) = 𝜇0(1 + (𝑘𝛾)̇2)(𝑛−1)/2 
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𝜇𝐸(𝜀̇) = 3𝜇0 𝑐𝑜𝑠ℎ(𝑛𝜆𝜀̇) . (1 + 3(𝑘𝜀̇)2)(𝑛−1)/2 , 
 
where n, λ and k are the parameters that determine the shear and extensional components in the 
model and 𝜇0 represents the zero-shear viscosity [6-10]. In general, this model represents functional 
form of the viscosity in combined shear and extensional flows. Several researchers, like Binding, 
Debbaut, and Al-Muslimawi, have done studies on this model that show how useful it is and how it 
can solve and answer questions about flows with shear viscosity and extension viscosity. The study 
makes use of a model that describes the shear and extensional behaviors of the fluid. Currently, there 
is no recognized constitutive theory to characterize the influence of shear and extensional viscous on 
complex inelastic flows. Consequently, a realistic strategy is needed. When the flow is steady and 
there is just one shear, we express the viscosity as 𝜇𝑠(𝛾̇) with the shear rate (𝛾̇) and depending on 
the extension rate (𝜀̇), the extensional viscosity is defined in a uniaxial flow as 𝜇𝐸(𝜀̇). When 
calculating shear viscosity, rheumatic studies are often used, although the measurement of 
extensional viscosity in practice is a greater challenge. Diagnostics of shear and extensional viscosity 
have been proposed using a variety of techniques, some more complex than others [6,7]. The 
material behavior in these straightforward flows must be described by any model that tries to 
characterize the additive extension and shear influence on fluid viscosity. It is hoped that for 
complicated flows, including both shear and extension, such a model would also be able to maintain 
intricate modelling of fluid flow. The main novelty in this research is the study of the effect of the 
parameters variation of this model during fluid flow in a 4:1 contraction channel, which none of the 
researchers previously shed light on. The numerical approach utilized here is a time-marching (T-G/P-
C) finite element method, which was previously suggested by Hawken et al., [11]. This numerical 
algorithm is derived based on a temporal Taylor series expansion and a two-step Lax-Wendroff time-
stepping procedure. This method is successfully applied in a number of various flow situations [12]. 
Following that, (T-G/P-C) approach is used for more complicated problems including inelastic flows, 
both with and without viscous heating effects, in order to get more accurate solutions. Briefly, the 
algorithm is that combines Taylor Galerkin schemes with a pressure-correction scheme. Taylor-
Galerkin techniques are recommended for efficiently resolving convection-diffusion problems, while 
the pressure correction approach incorporates the incompressibility restriction through fractional 
stages. This results in a pair of predictor-corrector equations, with the diffusion terms addressed in a 
Crank-Nicolson method and the convection terms treated explicitly or implicitly [13]. Several studies 
of axisymmetric contraction flows have been published [14-16]. This is mostly due to the fact that 
the contraction results in spatially complicated flow profiles, which are difficult to estimate 
numerically when the contraction occurs. In this work, we use (T-G/P-C) finite element method with 
an upwind strategy to approximation terms to represent non-Newtonian (inelastic) flows in abrupt 
axisymmetric 4:1 contraction. The goal of the research is to look at the different impacts of variation 
on parameters viscosity model. The novelty of this study is in the application of this new viscosity 
model to the study of inelastic fluid flow via a 4:1 abrupt contraction channel using the (T-G/P-C) 
technique. In the following section the governing equations of non-Newtonian fluid is provided in the 
cylindrical coordinate format. The numerical approach is presented in Section 3. The problem 
specification and numerical results are discussed in details in Sections 4 and 5. 
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2. Methodology 
2.1 Mathematical Modeling 
 

The differential equations that govern isothermal incompressible inelastic flow consist of the 
continuity and momentum equations, which are given with the absence of body forces in following 
forms [17]: 
 
∇ ⋅ 𝑢 = 0,              (1) 
 

 𝜌 (
∂𝑢

∂𝑡
+ 𝑢 ⋅ ∇𝑢) = −∇𝑝 + ∇ ⋅ (2𝜇𝑠(𝛾,˙ 𝜀)𝑑),          (2) 

 
where u, p and 𝜌 represent the fluid velocity, hydrodynamic pressure and density. In addition, 𝑑 =
1

