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The paper deals with the numerical simulation results of scale effect on flow field 
around ship by using RANSE method. The differences in resistance coefficient 
components and flow around the ship such as wave pattern on free surface, wave 
profile along the hull of the ship, dynamic pressure and wall shear stress distributions 
on the surface of the ship and nominal wake field between the model and full-scale 
ship are provided and analysed in this paper. The obtained numerical simulation 
results are compared with the measured data in order to verify and validate simulation 
results.  
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1. Introduction 
 

In designing a ship, the accurate estimation of ship resistance plays a crucial role as this parameter 
also be a primary input of other problems related to defining the ship propulsion system and power 
in order to archive the designed speed. It is no deniable that conducting towing tank test then 
extrapolate the result into the full-scale ship currently is the most reliable ship resistance predicting 
method. However, towing tank test method can only ensure the similarly of geometry and Froude 
number between the model scale and full-scale ship and it cannot satisfy the same value of the 
Reynolds number, which causes the differences in the characteristics of flow around the model scale 
ship and the full scale one [1-4]. As a result, it is significantly important to consider these differences 
in various model scales that can support in identifying the accurate characteristics of flow around the 
ship and solving the other problems like optimizing the ship hull, designing the propeller, etc. at the 
full scale.  

Presently, thank the considerable development of computational resources, and numerical 
method, RANSE method is broadly applied to solve the hydrodynamics problems in general [5-7] and 
ship hydrodynamic problems in particular [4,7-23]. In comparison with the experiment, RANSE 
method provides relatively reliable results, saving computational time and expenditure as no physical 
model requires [8,10,24]. In addition, RANSE also advances in simulating the ship resistance at full 
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scale. Moreover, the post-RANSE analysis can provide all necessary information on the flow around 
the ship characteristics. 

Various authors have carried out the research of scale effect on the flow around the ship 
[1,3,4,25,26]. Those research results proved that model scale definitely effects on the flow field 
around the ship. The magnitude of difference depends on the discrepancy in model scale. Hänninen, 
S. and J. Sehweighofer [25] reported that resistance coefficients, wave pattern and streamlines 
strongly depends on the Reynolds number. Dogrul, A et al., [1] presents a study of the scale effect on 
the ship resistance components and form factor for two different ship hull forms by RANSE method. 
The conclusion of authors in [1] is that the difference in boundary layers, wave pattern and viscous 
pressure resistance between model scale and full scale. The magnitude of these differences depends 
not only on the discrepancy in scale model, but also ship hull form. 

Inheriting the previous studies, this research will focus on studying the impact of scale effect on 
the characteristics of the flow around a KCS containership by employing RANSE method. 

  
2. Methodology 
2.1 Reynolds-Averaged Navier-Stokes Equations 

 
The Reynolds-Averaged Navier-Stokes Equations (RANSE) are defined as follows [15]: 
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Where 
ix  and 

iu are the position and velocity vector,  ρ is the fluid density, i ju u    is the Reynolds 

stress tensor, p  is the mean pressure, t is the time and ij  is the mean viscous stress tensor ij  is 

defined as follows: 
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Where μ is the dynamic viscosity.  

 
2.2 Turbulence Models 

 
Realizable k–ε two layer, which is model that solves equations for turbulence kinetic energy (k) 

and the turbulence dissipation rate (ε) in order to determine the eddy viscosity t by equation: 

 

t C f kT  =                             (4) 

 
Where fμ is a damping function, T is a turbulent time scale and Cμ is a model coefficient. 
Eq. (5) determines the turbulent time scale as follows: 
 

eT T=                         (5) 
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Where /eT k = is the large-eddy time scale. The transport equations for k and the ε are given as 

follows: 
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Production terms Pk and Pε are given by Eq. (8) as follows: 
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The damping functions is given by Eq. (9) as follow: 
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3. Numerical Simulations 
3.1 General Information of a KCS Containership  

 
The research object is a KCS containership. This ship is often applied in studying the flow around 

the ship by RANSE method as its 3D model and experimental results are published online [27,28]. 
Table 1 and Figure 1 illustrate the KCS containership at model scales of 1/31.6 and full scale.  
 

 

 
Fig. 1. KCS container ship model 
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Table 1 
Main characteristics of KCS containership 

Parameters Symbol Unit 
Value 

Full scale Model 

Length of the ship LPP [m] 230.00 7.278 

Breadth of the ship B [m] 32.20 1.019 

Draught of the ship T [m] 10.80 0.341 

Displacement  [m3] 52030 1.649 

Wetted surface area S [m2] 9530 9.544 

 
3.2 Simulation Setup  
3.2.1 Computational conditions and case studies 

 
The influence of the model scale on the change of flow characteristics around the ship hull is 

stimulated with the following computational cases and conditions: 
 

i. Simulation at two different scales including full scale and ship model with a scale of 1/31.6. 
These two scales are considered because it is possible to compare the simulation results 
and the experiment ones in the towing tank and the actual transferred calculation results 
to the full scale ship, which have been provided in [27,29,30]. 

ii. The environmental conditions considered for the ship at the model and full scale are taken 
the same as the test conditions in [27,29]. 

