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The linear and non-linear analysis of convection in viscoelastic dielectric liquids is 
presented in the paper. The viscoelastic equation of state is the upper convected 
Jeffrey model, also known as Oldroyd-B model. The amplitude equations which 
are the Khayat-Lorenz model for the dielectric liquids is derived with the aid of 
minimal mode double Fourier series. A modified method of Venezian is applied on 
the linearized amplitude equations to obtain a correction to the threshold 
eigenvalues that determine the onset of convection. The non- linear amplitude 
equations are non-autonomous due to modulation of gravity. Hence the numerical 
computation is performed using the “ode” function in Scilab, a free and open-
source software which uses the LSODA solver. The heat transfer is quantified 
using the average Nusselt number where the average is computed using Simpsons 

(
3

8
)

𝑡ℎ
rule. The effect of different parameters and viscoelastic models on heat 

transfer is discussed.  
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1. Introduction 
 

Dielectric liquids owing to its high electrical resistance, finds its application in many fields. 
Some of them are stated by Bhavya et al., [1]. The applications of viscoelastic liquids in 
engineering and industry have resulted in significant research in the field. Control of heat 
transfer through convection in liquids is an important industrial application. 

The linear and non-linear theory of Rayleigh–Bénard convection of viscoelastic liquids has been 
reported by Green [2], Eltayeb [3], Rosenblat [4], Malashetty and Swamy [5] and references 
therein. A comparative study on the onset of oscillatory convection in different viscoelastic 
liquids was reported by Siddheshwar et al., [6] and concluded that Maxwell liquid to be the most 
unstable liquid. Alhushaybari and Uddin [7] discussed the absolute instability and convection 
under the effect of g-jitter for a viscoelastic liquid jet. Recent work by Ewis [8] discussed about 
the natural convection in viscoelastic liquids and study of heat transfer.  Shawky et al., [9] studied 
the impact of heat and mass transfer on a non-Newtonian nanofluid. 
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The early work of Stiles [10] discusses the convection in dielectric liquid in the presence of 
electric field. Siddheshwar and Pranesh [11] studied the delayed convection under the action 
of gravity modulation in a weakly electrically conducting magnetic fluid. Siddheshwar and Abraham 
[12] have reported the influence of time-periodic body force on convective instability in a 
dielectric liquid. Temperature and electric dominance on heat transport in a Newtonian dielectric 
liquid with field-dependent viscosity was reported by Siddheshwar et al., [13]. 

The onset of convection influenced by AC electric field and viscoelasticity has been reported 
by Takashima and Ghosh [14] and Othman [15]. The study by Agrait and Castellanos [16] 
highlights the influence of an AC field on convection in viscoelastic dielectric liquid. Othman 
and Sweilam [17] discussed the internal heating effects on convective instability of a viscoelastic 
dielectric liquid. The stabilizing effect of rotation on convection in a dielectric liquid of the 
viscoelastic type was reported by Othman [18]. 

The presence of vertical vibration results in time-periodic modulations of the body force and 
is termed as g-jitter or gravity modulation. The control of heat transfer externally(modulation) 
has been reported by Gresho and Sani [19], Wadih et al., [20], Malashetty and Padmavathi [21], 
Gaikwad and Irfana [22], Bhadauria and Kiran [23], Swamy et al., [24] and Siddheshwar et 
al.,  [25]. A study on thermal instability under the influence of temperature/gravity modulation 
for   a rotating viscous fluid has been reported by Bhadauria et al., [26]. The recent work by Kiran 
[27] throws light on the influence of gravity modulation in heat and mass transfer for a 
viscoelastic fluid layer. A nonlinear stability analysis was performed by Gaikwad and Rangdal 
[28] on non-Newtonian fluids under the influence of gravity modulation. 

However, the above-mentioned studies do not address the impact of g-jitter on convective 
instability in dielectric liquids of viscoelastic type. The paper presents the onset and post onset 
convective regimes with the consideration g-jitter and viscoelasticity. 
 
2. Mathematical Formulation 

 
An infinite horizontal layer of dielectric liquid is confined between the boundaries separated 

by distance ‘ℎ’ units. The boundaries are free of tangential stresses and maintained at constant 
temperature. The lower boundary is maintained at higher temperature than the upper boundary. 

The system is subjected to time-periodic body force and hence �⃗⃗⃗� = 𝑔0{1+𝛽𝑐𝑜𝑠(𝜔𝑡)}𝑘
∧

, 
where 𝑔0 is the unmodulated acceleration due to gravity, 𝛽 is the amplitude and 𝜔 is the 
frequency of modulation. An external alternating current (AC) field is applied to the system in 
an upward direction. The physical representation of the problem considered is illustrated in 
Figure 1. 

