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In depth analysis on the boundary layer flow of magnetohydrodynamic nanofluids is 
conducted in this study. The analytical results are estimated for temperature profile, 
concentration profile, reduced Nusselt number and reduced sherwood number using 
Modified q-Homotopy analysis method. Also, the impacts of numerous physical 
parameters such as the magnetic field, the Eckert number, the thermophoresis 
parameter, Brownian parameter and Lewis number are discussed in detail. Comparing 
our obtained results with numerical solution results in a very good fit. Additionally, the 
findings are displayed graphically. Reduced skin friction, reduced Nusselt number and 
reduced Sherwood number are shown in table representation. This method can be 
extended to physical, chemical, and engineering sciences.  
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1. Introduction 

 
In many engineering process with applications in industries such as extrusion, melt-spinning, heat 

rolling, and rubber sheet manufacturing, cooling of a large metal plate in a path that may be an 
electrolyte, this flow can be stretching in the surface these are the important issues. Kalaivanan et 
al., [1] investigated that the effect of elastic deformation on the boundary layer flows of nanofluid 
over a stretching surface in the presence of slip boundary condition. In the study of Vleggaar et al., 
[2] the polymers and filaments sheet are manufactured by continuous extrusion of the polymer from 
a die to a windup roller. There are many applications in engineering industries for boundary layer 
over the stretching surface (Fisher [3]). Having a low heat transfer in a fluid would cause limited heat 
transfer and can lead to limited heat transfer efficiency. Due to the high thermal conductivity of metal 
particles, adding them to a fluid would increase the thermal conductivity and also heat transfer of 
the resultant mixture fluid. Choi’s [4] initial analysis of the term "nanofluid" a liquid suspension 
containing ultra-fine particles. Nanoparticles (e.g., Copper (Cu), Silver (Ag), Alumina (Al2O3), 
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Titanium (TiO2)) range from 1 to 100 nm in diameter defined by Oztop et al., [5].The base liquid’s 
thermal conductivity is improved by (10% − 50%) if it is suspended by a low volumetric fraction (less 
than 5%) of nanoparticles are discussed by  Eastman et al., [6–8]. In Khan et al., [9], the authors 
examined improvements in the thermal conductivity of fluids (such as oil, water, and ethylene glycol 
mixture) which are poor heat transfer by suspending nano /micro or large particle materials in these 
fluids. Kuznetsov et al., [10] explained that the effects of nanoparticle on the natural convection 
boundary layer flow through a vertical plate, and also described about the Brownian motion and 
thermophoresis. 

In the work of Noghrehabad et al., [11-14] it can be shown that the force on heat and mass 
transfer of nanofluid over linear stretching sheet. Hamad et al., [15] explored an analytical solution 
of the natural convection flow of nanofluid past a semi-infinite vertical stretching sheet in the 
presence of a magnetic field. Buongiorno’s model is employed by Niazi et al., [16-18] for describing 
the behaviour of nanofluids, and introduced the flux conservation unique, and it is in coincidence 
with practical observations. During the recent days, convection heat transfer of nanofluids is a hot 
topic of academic and industrial research due to its various applications in industries processes such 
as thermal heating, power generation and chemical processing [19-22]. 

Pavlov et al., [23] applied the polymer and metallurgy industries, hydro-magnetic techniques are 
used in magnetic fields. Takhar et al., [24] influences the high application in physics, chemistry, and 
engineering. [25-28] analytic tool for nonlinear problem, namely heat transfer, MHD flow nanofluid 
etc., which does not depend on small parameters. Ananthaswamy et al., [29,30] describes the 
approximate analytical solution for steady hydromagnetic permeable channel flow of a conducting 
fluid with variable electrical conductivity fluid with variable electrical conductivity and asymmetric 
navier slip at channel wall are derived analytically.      