2
(∇𝑢 + ∇𝑢𝜏) is the deformation rate and ∇ is the gradient operator. Moreover, the non-dimensional 

group of Reynolds number may be defined by the scaling 𝑅𝑒 = 𝜌
𝑈𝐿

𝜇
, in which, (ρ), (U), (L) and μ are 

density, characteristic velocity, length scale, and viscosity, respectively. Therefore, the momentum 
equation can be given in non-dimensional form as follows: 
 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= ∇ ⋅ (2𝜇(𝛾̇, 𝜀̇)𝑑) − 𝑅𝑒(𝑢. ∇𝑢) − ∇𝑝.          (3) 

 
Also, the shear rate 𝛾̇ and strain rate 𝜀 of simple shear flow and extensional flow are represented 

by: 
 

𝛾̇  = 2√𝐼𝐼𝑑

 𝜀  = 3
𝐼𝐼𝐼𝑑

𝐼𝐼𝑑

,              (4) 

 
In an axisymmetric coordinate system, 𝐼𝐼𝑑 and 𝐼𝐼𝐼𝑑 are the second and third invariants of the rate 

of strain tensor, which may be described as follows [18,19]: 
 

𝐼𝐼𝑑 =
1

2
tr (𝑑2) =

1

2
{(

∂𝑢𝑟

∂𝑟
)

2

+ (
∂𝑢𝑧

∂𝑧
)

2

+ (
𝑢𝑟

𝑟
)

2

+
1

2
(

∂𝑢𝑟

∂𝑧
+

∂𝑢𝑧

∂𝑟
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2

}.       (5) 

 
And, 
 

𝐼𝐼𝐼𝑑 = det (𝑑) =
𝑢𝑟

𝑟
{

∂𝑢𝑟

∂𝑟

∂𝑢𝑧

∂𝑧
−

1

4
(

∂𝑢𝑟

∂𝑧
+

∂𝑢𝑧

∂𝑟
)

2

}.         (6) 

 
In this study inelastic shear-extensional viscosity model is assumed, namely Fit-I, with the 

following material functions [6]: 
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,          (7) 

 
where, 𝜇0 is zero shear viscosity is a consistency parameter and n is the power index of the fluid, k is 
the natural time constant (unrelated to fluid elasticity), and λ is constant for the fluid. 
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2.2 Numerical Method 
 

A semi-implicit time-stepping (T-G/P-C) scheme is utilized to treat the relevant differential 
equations. This method is a fractional step approach that discretized first in the temporal domain, 
utilizing Taylor series expansions in time, then a pressure-correction procedure to extract a time 
stepping scheme of second-order accuracy. The flow domain is assumed to be discretized into a 
triangle mesh, with piecewise continuous linear (pressure) and quadratic (velocity) interpolation 
functions applied to such constituent sections. Per time step, the Taylor-Galerkin algorithm 
comprises three separate fractional stages: 
 

Stage 1: A two-step predictor-corrector approach is used to compute non-divergence-free 𝑢𝑛+1/2 
and u* fields given starting velocity and pressure fields. 
 
Stage 2: Calculate the pressure difference (𝑝𝑛+1 − 𝑝𝑛) using u* and the Poisson equation based on 
the Choleski technique. 
 
Stage 3: By Jacobi iteration, we find a divergence-free velocity field un+1 using u* and the pressure 
difference (𝑝𝑛+1 − 𝑝𝑛). 
 
Now the three stages within each time-step are represented mathematically as follows: 
 

Step 1a: [
2𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆](𝑈𝑛+

1

2 − 𝑈𝑛) = {−[𝑆 + 𝜌𝑁(𝑈)]𝑈 + 𝐿𝑇𝑃}𝑛,       (8) 

 

Step 1b: [
𝑅𝑒

𝛥𝑡
𝑀 +

1

2
𝑆](𝑈∗ − 𝑈𝑛) = {−𝑆𝑈 + 𝐿𝑇𝑝}𝑛 − 𝜌[𝑁(𝑈)𝑈]𝑛+

1

2 ,      (9) 

 

Step 2: 𝐾(𝑃𝑛+1 − 𝑃𝑛) = −
𝑅𝑒

𝜃𝛥𝑡
𝐿𝑈∗,                     (10) 

 

Step 3: 
𝑅𝑒

𝛥𝑡
𝑀(𝑈𝑛+1 − 𝑈∗) = 𝜃𝐿𝑇(𝑃𝑛+1 − 𝑃𝑛).                   (11) 

 

The matrices M, S, N, K and indicate the mass, momentum diffusion, convection matrix, 
pressure stiffness matrix and divergence/pressure gradient, respectively, of the system [20-23]. Such 
that 
 