 

 
Fig. 1. Schematic of the flow configuration 

     



CFD Letters 

Volume 15, Issue 11 (2023) 151-168 

153 
 

The equations governing the physical phenomena under consideration are as stated by 
Siddheshwar and Radhakrishnan [29]: 

 
𝛻. 𝑞 = 0,                          (1) 
 

𝜌0 [
𝜕�⃗� 

𝜕𝑡
+ (𝑞 . 𝛻)𝑞 ] = −𝛻𝑝 − 𝜌𝑔0(1 + 𝛽 𝑐𝑜𝑠 𝜔 𝑡)𝑘

^

+ (�⃗� . 𝛻)�⃗� + 𝛻. 𝑇
~

,                  (2) 

 

𝜌0𝐶𝑉𝐸 [
𝜕𝑇

𝜕𝑡
+ (𝑞 . 𝛻)𝑇] = 𝜅1𝛻

2𝑇,                       (3) 

 
𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)],                        (4) 
 
where 𝑞 = (𝑢, 𝑣, 𝑤)- velocity, t – time, 𝑝 – pressure, 𝑔 = (0,0, −𝑔)- acceleration due to gravity,  

𝜌0- reference density,  𝜌 – density, �⃗�  - dielectric polarization, �⃗�  - electric field, 𝑇
∼

 - liquid stress 

tensor, 𝐶𝑉𝐸 - specific heat capacity, 𝑇 – temperature, 𝜅1 - thermal conductivity, 𝛼 - coefficient of 
thermal expansion.  

Viscoelastic equation of state for the upper - convected Jeffrey model is given by 
 

(1 + 𝜆1
𝜕

𝜕𝑡
)𝑇

~
= (1 + 𝜆2

𝜕

𝜕𝑡
) [𝜇(𝛻𝑞 + 𝛻𝑞 𝑇)],                      (5) 

 
where 𝜆1- stress relaxation time, 𝜆2 - strain retardation time and 𝜇 – Viscosity. 

The electric field equations for a dielectric liquid in the presence of AC electric field, takes 
the form: 

 

𝛻. �⃗⃗� = 0, 𝛻 × �⃗� = 0,                         (6) 
 

�⃗⃗� = 𝜀0�⃗� + �⃗� , �⃗� = 𝜀0(𝜀𝑟 − 1)�⃗� ,                       (7) 
 
𝜀𝑟 = 𝜀𝑟

0 − 𝑒(𝑇 − 𝑇0),                        (8) 
 

where �⃗⃗�  - electric displacement, 𝜀0 – electric permittivity, 𝜀𝑟- relative permittivity and 𝑒 – positive 
free charge. 

Boundary conditions on velocity, temperature and electric field are given by: 
 
𝑇 = 𝑇0 + 𝛥𝑇   at 𝑧 = 0,                        (9) 
 
𝑇 = 𝑇0   at 𝑧 = ℎ,                      (10) 
 
𝑞 = 0 at 𝑧 = 0 and 𝑧 = ℎ,                      (11) 
 

(�⃗⃗� 𝑖𝑛𝑡 𝑒𝑟𝑛𝑎𝑙 − �⃗⃗� 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙). �⃗� = 0 at 𝑧 = 0 and 𝑧 = ℎ,                   (12) 

 

(�⃗� 𝑖𝑛𝑡 𝑒𝑟𝑛𝑎𝑙 − �⃗� 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) × �⃗� = 0 at 𝑧 = 0 and 𝑧 = ℎ.                  (13)  

 

Operating (1 + 𝜆1
𝜕

𝜕𝑡
) on Eq. (2) and using Eq. (5), we get  
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𝜌0 (1 + 𝜆1

𝜕

𝜕𝑡
) [

𝜕𝑞 

𝜕𝑡
+ (𝑞 . 𝛻)𝑞 ] = (1 + 𝜆1

𝜕

𝜕𝑡
) [−𝛻𝑝 − 𝜌𝑔0(1 + 𝛽 𝑐𝑜𝑠(𝜔𝑡))𝑘

^

+ (�⃗� . 𝛻)�⃗� ] 

+(1 + 𝜆2
𝜕

𝜕𝑡
) [𝛻2𝑞 ].                                                                                     (14) 

 
2.1 Conduction State 

 
The conduction state is a motionless state and all the physical parameters are varying 

only along the z-axis and hence all the physical quantities are assumed to be functions of 𝑧. In 
view of this, the quiescent state solutions are: 
 
𝑞 𝑏 = (0,0,0),                        (15) 
 

𝜌𝑏(𝑧) = 𝜌0 [1 − 𝛼 (1 −
𝑧

ℎ
) 𝛥𝑇],                     (16) 

 