Yanala Dharmendar reddy et al., [31] investigated the effects of radiation and convective 
boundary conditions. Shankar Goud Bejawada et al., [32] influenced that the relevant factors on non 
dimensional fluid flowing areas, heat and mass transmission rates is investigated, additionally the 
opposite direction is noted for opposing flow occurrences. Dharmendar Reddy et al., [33] examine 
that thermal radiation impact of MHD boundary layer flow of William nanofluid along a stretching 
surface with porous medium in account of thermal slips and velocity can be discussed numerically. 
Pramod kumar et al., [34] discussed about the study effect of soret number on MHD free convection 
flow of heat and mass transfer of an electricity conducting non-Newtonian fluid through a vertical 
moving porous plate. Bejawada Shankar Goud et al., [35] explored that the flow phenomena of 
hydromagnetic nanofluid thermal stratified through permeable medium due to the influence of the 
radiative heat energy. Umair Khan et al., [36] objective of this study is to develop a methodology for 
identification of flow regime using dynamic pressure signals and deep learning techniques. Rifky 
Ismail et al., [37] studied that the deacetylation temperature impact towards the crystalline index, 
chemical bond and morphology of Chitosan synthesized. Khan et al., [38] analyse the influence of 
Brownian motion and thermophoresis on a nonlinearly permeable stretching sheet in a nanofluid 
was solved numerically.  

The above mentioned articles point out that the convective heat transfer of nanofluid is advanced 
topic of academic and industrial research due to its various applications. The purpose of this research 
is to examine the combined impacts of the MHD nanofluid convective boundary circumstances. The 
corresponding equations are analytically solved via Mq-HAM. The obtained solution is compared with 
the numerical solution (previous work). Also, the effects of physical factors involved on dimensionless 
velocity, temperature, concentration profiles are explained using graphical results. 
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2. Mathematical Formulation  
 
Consider the steady two-dimensional boundary layer flow of the nanofluid past a stretching 

surface with linear velocity 𝑢𝑤 and x is the coordinate measured along the stretching surface as 
shown in Figure 1. A steady uniform stress leading to equal and opposite force along the x-axis, the 
ambient values attained as y tends to infinity of 𝑇and 𝐶 are denoted by 𝑇∞ and 𝐶∞. The uniform 
magnetic field of force 𝐵0 is imposed in the y-direction according to Ref. [8]. 

 

 
Fig. 1. Physical diagram of the flow geometry 

 
For the current study, the governing basic steady conservation of mass, momentum, thermal energy 
and nanoparticles equations described in Ref. [8] are given as follows: 
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+
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Subject to the boundary conditions reported in Ref. [38]: 
 
𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥, 𝑣 = 𝑠, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤𝑎𝑡𝑦 = 0, 
𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞𝑎𝑠𝑦 → ∞          (6) 
 
where u and v are the velocity components along the axes x and y(𝑚𝑠−1), respectively, 𝜌𝑓 is the 
density of the base fluid (𝑘𝑔.𝑚−3) , 𝑣 is the kinematic viscosity (𝑚2. 𝑠−1), 𝜎∗ is the electrical 

conductivity (𝛺𝑚)−1, 𝑝is the fluid pressure, 𝛼 =
𝑘𝑓

(𝜌𝑐)𝑓
 is the thermal diffusivity , 𝐷𝐵 is the Brownian 
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diffusion coefficient, 𝐷𝑇  is the thermophoretic diffusion coefficient (𝑚2/𝑠),𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the ratio 

between the effective heat capacity of the nanoparticle material and heat capacity of the fluid  with 
𝜌being the density, 𝑐 is the volumetric volume expansion coefficient and 𝜌𝑝 is the density of the 
particles, 𝑐𝑝 is the fluid specific heat at constant pressure, 𝜇𝑓 is the viscosity of the base fluid and s is 

suction (or injection)  parameter, respectively, 𝑇 is the temperature of the fluid (𝑘) , 𝐶 is the fraction 
of the volume of nanoparticles (𝑘𝑔.𝑚−3) , 𝑇𝑤 is the temperature of the stretching surface (𝑘), 𝐶𝑤 is 
the fraction of the volume of nanoparticles on the stretching surface,𝑇∞ is the ambient temperature 
(𝑘) and 𝐶∞ is the fraction of the volume of ambient nanoparticles, under the related work [10]. 

 

𝑓(𝜂) =
𝜓

𝛼𝑅𝑎𝑥1/4
, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜑(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,         (7) 

 
where 𝜓 is a stream function provided by  
 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
             (8) 

 
Well then Eq. (1) identically satisfied. For converting Eq. (1) – (5) with the boundary conditions  Eq. 
(6) into the following non-linear ordinary differential equations. a similarity solution in Ref. [10] was 
implemented. 
 

