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The detailed analysis on the flow of MHD fluid in double stratification medium across 
a stretching sheet with exponential permeability is examined in this research. The 
approximate analytical solution for the governing equations in steady state is found by 
using a new approximate analytical method called Ananthaswamy-Sivasankari Method 
(ASM) and Modified Homotopy Analysis Method (MHAM). The approximate analytical 
expressions for the dimensionless velocity, dimensionless temperature and 
dimensionless concentration are derived using these methods. The analytical and 
numerical results (previous work) are compared and there is a good agreement 
between our analytical results and numerical works. The impacts of several parameters 
including porosity, magnetic, suction and heat source parameters are shown in 
graphical representation. The error table for the physical parameter namely Nusselt 
number for various values of Prandtl number has been provided. Both ASM and MHAM 
are very useful to solve some other non-linear boundary value problems especially in 
MHD fluid flow.  
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1. Introduction 
 

Many researchers focused their attention on the various aspects of the problem of 
Magnetohydrodynamic (MHD) flow. Nanofluids play a vital role in biomedical sciences, industrial, 
and engineering processes. It is used in a variety of applications, including nuclear reactor cooling 
systems, blood flow monitoring, and accelerators. Sa’adAldin et al., [1] researched and addressed the 
problem of unsteady MHD flow in porous media within the existence of a magnetic field between 
two parallel flat plates using the Finite Element Method. Acharya et al., [2] investigated the spatial 
and temporal effects of medium porosity coupled with plate temperature fluctuations. He also 
indicated that the inclusion of porous media has no effect on the flow dynamics and that variable 
viscosity accounts for the heating and cooling of the plate induced by convective current. 

Ali et al., [3] solved numerically the heat transfer boundary layer flow across an angled stretched 
sheet in the existence of a magnetic field. Barik et al., [6] investigated mass and heat transmission 
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upon MHD flow within a porous media stretched over a heat source. Chamkha et al., [7] presented a 
numerical solution (implicit FDM) to steady natural convection boundary-layer flow of a nanofluid 
consisting of a pure fluid with nanoparticles along a permeable vertical plate in the context of a 
magnetic field, heat generation or absorption, and suction or injection effects. Choudhary et al., [9] 
focused on and described a two-dimensional unsteady flow of such an incompressible viscous fluid 
that exhibits electrical conductivity over a stretching permeable surface having a transverse magnetic 
field of uniform strength and numerically solved.  

Dessie et al., [10] analyzed the effects of the MHD on energy transfer through stretched sheets 
embedded in porous media involving variable viscosity, viscous dissipation as well as heat source/sink 
by using Lie’s scaling group transformation and obtained the numerical solution using RK4 with the 
shooting method. Goud et al., [11] examined the thermal and mass transport consequences just on 
the boundary layer flow of MHD with viscous, incompressible and radiating fluid across an 
exponentially stretching sheet. Ibrahim [12] studied the mass and heat transmission implications on 
persistent MHD flow via an exponentially stretched surface having heat generation, viscous 
dissipation and radiation numerically by RK4 with the shooting method. Ibrahim and Suneetha [13] 
have numerically explored the impact of Soret as well as the heat source for steady MHD mixed 
convective mass and energy transfer flow along an infinite vertical plate immersed in a porous media 
under the conditions of chemical reaction, viscous flow, and Joule’s dissipation.  

The velocity, temperature, and concentration of the fluid decrease with an increase in the suction 
parameter and an increase in the thermal stratification parameter, and the Schmidt number 
decreases the temperature and concentration, as reported by Faudzi et al., [19]. In the work of 
Mukhopadhyay [20], the effects of suction and stratification parameter of a steady MHD flow 
together in substantially stratified surface was discussed and also, Mukhopadhyay et al., [21] 
considered the first-order destructive/ constructive chemical reactions. Nazari et al., [22] considered 
radiation and they concluded that the temperature increased with a higher radiation parameter using 
HAM. Reddy [24] examined the influences of thermal radiation, chemical reactions and Caisson fluid 
parameters in magneto hydrodynamic flow.  

Saidulu et al., [25] investigated the slip effects of MHD flow on Caisson fluid over an exponentially 
stretching sheet in the presence of thermal radiation, a heat source/sink and chemical reactions and 
the double slip effects were evaluated by Zaman et al., [26]. Sekhar [27] described the boundary layer 
phenomena of the MHD flow problem. Singh and Kumar [28] examined the free convection flow on 
a vertical plate in porous media with variable wall temperature and concentration in a doubly 
stratified and viscous dissipating micro polar fluid with chemical reaction, heat generation and ohmic 
heating. Swain et al., [30] looked at the impacts of different flow parameters of MHD flow in an 
exponentially stretching sheet through a porous medium with a heat source/sink. The radiation effect 
of MHD boundary layer flow due to an exponentially stretching surface embedded in a porous 
medium has been studied by Yusuf et al., [31]. Numerous authors have found solutions to other MHD 
flow problems using HAM, the keller box method, numerically with the bvp4c solver in MATLAB, and 
the shooting method [32-36]. 