𝑇𝑏(𝑧) = 𝑇𝑜 + (1 −
𝑧

ℎ
)𝛥𝑇,                      (17) 

 

𝐸𝑏(𝑧) =
𝐸0(1+𝜒𝑒)

𝜀𝑟𝑏
,                       (18) 

 
𝐷𝑏(𝑧) = 𝜀0𝜀𝑟𝑏𝐸𝑏(𝑧),                       (19) 
 

𝑃𝑏(𝑧) = 𝜀0𝐸0(1 + 𝜒𝑒) [1 −
1

𝜀𝑟𝑏
],                     (20) 

 

where 𝜒𝑒 - electric susceptibility and 𝜀𝑟𝑏 = (1 + 𝜒𝑒) +
𝑒𝛥𝑇

ℎ
(𝑧 − ℎ), 

 
3. Stability Analysis 

 
The system in the quiescent state is superposed with infinitesimally small disturbances.  Hence 

all the physical quantities 𝑓 are expressed as 𝑓 = 𝑓𝑏 + 𝑓′  where 𝑓𝑏 is the conduction state solution 
given by Eq. (15) to Eq. (20). As a result, 
 
𝑃1

′ = −𝑒 𝜀0 𝐸1
′𝑇′ + 𝜀0𝜒𝑒𝐸1

′,                                (21) 
 
𝑃3

′ = −𝑒 𝜀0 𝐸3
′𝑇′ + 𝜀0𝜒𝑒𝐸3

′ − 𝑒𝜀0𝑇
′𝐸0,                    (22) 

 
under the assumption 𝑒𝛥𝑇 << (1 + 𝜒𝑒). 

The Eq. (1) to Eq. (4) are nondimensionalized using the characteristic quantities as follows: 
 

𝑡∗ =
𝑡′

ℎ2/𝜅
 , 𝑥∗ =

𝑥

ℎ
 , 𝑧∗ =

𝑧

ℎ
 , 𝑇∗ =

𝑇−𝑇0

𝛥𝑇
, 𝜔∗ =

ℎ2

𝜅
𝜔′,  𝜓∗ =

𝜓

𝜅
 , 𝜙∗ =

𝜙′(1+𝜒𝑒)

𝑒𝐸0𝛥𝑇ℎ
, 𝛬1 =

𝜆1𝜅

ℎ2  and 𝛬2 =
𝜆2𝜅

ℎ2 .  

 

The configuration considered renders the flow to be two-dimensional and hence 
 𝜕

𝜕𝑦
= 0. In view 

of this and Eq. (1), we get 𝑞 = 𝛻 × 𝜓(𝑥, 𝑧)𝑗
^

 where 𝜓(𝑥, 𝑧) is the stream function. The resulting 

dimensionless equations are obtained by introducing the electric potential 𝜙. Further, the 𝑗 
∧
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component of curl of Eq. (14) can be decomposed as explained by Siddheshwar et al., [6] and are 
obtained as: 

1

𝑃𝑟

𝜕

𝜕𝑡
(𝛻2𝜓) =

1

𝑃𝑟

𝜕(𝜓, 𝛻2𝜓)

𝜕(𝑥, 𝑧)
− [𝑅(1 + 𝛽 cos(𝜔𝑡)) + 𝑅𝐿]

𝜕𝑇

𝜕𝑥
+ 𝑅𝐿

𝜕 (𝑇,
𝜕𝜙
𝜕𝑧

)

𝜕(𝑥, 𝑧)
 

+𝑅𝐿
𝜕2𝜙

𝜕𝑥𝜕𝑧
+ 𝑀 + 𝛬𝛻4𝜓,                                                                                                                        (23) 

 

−𝛬1
𝜕𝑀

𝜕𝑡
= 𝑀 − 𝛻4𝜓 + 𝛬𝛻4𝜓.                     (24) 

 
Eq. (3) and Eq. (6) reduces to the following: 

 
𝜕𝑇

𝜕𝑡
= 𝛻2𝑇 −

𝜕𝜓

𝜕𝑥
+

𝜕(𝜓,𝑇)

𝜕(𝑥,𝑧)
,                      (25) 

 

0 = 𝛻2𝜙 −
𝜕𝑇

𝜕𝑧
.                       (26) 

 
Eq. (23) to Eq. (26) are solved subject to 

 

𝜓 = 𝛻2𝜓 = 𝑇 =
𝜕𝜙

𝜕𝑧
= 0 at 𝑧 = 0,1.                     (27) 

 

where 𝛻2 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2. 