𝑓‴ + (
1

4𝑃𝑟
) [3𝑓𝑓″ − 2(𝑓 ′)2] − 𝑀𝑓 ′ = 0          (9) 
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3
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𝑁𝑡

𝑁𝑏
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With the boundary conditions: 
 

𝑓(0) = 𝑠, 𝑓 ′(0) = 1, 𝜃(0) = 1, 𝜑(0) = 1, 
𝑓 ′(∞) = 0, 𝜃(∞) = 0, 𝜑(∞) = 0.                     (12) 
 
Where primes indicate differentiation for 𝜂 and 𝑃𝑟, 𝑁 𝑏,𝑁𝑡,𝑀, 𝐸𝑐, 𝐿𝑒 are Prandtl number, Brownian 
motion parameter, thermophoresis parameter, Eckert number, and magnetic parameter and Lewis 
number, respectively. The physical parameters below are described by: 
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(𝐶𝑝)𝑓

3
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𝑅𝑎𝑥 =
(1−𝜑∞)𝛽𝑔(𝑇𝑤−𝑇∞)𝑥

3
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Here gravitational acceleration, volumetric expansion co-efficient of the fluid, nanoparticle 

volume fraction at the surface, ambient nanoparticle volume fraction attained as 𝑦tends to be infinite 
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and local Rayleigh number, respectively, are also the symbols 𝑔, 𝛽, 𝜑𝑤, 𝜑∞𝑎𝑛𝑑𝑅𝑎𝑥. In addition, 
𝑓, 𝜃, 𝑎𝑛𝑑𝜑 are the dimensionless of the stream function, temperature, and volume of nanoparticles 
respectively. It distinguishes the local skin friction𝑐𝑓, the reduced Nusselt number 𝑁𝑢𝑟 and the 

reduced Sherwood number 𝑆ℎ𝑟 
 

( ) )0(,0),0(
RePr

2
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4

3

2

 −=−==
















ShrNurfc

Ra
f

x

x                   (14) 

 
where, 𝑅𝑒𝑥 is the local Reynolds number based on the stretching velocity𝑢𝑤(𝑥). 
 
3. Approximate Analytical Solution of the Non-Linear Differential Equation. Using the Modified q-
Homotopy Analysis Method [25-28]: 

 
Homotopy analysis method is a non-perturbative analytical method for obtaining series solutions 

to non-linear equations. and has been successfully applied to various problems in science and 
engineering. In comparison with other perturbative and non perturbative analytical methods, HAM 
offers the ability to adjust and control the convergence of a solution via the so-called convergence-
control parameter. Because of this, HAM has proved to be the most effective method for obtaining 
analytical solutions to highly non-linear differential equations. Previous applications of HAM have 
mainly focused on non-linear differential equations in which the non-linearity is a polynomial in terms 
of the unknown function and its derivatives.  

Liao [17-22] proposed a powerful analytical method for non-linear problems, namely the 
Homotopy analysis method. This method provides an analytical solution in terms of an infinite power 
series. However, there is a practical need to evaluate this solution and to obtain numerical values 
from the infinite power series. In order to investigate the accuracy of the Homotopy analysis method 
(HAM) solution with a finite number of terms, the system of differential equations were solved. The 
Homotopy analysis method is a good technique comparing to another perturbation method. The 
Homotopy analysis method contains the auxiliary parameterℎ, which provides us with a simple way 
to adjust and control the convergence region of solution series. The approximate analytic expression 
for the dimensionless velocity, dimensionless angular velocity, dimensionless temperature, 
dimensionless concentration profile, skin friction, Nusselt number and Sherwood number by using 
the modified q-Homotopy analysis method (Mq-HAM) is as follows: 
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𝑒−𝜂(𝑎 + 1)

𝑀 − 1
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, 𝑎 = 𝐿𝑒 ∗ 𝑁𝑡 ∗ 𝑁𝑏 ∗ 𝐸𝑐, 𝑎1 = 𝑃𝑟∗ 𝐿𝑒 ∗ 𝑠,                  (16) 
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𝑐7𝑎
2

𝑐6
)

−
2𝑎2𝑐7

𝑐6
− 2𝑐5 +

4𝑎(𝑎+1)𝑐4

𝑐3 )
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( )



















