The primary goal of this study is to use ASM and MHAM to produce an approximate analytical 
solution to the flow of MHD fluid in a thermal and chemical stratification medium across a stretching 
sheet with exponential permeability. The resultant analytical and numerical findings are then 
compared and represented graphically. To interlined the impacts of several parameters such as 
porosity, magnetic, suction and heat source parameters. 
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2. Methodology  
 

Consider a steady two-dimensional MHD motion in a viscous, electrically conducting and 
incompressible fluid over an exponentially extending surface, as reported by Nur Suhaida Aznidar 
Ismail et al., [23]. The surface is considered to be stretched with velocity U along the axisx− , and 

the axisy −  normal to axisx− . A variable magnetic field L

x

eBB 2
0=  was transmitted properly for this 

surface where 0B  is constant. The surface consists of both heat )(xTw  and concentration )(xCw  

which are completely immersed in a temperature segregated media with a changing ambient 

temperature )(xT  and fluctuating ambient concentration )(xC  where )()( xTxTw   and 

)()( xCxCw   respectively. It is assumed that ,)(,)( 2
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0)( += where 0T  is the reference temperature and 0C  is the 

reference concentration where mcb ,,  and n  are positive constants. 

The governing partial differential equations for this flow are: 
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where u and v represent the elements for velocity on the x and y directions correspondingly,    is 

the coefficient of fluid viscosity,



 =  indicates the kinematic viscosity,    is the fluid density,    is 

the fluid’s electrical conductivity, and B is a variable of the magnetic field. The permeability is in the 

form of L

x

ekK

−

= *' where *k is a constant.  is the thermal diffusivity, T is the temperature of fluid, 

L

x

eQQ 0=  is the dimensional heat generation where 0Q is a constant. Pc is the temperature under 

static pressure, C is the fluid concentration, wT is the temperature of the surface and D is the solute 

diffusion coefficient. 1k is the variable rate of chemical conversion of the first-order irreversible 

reaction where L

x

ekk 01
2

1
= , 0k is a constant. 

The boundary conditions are given as follows: 
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where 0U  is the reference velocity. 0)( xV is the suction velocity while  0)( xV  is the blowing 

velocity. The initial strength of suction is denoted by 00 V  and 00 V  is the initial strength of 

blowing. 
The dimensionless similarity variables used in the mathematical analysis are: 
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The ordinary differential equations found by Ismail et al., [23] are provided below by substituting 

Eq. (7) into Eq. (2), Eq. (3) and Eq. (4): 
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The transformed boundary conditions are given by: 
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the blowing variable. The physical aspects for basic flow are the skin friction coefficient fC , the local 

Nusselt number Nu and the local Sherwood number Sh outlined below: 
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where the wall shear stress w , the surface heat flux wq and the surface mass flux are given by: 
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Through the use of the dimensionless variables in Eq. (7), we discovered 
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where


xU
=Re is the local Reynolds number. 

 
3. Approximate Analytical Solution using ASM and MHAM 
 

A new approach called the Ananthaswamy-Sivasankari method (ASM) is presented for the 
evaluation of the third order non-linear ordinary differential equations [8,29]. It can be used to solve 
differential equations, both linear and non-linear. This technique can also be easily extended to 
address several additional non-linear problems in the physical, chemical, and biological sciences, 
especially MHD boundary layer problems. However, the new technique presented here is 
appropriate for dealing with boundary value issues. Additional boundary conditions for the 
differential equation and its derivatives can be constructed. Below explains the basic concept of ASM 
[8,29]. 
 
3.1 Basic Concept of Ananthaswamy-Sivasankari Method (ASM) 
 

Let us consider the non-linear boundary value problem 
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Assume that the approximate analytical solution of the non-linear equations is an exponential 
function of the form 
 

xaxa enemlxy −++=)(                       (18) 

 
The unknown coefficients ml,  and n  are obtained by solving the non-linear differential equations 

as follows: 
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Eq. (19) and Eq. (20) may be used to get the unknown parameters ml,  and n . 