 
3.2.2 Computational domain size and boundary condition 

 
The size of the virtual towing tank was defined as corresponding to the guidelines of the 

International Towing Tank Conferences [31]. Typically, the domain length is extended 1.5LPP forward 
the ship bow and 2.5LPP backward its stern. Meanwhile, the bottom and top of the virtual towing 
tank are placed at a distance of 2.5LPP and 1.5LPP from the free surface, respectively. The sidewall of 
the virtual towing tank is placed at a distance of 2.5LPP from the longitudinal symmetric plane of the 
vessel (see Figure 2). 

 

 
Fig. 2. The size of virtual towing tank 
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The type of boundary conditions is defined as follows: The velocity inlet is applied on inlet, top 
and bottom of virtual towing tank, the flow behind the hull is pressure outlet, the two sides of virtual 
towing tank are the symmetry plane. No-slip wall condition is used on the ship hull [32]. 

 
3.2.3 Mesh generation and physical model  

 
Mesh type and mesh generation have a significant effect on the numerical simulation results. In 

the prediction of ship resistance using RANSE method, 3 types of mesh are used: surface mesh, 
trimmed mesh, and prism mesh [33]. In order to minimize the number of meshes used while keeping 
acceptable accuracy of the simulation results, the mesh will be refined in the vicinity of the ship 
(especially in the bow and stern regions having complex curvature), at the free surface to have the 
best capture of Kelvin waves.  

The mesh generation will be done in the same manner for the ship at model scale and the full-
scale ship, the only difference is the wall thickness of the first layer of the prism mesh of the full-scale 
ship and the model scale to ensure that the average value of Y+ of the model ship is 50 and the mean 
value of Y+ of the full-scale ship is about 400 (see Figure 3). The resulting of mesh generation for the 
model and the full-scale ship are depicted in Figure 4. 
 

 

 

 
Fig. 3. Y+ value on hull surface 

 

The physical model used in the ship resistance simulation is a real fluid model (viscous and 
incompressible) using the Unsteady RANSE. The Realizable k–ε two layer turbulent model is used to 
close the RANSE equation, as according to [34,35] the Realizable k–ε two layer turbulent model 
provides relatively accurate results in calculating the ship hydrodynamics in general and ship 
resistance in particular. The Volume of Fluid method is employed to solve the free surface. The DFBI 
Equilibrium option is used to model motion of the ship with two degrees of freedom (trim and 
sinkage).  

One of the key issues determining the accuracy of numerical results is choosing the time step. For 
resistance simulation, according to ITTC procedures [36] the time step is defined by Eq. (10) as 
follows: 
 

0.005 0.01 /t L V =  (10) 
 
where L and V are the ship’s length and speed, respectively. 
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Fig. 4. Structure of mesh 

  

4. Simulation Results 
4.1 Mesh Convergence Study 

  
 It is crucial to study the convergence of the mesh at the beginning of numerical calculation. 
Following the Guidelines provided by  ITTC [37], in this research, the authors studied the mesh 
convergence at Fr=0.260 with 3 sizes of mesh including coarse, medium, and fine mesh which are 

generated by the refinement ratio 2Gr = . As a result, the numbers of mesh cells used in the 

simulation for model scale is 0.79, 1.77, and 3.71 million cells, respectively. Meanwhile, those are 
1.02, 2.08, 4.79 million cells, respectively at the full-scale simulation. Eq. (11) depicts the definition 
of convergence ratio: 
 

21 32/GR  =                        (11) 

 
When RG > 1, the mesh is not converged; and if RG < 0, the mesh is oscillatory convergence. 

Otherwise, it is known as monotonous convergence. ε12 and ε23 can be estimated as follows: 
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Where S1, S2, S3 – are resistance obtained by fine, medium, and coarse meshes, respectively. The 

results deflection between numerical simulation (S) results and towing tank experiment 
measurements (D) is estimated as follows: 
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Table 2 depicts the mesh convergence results for ship at model and full scale. It can be observed 

from Table 2 that, the mesh is monotonous convergence as increasing the number of mesh cells. The 
simulation result obtained by fine mesh is close to the towing tank measurement (for ship at model 
scale) and the extrapolate result to full-scale ship. In particular, the difference in the ship total 
resistance coefficient (CT), between simulation results and experimental measurements, at model 
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and full scale are 1.08% and 3.22%, respectively. Thus, the fine mesh is selected to visualize the 
difference of flow around the ship hull at different model scales. Moreover, it can be seen from Table 
2 a huge difference in the frictional resistance component (CF) between model and full- scale ships. 
Specifically, this coefficient is twice times larger in model scale than in full scale ships. This can be 
explained by the difference in Reynolds number between the model scale and full-scale ships, leading 
to the difference in the shear stress coefficient on the hull surface shown below this paper. 