+










+
−

+
++















+
−

+
−+









++

+
+

+
+

+
+

+

+
−

+

+
−

−








+
−++−















+
−

+
−−

−









++

+
−

+

+
−

+

+
+

+

+

−=

+−
+−−−

+−−−








++−

+−+−+−+−
+−

)1(

1

)1(

1

2

1

22

1

)1(2

1

2

1

22

1

2

1

1

1

)1(2

2

1

)2(2

1

2

1

)12(

1

1

)1(

1

1

12

1

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

1

1

1

)1(

1

11

1
21

1111

1

)1(

2

4

)1(

4

1

2

4

)1(

4
1

)1(

4)2(

)1(3

)12(4

)1(3

)1(4

)(3

1
1

2
)1(

4

1

4

1

1

2

4

)1(

4

4
1

)1(

24

)1(3

)12(4

)1(3

)1(4

)(3

)(

a
aa

aaxNb

NtLe
a

aaaa
a

e
a

eaaee
MEc

a

eaaeea
E

Nb

NtLe
a

eaLeNt

eNt

a

ea

a

ea

a

eas

a

a
aEcM

a

aaa
Ec

Nt

Nb

LeNt
a

aLeNt

a

a

a

a

a

as

he








            (19) 

 

𝜑(𝜂) = 𝑒−
𝐿𝑒𝑁𝑡𝜂

𝑁𝑏 − 𝑛 − ℎ −
3

4
ℎ𝐿𝑒 (−𝑠 −

3𝑎

4
−

1

(𝑎 + 1)2
+
1

4
) −

ℎ𝑁𝑡

𝑁𝑏
+ (𝑛 + ℎ)𝑒−𝜂 

+
3

4
ℎ𝐿𝑒 (−𝑒−𝜂(𝑠 + 𝑎) −

𝑒−𝜂(𝑎+1)

(𝑎+1)2
+
1

4
(𝑎 + 1)𝑒−2𝜂 + ℎ𝑁𝑡

𝑒−𝜂(𝑎1+1)

𝑁𝑏
)                (20) 

 

−𝜑′(0) =
𝐿𝑒𝑁𝑡

𝑁𝑏
+ 𝑛 + ℎ −

3ℎ𝐿𝑒

4
(𝑠 +

𝑎

2
−

−𝑎−1

(𝑎+1)2
−
1

2
) −

ℎ𝑁𝑡(−𝑎1−1)

𝑁𝑏
                 (21) 
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𝐴22 = −((𝑛 + ℎ) +
3ℎ𝐿𝑒

4
((𝑠 + 𝑎1) −

1

(𝑎1+1)2
+
(𝑎1+1)

4
) +

ℎ𝑁𝑡

𝑁𝑏
) , 𝐵22 = 0, 𝐵11 = 0

𝑐2 = 0, 𝑐1 =
3(𝑎1+𝑠)

4(𝑎+1)
+

3(𝑎1+1)

4(2𝑎+1)2
−
3(𝑎1+1)

2

4(𝑎+2)2
−

𝑁𝑡𝐿𝑒(𝑎1+1)

(𝑎1+1+
𝑁𝑡𝐿𝑒

𝑁𝑏
)
2 −

1

4
𝑁𝑡

−𝐸𝑐 (
𝑎1

2

4
−
(𝑎1+1)

2

4
− 2

𝑎1
2

𝑎1+1
) − 𝑀𝐸𝑐 (

1

4
+
1

4
(𝑎1 + 1)

2 −
2𝑎1

𝑎1+1
) + 1 }

  
 

  
 

                     (22) 

 

𝐶11 =

(

 
 
 
 

1

4𝑃𝑟
(

−3𝑎𝑒−𝑎𝜂(𝑠𝑎2+𝑎3)

−𝑎3+𝑀𝑎
+
𝑒−𝜂(𝑠(𝑎+1)−𝑎(𝑎+1)

𝑀−1
−

(−𝑎−1)𝑒−𝜂(𝑎+1)(𝑎2(𝑎+1)+𝑎+1)

−(𝑎+1)3+𝑀(𝑎+!)
− 2

𝑒−2𝜂(𝑎+1)2

2𝑀−8
− 2

𝑎3𝑒−2𝑎𝜂

−8𝑎3+2𝑀𝑎

)

+4
𝑎3𝑒−𝑎𝜂

−8𝑎3+2𝑎𝑀
+ 4

𝑒−2𝜂(𝑎+1)2

2𝑀−8
+ 4

𝑎(𝑎+1)(−𝑎−1)𝑒−𝜂(𝑎+1)

−(𝑎+1)3+𝑀(𝑎+1)