 
The following non-linear differential equations are obtained by substituting Eq. (18) into Eq. (16). 
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This equation is valid at x  where ],[ ULx . Solving Eq. (21), the unknown parameter a  can be 

obtained in terms of the given parameters c and d . 
The Homotopy analysis approach has been successfully used to solve a wide range of issues in 

science and engineering. It is an analytical method for obtaining series solutions to non-linear 
equations that is non-perturbative. In comparison to other perturbative and non-perturbative 
analytical approaches, HAM allows us to adjust and govern the convergence of a solution using the 
so-called convergence-control parameter. As a result, HAM has emerged as the most efficient 
technique for finding analytical solutions for the unknown function and its derivatives. As seen in the 
work of Liao [14-18], previous applications of HAM have mostly focused on non-linear differential 
equations whose non-linearity is a polynomial. Liao [14-18] developed the Homotopy analysis 
methodology, which is a powerful analytical technique for non-linear problems. Below explains the 
basic concept of MHAM. 
 
3.2 Basic Concept of Modified Homotopy Analysis Method 
 

Consider the following differential equation: 
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where N is a nonlinear operator, t denotes an independent variable, )(tu is an unknown function. 

For simplicity, we ignore all boundary or initial conditions, which can be treated in a similar way. By 
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means of generalizing the conventional Homotopy method, Liao constructed the so-called zero-order 
deformation equation as follows: 
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If the auxiliary linear operator, the initial guess, the auxiliary parameter h , and the auxiliary 

function are so properly chosen, the series, Eq. (25) converges at 1=p  then we have: 
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By differentiating Eq. (23) for m  times with respect to the embedding parameter p , and then 

setting 0=p  and finally dividing them by !m , we will have the so-called thm -order deformation 

equation as: 
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Applying 1−L on both sides of Eq. (28), we get 
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In this way, it is easily to obtain mu  for ,1m  at thm  order, we have 

 


=

=
M

m

m tutu
0

)()(                        (32) 

 
When +→M , we get an accurate approximation of the original Eq. (22). For the convergence 

of the above method, we refer the reader to Liao [15-18] and Faudzi et al., [19]. If Eq. (22) admits a 
unique solution, then this method will produce the unique solution. 

The approximate analytical solution for steady-state velocity is given below. 
 
3.3 Approximate Analytical Solution of Velocity using ASM 
 

The approximate analytical solution of the velocity distribution in Eq. (8) that satisfies the 
boundary condition is as follows: 
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Now, taking 0= , Eq. (37) becomes 



CFD Letters 

Volume 15, Issue 10 (2023) 34-51 

42 
 

022 =−−−− MKaSa                       (38) 

 
On solving the Eq. (38), we get the value of the parameter a  which is given by 
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Hence, an approximate analytical solution of the velocity is obtained by substituting Eq. (39) into Eq. 
(36) as follows: 
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where a  is obtained in Eq. (39). The approximate analytical solution for temperature and 
concentration is given below [4,5]. 
 
3.4 Approximate Analytical Solution of Temperature and Concentration using MHAM 
 

The transformed temperature and concentration equations are obtained by substituting Eq. (40) 
into Eq. (9) and Eq. (10), we get: 
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The Homotopy for Eqs. (41) and (42) is as follows: 
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The initial approximation for Eqs. (43) and (44) is given by 
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The approximate analytical solutions to Eq. (43) and Eq. (44) are as follows: 
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Substituting Eq. (47) and Eq. (48) into Eq. (43) and Eq. (44) and comparing the coefficients of like 

powers of p , we get the following equations 
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By using MHAM, the initial guessing solutions for Eq. (26) and Eq. (27) and utilizing the boundary 

conditions in Eq. (45) and Eq. (46) are given by: 
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On solving Eq. (50) and Eq. (52) with the use of Eq. (53) and Eq. (54) and utilizing the boundary 

conditions in Eq. (45) and Eq. (46), we get the following solution 
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According to HAM technique, we have  
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Therefore, the approximate analytical solutions of the temperature and concentration equations 

are derived by substituting Eq. (53) to Eq. (56) into Eq. (57) and Eq. (58) and we get the results as 
follows: 
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4. Results and Discussion 
 

We looked at the effects of porosity, magnetic, suction and heat source parameters in this 
portion. The comparison of the analytical results of non-dimensional velocity, temperature, and 
concentration in Eq. (40), Eq. (59) and Eq. (60) with the numerical solution stated by Ismail et al., [23] 
is interlined graphically. Figure 1 to Figure 12 illustrate the comparison of numerical and analytical 
solutions for non-dimensional velocity, temperature and concentration with different amounts of the 
physical parameters.  
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Figure 1 to Figure 3 represent the comparison of the non-dimensional velocity using Eq. (23), with 
numerical result shown in the study of Ismail et al., [23] for varying values of SandMK, . As in Figure 

1, the velocity was reduced by increasing the value of the porosity parameter K . From Figure 2, it is 
noted that by increasing the value of the magnetic parameter M , the velocity decreases. As shown 
in Figure 3, the velocity decreased by raising the amount of the suction parameter S . Also, Table 1, 
clearly evaluates the analytical and numerical results of the velocity )0(''f for different values of the 

physical quantities FrandMe, . 