 
Table 2 
The mesh convergence results at Fr=0.260  

Parameters EFD (D) [28]  
Mesh 

ε32 % ε21 % RG 
Coarse Medium Fine 

Ship at model scale 

CTx10-3 [-] 
Value 3.711 3.845 3.815 3.751 -0.79 -0.02 0.02 

E%D / 3.610 2.800 1.080 / / / 

CF x10-3 [-] Value / 3.341 3.328 3.311 -0.39 -0.01 0.01 

CP x10-3 [-] Value / 0.504 0.487 0.440 -3.49 -0.11 0.03 

Full scale ship 

CT x10-3 [-] 
Value 2.361 2.516 2.457 2.437 -2.40 -0.82 0.34 

E%D / 6.570 4.070 3.220 / / / 

CF x10-3 [-] Value / 1.591 1.586 1.583 -0.32 -0.19 0.60 

CP x10-3 [-] Value / 0.925 0.871 0.854 -6.20 -1.99 0.32 

 
4.2 Influence of Model Scale on the Flow Around the Ship 
4.2.1 Wave pattern at the free surface and wave profile along ship hull 
 

The influence of scale effect on wave shape at free surface and wave profile along the ship hull 
at Fr=0.26 is presented in Figures 5 and 6.  

It can be observed in those figures, the difference in surface wave shape between the model scale 
and full-scale ship appears in the wake flow behind the ship hull. Especially, the stern wave created 
by the moving ship at full-scale ship is bigger than obtained at the model scale. Otherwise, concern 
to the profile of wave along the ship hull, the discrepancy located near the ship bow and stern. The 
wave profile obtained at full scale is greater than that of model scale. These results are coincident 
with the results published by the previous worldwide authors [25]. 

 

 
Fig. 5. Influence of model scale on 
the surface wave shape at Fr=0.260 
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(a) (b) 

Fig. 6. Comparison of wave profiles between model and full scale (a) along the ship (b) at y/LPP =0.1 

 
4.2.2 Distribution of shear stress coefficient on the model hull 

 
The influences of model scale on the distribution of shear stress on the ship surface at different 

speeds are depicted in Figures 7, 8 and 9. It can be observed from these figures that the model scale 
has a great impact on shear stress coefficient on the ship surface. The greater the model scale (the 
smaller the model), the bigger the shear stress coefficient is and vice versa. That can partly be 
explained by the difference in Reynolds numbers between each model. This difference also leads to 
the bigger ship friction resistance at model scale than at the full scale. 
 

  

 
(a) (b) 

Fig. 7. Influence scale effect on shear stress distribution on the ship surface at Fr=0.260 (a) Model scale; (b) 
Full scale 

 

 
Fig. 8. The influence scale effect on shear stress distribution at Z/T =0.5 
and Fr = 0.260 
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Fig. 9. The influence scale effect on shear stress distribution at Z/T =0.25 and 
Fr = 0.260 

 
4.2.3 Distribution of pressure on the hull surface 

 
Figures 10 and 11 depict the influence of scale effect on the distribution of pressure on the surface 

of the ship at various speeds. It can be observed from these figures that the model scale has smaller 
effect on the dynamic pressure distribution than the shear stress distribution. Moreover, the 
difference in dynamic pressure mainly appears in the vicinity of ship stern and it increases as reducing 
the scale of the model.   

 

 
Fig. 10. The influence of model scale on dynamic pressure distributed on the hull 
surface at Fr = 0.260 
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Fig. 11. The influence of model scale on dynamic pressure distribution at 
Z/T =0.5 and Fr = 0.260 

 

4.2.4 Wake field at propeller disc  
 
The influence of the model scale on the wake field behind the ship hull at propeller disc 

(x=0.0175LPP) is presented in Figure 12. It can be observed that, the model scale has a significant 
impact on the wake field. The greater the model scale (ship model), the larger wake field is as the 
Reynolds number of the ship model is smaller than that of the full scale. 

 

 

 
Fig. 12. The influence of model scale on wake field behind the ship hull at propeller 
disc and Fr = 0.260 

 
5. Conclusions 

 
This research has succeeded in using RANSE method to study the influence of model scale on the 

change of flow field around the ship. The achievements are mentioned as follows:  
 

i. Predicted the ship resistance at model scale and full scale. The simulation results are close 
to the measurements obtained in towing tank and the full-scale ship converted according 
to ITTC’s guidelines with differences are 1.08% and 3.22%, respectively. 
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ii. Provided and analyzed the influence of model scale on the change of flow around the hull 
characteristics including surface wave shape created by the ship’s movement, wave 
profile along the ship hull, wake field at the propeller disc. These pieces of information 
may support the designer in defining the optimal hull form, predicting ship power, and 
other systems with higher accuracy.  
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