+(𝑛 + ℎ) (
𝑎4𝑒−𝑎𝜂

−𝑎3+𝑀𝑎
−
𝑒−𝜂(𝑎+1)

𝑀−1
) − (𝑛 + ℎ)𝑀 (

𝑎2𝑒−𝑎𝜂

−𝑎3+𝑀𝑎
) )

 
 
 
 

/√𝑀𝑒−√𝑀𝜂                (23) 
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4. Results and Discussion 

 
The approximate analytical expression of the dimensionless stream function𝑓(𝜂), dimensionless 

temperature𝜃(𝜂), and dimensionless concentration profile 𝜑(𝜂) were derived by using modified q-
Homotopy analysis method (Mq-HAM). In Figure 1 represent the physical diagram of flow geometry. 
In Figure 2 depicts that the dimensionless stream function 𝑓(𝜂) versus dimensionless coordinate 𝜂 
.In dimensionless velocity by varying other parameters are shown in table 1, 2 and 3. From Figures 3 
to 9 represents the dimensionless temperature 𝜃(𝜂) versus dimensionless space variable𝜂. In Figures 
3 to 4, it indicates that, when the thermophoresis parameter𝑁𝑡 increases, the corresponding 
dimensionless coordinate also increases in some fixed value of the other dimensionless parameters. 
From Figures 5 to 7, it shows that, when parameter of Magnetic parameter  𝑀 increases, the 
corresponding dimensionless coordinate also increases in some fixed value of the other 
dimensionless parameters. From Figures 8 to 9, it shows that, when increases the Prandtl number 
𝑃𝑟  increases, then the corresponding dimensionless coordinate decreases in some fixed values of 
the other dimensionless parameters.  

From Figures 10 to 15 represents the effects of dimensionless concentration profile𝜑(𝜂)versus 
dimensionless space variable 𝜂.From Figures 10 to 12 it is noted that, when the values of Lewis 
number 𝐿𝑒 increases, the corresponding dimensionless coordinate decreases in some other fixed 
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values of dimensionless parameters. From Figures 13 to 15, it represents that the value of Brownian 
motion parameter𝑁𝑏increases, the corresponding dimensionless parameter also increases for some 
fixed values of other dimensionless parameters.   

 

 
Fig. 2. Dimensionless space variable 𝜂 versus the dimensionless stream 
function𝑓(𝜂).The curves are plotted using the Eq. (18) for various values of 
dimensionless parameters that can be compared with the previous study 
using the parameters𝐿𝑒, 𝑃𝑟, 𝑁 𝑡, 𝑁𝑏,𝑀, 𝑆, 𝐸𝑐. 

 

 
Fig. 3. Dimensionless space variable 𝜂versus the dimensionless temperature𝜃(𝜂). 
The curves are plotted using the Eq. (19) for various values of thermophoresis 
parameter 𝑁𝑡 and in some fixed values of 𝐿𝑒, 𝑃𝑟, 𝑁𝑏,𝑀, 𝑆, 𝐸𝑐 
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Fig. 4. Dimensionless space variable 𝜂versus the dimensionless temperature𝜃(𝜂). 
The curves are plotted using the Eq. (19) for various values of thermophoresis 
parameter 𝑁𝑡 and in some fixed values of 𝐿𝑒, 𝑃𝑟, 𝑁𝑏,𝑀, 𝑆, 𝐸𝑐 

 

 
Fig. 5. Dimensionless space variable 𝜂versus the dimensionless 
temperature𝜃(𝜂).The curves are plotted using the Eq. (19) for various 

values of Magnetic parameter 𝑀 and in some fixed values of 
𝐿𝑒, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
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Fig. 6. Dimensionless space variable 𝜂versus the dimensionless temperature 
𝜃(𝜂). The curves are plotted using the Eq. (19) for various values of Magnetic 
parameter 𝑀 and in some fixed values of 𝐿𝑒, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
 

 
Fig. 7. Dimensionless space variable 𝜂versus the dimensionless temperature 
𝜃(𝜂). The curves are plotted using the Eq. (19) for various values of Magnetic 
parameter 𝑀 and in some fixed values of 𝐿𝑒, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
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Fig. 8. Dimensionless space variable 𝜂versus the dimensionless temperature 
𝜃(𝜂) The curves are plotted using the Eq. (19) for various values of Prandtl 
number 𝑃𝑟  and in some fixed values of 𝐿𝑒, 𝑁𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 