𝑀𝑖𝑗 = ∫ 𝜙𝑖𝜙𝑗𝑑Ω

Ω
,      𝐾𝑖𝑗 = ∫ ∇𝜓𝑖∇𝜓𝑗𝑑Ω

Ω
,   𝑁(𝑈)𝑖𝑗 = ∫ 𝜙𝑖(𝑈𝑛. ∇𝜙𝑗)𝑑Ω

Ω
 

 

(𝐿)𝑖𝑗 = ∫ 𝜓𝑖(∇. 𝜙𝑗)
Ω

𝑑Ω,       (𝑆)𝑖𝑗 = ∫ 𝜇𝑠(𝛾̇. 𝜀̇)[∇𝜙𝑖: ∇𝜙𝑗 + (∇𝜙𝑗)𝜏]
Ω

𝑑Ω 

 
2.3 Problem Specification and Boundary Conditions 
 

In the present work we used 4:1 axisymmetric sharp contraction channel as benchmark problem. 
For that purpose, a fine mesh (FM) is constructed, with a geometric schematic and mesh ingredients 
are shown in Figure 1(a) and Table 1, respectively. 
 
 
 

L
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Boundary conditions (BCs): For the present channel issue, the BC configuration is as follows: 
(i) At the inlet, the flow is characterized as Poiseuille (Ps) flow with zero radial velocity. 

(ii) On the bottom walls of the channel, no-slip BCs are installed. 
(iii) At the axisymmetric line of channel, zero radial velocity is applied.  
(iv) For outlet, there is no pressure and the radial velocity of the axisymmetric line is zero.  
 
Figure 1(b) depicts a visual representation of all that has been spoken above. 
 

Table 1 
Mesh characteristics 
Mesh Total Elements Total Nodes Boundary Nodes Pressure Nodes 

MF 1128 2387 244 639 

 

  
(a) (b) 

Fig. 1. (a) Structured finite element mesh, (b) Flow geometry 

 
3. Results 
 

The numerical solutions concerned with the rate of error convergence for inelastic flows through 
an axisymmetric 4:1 contraction channel (Figure 1(a)) by using (T-G/P-C) finite element method. The 
effect of various parameter of inelastic shear-extensional viscosity model such as zero shear viscosity 
(𝜇0), power index (n), natural time constant (k) and constant for the fluid (λ) is conducted. 
 
3.1 Shear Viscosity 
 

k-variation: The rate of convergence of axial velocity and pressure is shown clearly in Figure 2 

and Figure 3, respectively, for fixed {Re=10, 20  } and k variation in both shear thinning (n=0.8) 

and shear thickening (n=2.8) cases. Generally, the results reveal that, increasing k leads to decrease 
in the level of convergence rate with significant increasing for shear thickening case, while increasing 
k in shear thinning leads to an increase in convergence rate. Meaning, the convergence to the steady-
state is monitored as k, increasing where in the shear thinning case more time is needed to get the 
converged solution (see Figure 2(a)), while an opposite feature is noticed for shear thickening cases 
(see Figure 2(b)). For instance, with k=10, the level of time in the shear thickening cases is much less 
than that in the shear thinning case (needed around 16 for shear thinning cases compared to 8 for 
shear thickening). 
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(a) (b) 

Fig. 2. Convergence of velocity; k variation, 𝜇0=2, Re=10, (a) n=0.8, (b) n=2.8 

 

  

(a) (b) 

Fig. 3. Convergence of pressure; k variation, 𝜇0=2, Re=10, (a) n=0.8, (b) n=2.8 

 
n-variation: Figure 4(a) and Figure 4(b) depict the rate of axial velocity convergence in both shear 

thinning and shear thickening, respectively, while the Figure 5(a) and Figure 5(b) display the rate of 

pressure convergence, for fixed {Re=10, k=1, 20  }. From the profiles one can observed that, 

increase in n leads to reduction in the time when n <1 (Figure 4(a) and Figure 5(a)), while the 
relationship between time and n is an inverse relationship for n >1 (Figure 4(b) and Figure 5(b)). The 
contrary will be seen in the case of shear thickening; possibly this is due to the fluids behaving in a 
different way. In addition, in the case of n =1, less time is taken to reach to the ideal solution because 
this level of n is far from the critical values of n. This means that the Newtonian fluid takes less time 
to get the converge results compared to the inelastic fluid. We also can see this hold for the inelastic 
power law model [18,24]. For clear feature, more details about the relationship between the power 
index n and the time are illustrated in Figure 6. 
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(a) (b) 

Fig. 4. Convergence of velocity; n variation, 𝜇0=2, Re=10, k=1, (a) n<1, (b) n>1 

 

  
(a) (b) 

Fig. 5. Convergence of pressure; n variation, 𝜇0=2, Re=10, k=1, (a) n=0.8, (b) n=3 