Figure 4 to Figure 9 depicts the comparison of the non-dimensional temperature using Eq. (59), 
with the numerical result described by Ismail et al., [23] for varying values of

HQandStSMK Pr,,,, . 

It can be seen from Figure 4 that the temperature increases by raising the value of the porosity 
parameter K . According to Figure 5, it is observed that by increasing the amount of the magnetic 
parameter M , the temperature rises. As shown in Figure 6, the temperature decreased by increasing 
the value of the suction parameter S . Figure 7 and Figure 8 show that by increasing the values of the 
Prandtl number Pr and thermal stratification parameter St respectively, the temperature decreases. 
Figure 9 clearly describes that the temperature increases by raising the amount of the heat source 
parameter

HQ . 

Figure 10 to Figure 15 show the comparison of the non-dimensional concentration using Eq. (60), 
with the numerical result reported in the study of Ismail et al., [23] for several amounts of

1,,,, StandScSMK  . Figure 10 and Figure 11 illustrate that the concentration rises by raising the 

value of the porosity parameter K  and the magnetic parameter M . From Figure 12, it is known that 
by increasing the amount of the suction parameter S , the concentration decreases. Also, from Figure 
13, Figure 14 and Figure 15, it is clear that the concentration decreased by raising the values of the 

Schmidt number Sc , rate of reaction parameter  and chemical stratification parameter 1St

respectively.  
 

  

Fig. 1. Dimensionless velocity versus the 
dimensionless coordinate   for some fixed 

values of SM , and different values of K  

Fig. 2. Dimensionless velocity versus the 
dimensionless coordinate   for certain 

fixed values of SK, and varying values of 

M  
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Fig. 3. Dimensionless velocity versus the 
dimensionless coordinate   for some 

fixed values of MK, and varying values 

of S  

Fig. 4. Dimensionless temperature versus 
the dimensionless coordinate   for 

varying values of K  and in some fixed 
amounts of 

HQandStSM Pr,,,  

  

  
Fig. 5. Dimensionless temperature versus 
the dimensionless coordinate   for distinct 

amounts of M  and in some fixed amounts 
of 

HQandStSK Pr,,,  

Fig. 6. Dimensionless temperature 
versus the dimensionless coordinate   

for different values of S  and in some 
fixed amounts of 

HQandStMK Pr,,,  
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Fig. 7. Dimensionless temperature versus 
the dimensionless coordinate   for varying 

values of Pr  and in some constant values of 

HQandStSMK ,,,  

Fig. 8. Dimensionless temperature versus 
the dimensionless coordinate   for varying 

amounts of St  and in certain constant 
amounts of 

HQandSMK Pr,,,,  

  

  
Fig. 9. Dimensionless temperature versus 
the dimensionless coordinate   for varying 

values of 
HQ  and in some fixed values of 

StandSMK Pr,,,,  

Fig. 10. Dimensionless concentration with 
the dimensionless coordinate   for varying 

values of K  and some constant amounts of

1,,, StandScSM   
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Fig. 11. Dimensionless concentration with 
the dimensionless coordinate   for several 

values of M  and some particular values of

1,,, StandScSK   

Fig. 12. Dimensionless concentration 
with the dimensionless coordinate   for 

varying values of S  and some fixed 
amounts of

1,,, StandScMK   

  

  
Fig. 13. Dimensionless concentration with 
the dimensionless coordinate   for several 

values of Sc  and some fixed values of

1,,, StandSMK   

Fig. 14. Dimensionless concentration with 
the dimensionless coordinate   for varying 

amounts of   and certain constant 

amounts of
1,,, StandScSMK  
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Fig. 15. Dimensionless concentration with 
the dimensionless coordinate   for distinct 

values of 
1St  and some constant values of

andScSMK ,,,  

 
Table 1 
Comparison of analytical solution with the 
numerical solution reported in Ismail et al., 
[23] for different values of the parameters 
Pr  and some fixed amounts of

HQandStSMK ,,,  
Pr Numerical -θ’(0) Analytical -θ’(0) Error % 

1 0.9548 0.9538 0.1048 
2 1.4715 1.4678 0.2521 
3 1.8691 1.8745 0.2881 
Average error percentage 0.2150 

 
5. Conclusions 
 

This study covered the flow of Magnetohydrodynamic (MHD) fluid in a double stratification 
medium across a stretching sheet with exponential permeability. In steady state, the approximate 
analytical solutions for the governing equations having thermal and chemical stratifications were 
solved with the help of a new approximate analytical method called the Ananthaswamy-Sivasankari 
Method (ASM), and the Modified Homotopy Analysis Method (MHAM). The analytical results were 
compared with the numerical solutions. The graphs were interlined to show the impacts of several 
parameters, including porosity, magnetic, suction, and heat source parameters. 
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