 

 
Fig. 9. Dimensionless space variable 𝜂versus the dimensionless temperature 
𝜃(𝜂)The curves are plotted using the Eq. (19) for various values of Prandtl 
number 𝑃𝑟  and in some fixed values of 𝐿𝑒, 𝑁𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
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Fig. 10. Dimensionless space variable 𝜂versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Lewis number 𝐿𝑒 and in some fixed values of 𝑃𝑟,𝑁 𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 

 

 
Fig. 11. Dimensionless space variable 𝜂 versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Lewis number 𝐿𝑒 and in some fixed values of 𝑃𝑟,𝑁 𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
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Fig. 12. Dimensionless space variable 𝜂versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Lewis number 𝐿𝑒 and in some fixed values of 𝑃𝑟,𝑁 𝑏,𝑁𝑡, 𝑆, 𝐸𝑐 
 

 
Fig. 13. Dimensionless space variable 𝜂 versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Brownian motion parameter𝑁𝑏 and in some fixed values of 𝑃𝑟, 𝐿 𝑒, 𝑁𝑡, 𝑆, 𝐸𝑐 
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Fig. 14. Dimensionless space variable 𝜂 versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Brownian motion parameter𝑁𝑏 and in some fixed values of 𝑃𝑟, 𝐿 𝑒, 𝑁𝑡, 𝑆, 𝐸𝑐 

 

 
Fig. 15. Dimensionless space variable 𝜂 versus the dimensionless concentration 
profile 𝜑(𝜂). The curves are plotted using the Eq. (20) for various values of 
Brownian motion parameter𝑁𝑏 and in some fixed values of 𝑃𝑟, 𝐿 𝑒, 𝑁𝑡, 𝑆, 𝐸𝑐              
 

Table 1 

Comparison test results for local skin friction𝑓″(0) using Eq. (15) 
a). When 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1, 𝐿𝑒 = 10, 𝐸𝑐 = 0.0, 𝑠 = 1,𝑀 = 1 at different values of 𝑃𝑟  
b). when 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1, 𝐿𝑒 = 10, 𝑃𝑟 =1, 𝐸𝑐 = 0.0,𝑀 = 1 at different values of 𝑠 
𝑃𝑟  Numerical 

solution 
Analytical solution Error% S Numerical 

Solution 
Analytical 
solution 

Error % 

1 -1.24162 -1.24192 0.000 -10 -0.06457 -0.06559 -0.014 
3 -0.591478 -0.59106 0.001 -5 -0.1167 -0.11688 -0.0001 
10 -0.291396 -0.29127 0.000 0.5 -0.2702 -0.27051 -0.0009 
103 -0.10255 -0.10219 -0.003 5 -0.5004 -0.50164 -0.002 
105 -0.100026 -0.10012 -0.002 10 -0.8254 -0.82303 -0.001 
Average Error Percentage -0.001    -0.001 
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Table 2  
Comparison test results for reduced Nusselt number𝑁𝑢𝑟 = −𝜃′(0) with different values of  
𝑁𝑡,𝑁𝑏using the Eq. (17).  a). When 𝐿𝑒 = 1, 𝑃𝑟 =1, 𝐸𝑐 = 0.0, 𝑠 = 1,𝑀 = 1 
𝑁𝑏 𝑁𝑡 = 0.1 𝑁𝑡 = 0.3 𝑁𝑡 = 0.5 

Numerical 
solution 

Analytical 
solution 

Error% 
 

Numerical 
solution 

Analytical 
solution 

Error % Numerical 
solution 

Analytical 
solution 

Error % 

0.1 0.18658 0.18677 0.001 0.16625 0.14064 0.182 0.147136 0.11586 0.269 
0.3 0.15068 0.15042 0.001 0.13212 0.13195 0.001 0.11468 0.11461 0.000 
0.5 0.11767 0.10032 0.171 0.10078 0.10051 0.002 0.08494 0.08456 0.004 
Average error % 0.056  0.061  0.091 

Comparison test results for reduced Sherwood number  𝑠ℎ𝑟 = −𝜑′(0) with different values of 𝑁𝑡,𝑁𝑏 
using the Eq. (21), b). when 𝐿𝑒 = 1, 𝑃𝑟 =1, 𝐸𝑐 = 0.0, 𝑠 = 1,𝑀 = 1 