 

 
Fig. 6. Power index (n) vs. time with Re=1, 
k=1, 𝜇0=2 

 
The relationship between maximum axial velocity and power index n in shear thinning and shear 

thickening, respectively with fixed {Re=1, k=1, μ0=2} is presented in Figure 7(a) and Figure 7(b). In 
both cases a direct proportionality between the maximum velocity and n is occurred with high level 
is appeared in the shear thickening situation, which is consistence with findings reported by others 
in power law model too [25]. 
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(a) (b) 

Fig. 7. Increasing correlation between n and maximum velocity with: Re=1, k=1, 
𝜇0=2, (a) n<1, (b) n>1 

 
𝝁𝟎-variation: The history convergence tolerances of axial velocity and pressure with 𝜇0 variation 

and {Re=10 and k =1} are shown in Figure 8 and Figure 9 again in shear thinning (n=0.8) and shear 
thickening (n=2. 8). In general, for velocity and pressure we observed that raising 𝜇0 generates a 
decreasing in the rate of convergence, in both cases shear thinning and shear thickening. As the value 
of (𝜇0) in this model approaches zero, it gets closer to its critical value. It has been shown that the 
time required to obtain convergence increases as the parameters approach their critical values. So, 
as we can see in Figure 8, the time needed to obtain convergence increases as (𝜇0) decreases. 
 

  
(a) (b) 

Fig. 8. Convergence of velocity; 𝜇0 variation, k=1, Re=10, (a) n=0.8, (b) n=2.8 
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(a) (b) 

Fig. 9. Convergence of pressure; 𝜇0 variation, k=1, Re=10, (a) n=0.8, (b) n=2.8 

 
Re-variation: Figure 10 and Figure 11 demonstrate the rate of convergence of axial velocity and 

pressure for fixed {k=1, μ0=2} and Re-variation in both shear thinning and shear thickening cases. 
Findings show that raising Re causes a significant increase in the level of convergence rate for both 
situations, which reflects the difficulties of convergence for large 𝑅𝑒 number. For instance, for axial 
velocity when 𝑅𝑒 = 2, the level of time is much less than that in 𝑅𝑒 = 20 (around three times lee than) 
((see Figure 10(a) and Figure 10(b)). Once more, these results are consistent with the findings of 
others. 
 

  
(a) (b) 

Fig. 10. Convergence of velocity; Re variation, 𝜇0 =2, k=1, (a) n=0.8, (b) n=2.8 

 

  
(a) (b) 

Fig. 11. Convergence of pressure; Re variation, 𝜇0 =2, k=1, (a) n=0.8, (b) n=2.8 



CFD Letters 

Volume 15, Issue 8 (2023) 107-121 

116 
 

3.2 Extensional Viscosity 
 

k-variation: For k variation {0.01, 0.05, 0.1, 0.5}, Figure 12(a) and Figure 12(b) show the rate of 
axial velocity convergence n<1, (n=0.8) and n>1, (n =1.6), with fixed {Re=10, λ =0.1, k=1, 𝜇0=2} and. 
In addition, with a same situation the convergence level of pressure is presented in Figure 13(a) and 
Figure 13(b). Actually, the findings reveal that, in the case of n<1 there is a significant effect of k on 
the level of convergence of both velocity and pressure, where the rate of convergence increases as k 
raised. In contrast, in n>1 situation an opposite feature is appeared with modest change, in which 
the level of convergence inversely correlated with the time. For more details on the rate of 
convergence in k-variation, see section 5.1 (k-variation) for details on this. 
 

  
(a) (b) 

Fig. 12. Convergence of velocity; k variation, 𝜇0 =2, λ =0.1, Re =10, (a) n=0.8, (b) n=2.8 

 

  
(a) (b) 

Fig. 13. Convergence of velocity; k variation, 𝜇0 =2, λ =0.1, Re =10, (a) n=0.8, (b) n=2.8 

 
𝝀-variation: Again, in both cases of n<1, (n =0.8) and n>1, (n =1.6), the rate of convergence of 

velocity and pressure with fixed {Re=10, k = 0.01, 𝜇0 =2} and λ variation {0.05,0.08,0.1,0.2} is 
presented in Figure 14 and Figure 15. Generally, same level of convergence is occurred for velocity 
and pressure in both cases n<1 and n>1. In addition, the rate of convergence level of velocity and 
pressure is decreased as the level of λ reduced, with high level in the n>1 situation. As the value of λ 
is increased, it gets closer to its critical value, and it takes more time to reach the error stopping 
criterion (𝐸 = 10−6). 
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(a) (b) 