 
Table 3 
Comparison test results for reduced Nusselt number 𝑁𝑢𝑟 = −𝜃′(0) with different values of 
𝐸𝑐,𝑀 using the Eq. (17), a). When 𝐿𝑒 = 1, 𝑃𝑟 =1,𝑁𝑏 = 0.1, 𝑠 = 1,𝑁𝑡 = 0.1  

Comparison test results for reduced Sherwood number  𝑠ℎ𝑟 = −𝜑′(0) with different values of𝐸𝑐,𝑀, 
using the Eq. (21)  b). when 𝐿𝑒 = 1, 𝑃𝑟 =1,𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝑠 = 1 

 
5. Conclusions 

 
In this work, the effects of various physical parameters on nanofluid that MHD flow past a 

stretching surface were explored. Analytically a system of non-linear ordinary differential equations 
was solved by using q-Homotopy analysis method. The graphical results show a good fit as compared 
to numerical solution. The following results were highlighted from the findings: 

 
i) Nusselt number is a decreasing function for some  fixed value of 𝐸𝑐 = 0.01,  
ii) Sherwood number is an increasing function for variation of 𝑁𝑡 with 𝑁𝑏 by varying the 

other dimensionless parameters.  
iii) Eckert number and thermophoresis parameter improves the temperature field and 

increases the thermal boundary layer thickness.  

𝑁𝑏 𝑁𝑡 = 0.1 𝑁𝑡 = 0.3 𝑁𝑡 = 0.5 
Numerical 
Solution 

Analytical 
solution 

Error% 
 

Numerical 
solution 

Analytical 
solution 

Error % Numerical 
solution 

Analytical 
solution 

Error % 

0.1 0.32228 0.32220 0.00 0.15991 0.15906 0.005 0.05928 0.05923 0.00 
0.3 0.40331 0.39592 0.186 0.36796 0.36658 0.003 0.35122 0.35028 0.002 
0.5 0.41898 0.41834 0.001 0.40802 0.40882 -0.001 0.40711 0.40697 0.000 
Average error % 0.062  0.002  0.002 

𝑀 𝐸𝑐 = −0.01 𝐸𝑐 = 0.0 𝐸𝑐 = 0.01 
Numerical 
solution 

Analytical 
solution 

Error% 
 

Numerical 
solution 

Analytical 
solution 

Error % Numerical 
solution 

Analytical 
solution 

Error % 

0 0.59819 0.59535 0.004 0.48010 0.47800 0.004 0.36189 0.36151 0.001 
1 0.60583 0.60562 0.0003 0.39629 0.39153 0.121 0.18658 0.18618 0.002 
10 0.80447 0.80440 0.000 0.21698 0.21172 0.024 -0.37063 -0.37031 0.000 
Average error % 0.001  0.049  0.001 

𝑀 𝐸𝑐 = −0.01 𝐸𝑐 = 0.0 𝐸𝑐 = 0.01 
Numerical 
solution 

Analytical 
solution 

Error% 
 

Numerical 
solution 

Analytical 
solution 

Error % Numerical 
solution 

Analytical 
solution 

Error % 

0 0.09915 0.001 0.20295 0.20649 -0.017 0.30686 0.30195 0.016 0.001 
1 -0.06471 -0.004 0.12870 0.12441 0.034 0.32228 0.32205 0.007 -0.004 
10 -0.50287 -0.003 0.07547 0.07534 0.001 0.65395 0.65305 0.001 -0.003 
Average error % -0.002  0.006  0.008 
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iv) Prandtl number 𝑃𝑟  reduces the temperature field and decreases the thermal boundary 
layer thickness, where 𝑃𝑟 does not affect the temperature profile. 

 
Furthermore, we may extend this method to solve the physical, chemical and engineering 

sciences problems. It is anticipated that the result of this research would be applicable to a wide 
variety of technical and industrial processes. This modified q-Homotopy analysis methods gives 
excellent flexibility to the expression of the solution and how the solution is explicitly obtained, and 
provides great freedom in choosing the base function of the desired solution in MHD nanofluid. This 
method can also be used to solve other physical problems like entropy generation, nanofluid, thermal 
boundary layer etc. The HAM provided a convenient way to control the convergence of 
approximation series which is a fundamental qualitative difference in analysis between HAM and 
other methods. This shows the validity and great potential of HAM for non-linear boundary value 
problems in science and engineering. 
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