Fig. 14. Convergence of velocity; λ variation, k=0.01, 𝜇0 =2, Re=10, (a) n=0.8, (b) n=1,6 

 

  
(a) (b) 

Fig. 15. Convergence of pressure; λ variation, k=0.01, 𝜇0 =2, Re=10, (a) n=0.8, (b) n=1,6 

 
n-variation: The influence of power index (n) on the velocity and pressure convergence is 

illustrated in Figure 16 and Figure 17, respectively, at {Re = 10, k = 0.1, λ = 0.1, 𝜇0 = 2}. Here, two 
different setting of power index (n) are presented, when n<1 for n= {0.6, 0.8, 1}and n>1 for n= {1.6, 
2, 2.4}. In both cases, the direct relationship between n and the time represents an essential point in 
this manner, where an increase in the value of n results an increase in the time. That the rate of 
convergence in shear thickening situation is about twice of that in shear thinning case. This is due 
mathematically to the extra term (hyperbolic function (cosh)) in the extensional viscosity 
dependence. 
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(a) (b) 

Fig. 16. Convergence of velocity; n variation, 𝜇0=2, Re=10, k=0.01, λ =0.1 (a) n<1, (b) n>1 

 

  
(a) (b) 

Fig. 17. Convergence of pressure; n variation, 𝜇0=2, Re=10, k=0.01, λ =0.1 (a) n<1, (b) 
n>1 

 
For more clarification, the relation between the power index n and the time is shown in Figure 18 

for {Re=1, k=0.01, λ =0.1 and 𝜇0=2}. The profile provides clear feature of the effect of n on the time, 
where it is clear that increasing n generates an increase in the time. As anticipated, the profile 
provides clear feature of the effect of n on the time, where it is clear that increasing n generates an 
increase in the time, which is consistent with the results found by others. Addition, the results reflect 
one of the most important difficulties in the simulation that researchers face in the case of shear 
thickening (when n>1), where they need long time to get the steady solutions compared to shear 
thinning cases. Maximum velocities are shown to decrease as n increases (see Figure 19). 
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Fig. 18. n vs. time with Re=1, k=0.01, λ 
=0.1 and 𝜇0=2 

 Fig. 19. Maximum velocity as function of n 
with Re=1, λ =0.1, k=1, 𝜇0=2 

 
𝝁𝟎-variation and Re-variation: For more discussion, the simulation has been done for variation 

of zero shear viscosity. Here, velocity and pressure convergence histories for constant parameter-
setting with {Re=10, k=0.01, λ =0.1} and variation 𝜇0={0.5,1,2,3} are presented in Figure 20 and Figure 
21 for both cases when n<1, (n=0.8) and n>1, (n =1.6). The findings reveal that, for both n>1 and n<1 
an inverse relationship between the zero-shear viscosity and rate of convergence of velocity and 
pressure. So, one may observe that increases the level of zero shear viscosity is led to reduce the 
level of simulation time. In addition, we found same results and trend for the variation in Re (not 
shown). 
 
 

  
(a) (b) 

Fig. 20. Convergence of velocity; μ0-variation, k=0.01, Re=10, λ =0.1 (a) n=0.8, (b) n=1,6 
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(a) (b) 

Fig. 21. Convergence of pressure; μ0-variation, k=0.01, Re=10, λ =0.1, (a) n=0.8, (b) n=1,6 

 
4. Conclusion 
 

This investigation covered the influence of inelastic parameters, on the convergence rate of 
solution components in both compounds of the shear viscosity and extensional viscosity. With the 
selected of shear viscosity, the effect of natural time k on the temporal convergence is presented, 
where the effect of k was inversely proportional to shear thickening and directly proportional to the 
convergence rate in shear thinning. In contrast, the power index (n) has an opposite convergence 
behavior compared to that of k. Furthermore, for both shear thinning and shear thickening, the zero 
shear viscosity 𝜇0 is inversely proportional to the convergence rate. The effect of Reynolds number 
on the level of convergence exhibits as well. In this context, the findings reveal that, the rate of 
convergence is reduced as Re reduced, which reflect an opposite feature to that of 𝜇0 effect in both 
shear thinning and shear thickening situations. For n<1 and n>1, λ direct correlates with convergence 
rate. Ultimately, in both shear thinning and shear thickening the effect of power index on the level 
of velocity and rate of convergence of solution components is presented. Here, the results show two 
different features, where in the shear thinning case, the level of convergence has been decreased as 
the values of power index (n) impressed. In contrast, an opposite phenomenon is occurred. 
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