In the process of non-dimensionalization, we obtain the following dimensionless parameters: 

the Prandtl number 𝑃𝑟 =
𝜇

𝜌0𝜅
, thermal Rayleigh number 𝑅 =

𝜌0𝛼𝑔𝛥𝑇ℎ3

𝜇𝜅
, electric number 𝐿 =

𝜀0𝑒2(𝐸0)2𝛥𝑇

𝛼𝑔𝜌0(1+𝜒𝑒)ℎ
  as defined by Siddheshwar and Radhakrishnan [29], the non-dimensional stress 

relaxation parameter 𝛬1 =
𝜆1𝜅

ℎ2 , non-dimensional strain retardation parameter 𝛬2 =
𝜆2𝜅

ℎ2  and 𝛬 =
𝛬2

𝛬1
. 

 
3.1 Khayat-Lorenz Model 

 
The normal mode analysis is performed by solving Eq. (23) to Eq. (26) through periodic 

form    solutions given below which satisfies Eq. (27). 
 
𝜓(𝑥, 𝑧, 𝑡) = 𝐴(𝑡) sin(𝑘𝑥) sin(𝜋𝑧),                     (28) 
 
𝑇(𝑥, 𝑧, 𝑡) = 𝐵(𝑡) cos(𝑘𝑥) sin(𝜋𝑧) + 𝐶(𝑡) sin(2𝜋𝑧),                  (29) 
 
𝑀(𝑥, 𝑧, 𝑡) = 𝐷(𝑡) sin(𝑘𝑥) sin(𝜋𝑧),                     (30) 
 
𝜙(𝑥, 𝑧, 𝑡) = 𝐸(𝑡) cos(𝑘𝑥) cos(𝜋𝑧) + 𝐹 cos(2𝜋𝑧).                   (31) 

 
Projecting the equations Eq. (28) to Eq. (31) onto the equations Eq. (23) to Eq. (26) and 

applying the orthogonality conditions over the domain (𝑥, 𝑧) ∈ [0,
2𝜋

𝑘
] × [0,1] yields the system 

of non-autonomous differential equations given by: 
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1

𝑃𝑟

𝑑𝐴

𝑑𝑡
= −𝛬𝐴𝜂2 +

𝑅𝑘𝐵

𝜂4
[𝜂2 + 𝑘2𝐿] +

𝑅𝐿𝜋𝑘3

𝜂4
𝐵𝐶 +

𝑅𝑘𝛽 cos(𝜔𝑡)

𝜂2
𝐵 −

𝐷

𝜂2
,                 (32) 

 
𝑑𝐵

𝑑𝑡
= 𝑘𝐴 − 𝜂2𝐵 + 𝑘𝜋𝐴𝐶,                      (33) 

 
𝑑𝐶

𝑑𝑡
= −4𝜋2𝐶 −

𝑘𝜋𝐴𝐵

2
,                       (34) 

 
𝑑𝐷

𝑑𝑡
=

1−𝛬

𝛬1
𝜂4𝐴 −

𝐷

𝛬1
,                       (35) 

 
where 𝜂2 = 𝜋2 + 𝑘2. 

The above differential equations do not contain the amplitudes and 𝐹 explicitly as equation Eq. 

(26) is independent of time.  Eq. (26) results in 𝐸 =
−𝜋𝐵

𝜂2
 and 𝐹 = −

𝐶

2𝜋
.  The Khayat-Lorenz model for 

dielectric liquids Eq. (32) to Eq. (35) is then suitably scaled by using the transformations 𝜏 = 𝜂2𝑡, 𝑋 =
𝐴𝑘𝜋

√2𝜂2, 𝑌 =
𝐵𝜋𝑟

√2
, 𝑍 = −𝜋𝑟𝐶 and 𝑁 =

𝑘𝜋𝐷

√2(1−𝛬)𝜂6 where 𝑟 =
𝑅

𝑅𝑠
,  𝑅𝑠 =

𝜂8

𝑘2[𝜂2+𝑘2𝐿]
, 𝑀𝐿 =

𝜋𝐿𝑘2

𝜂2+𝑘2𝐿
 and  𝛺 =

𝜔

𝜂2. Thus, the scaled Khayat-Lorenz model for dielectric liquid is: 

 
𝑑𝑋

𝑑𝜏
= 𝑃𝑟 [−𝛬𝑋 + 𝑌 (1 −

𝑀𝐿𝑍

𝜋𝑟
) +

𝜂2

𝜂2+𝑘2𝐿
𝛽 cos(𝛺𝜏)𝑌 − (1 − 𝛬)𝑁],                 (36) 

 
𝑑𝑌

𝑑𝜏
= 𝑟𝑋 − 𝑌 − 𝑋𝑍,                       (37) 

 
𝑑𝑍

𝑑𝜏
= −

4𝜋2

𝜂2 𝑍 + 𝑋𝑌,                       (38) 

 
𝑑𝑁

𝑑𝜏
=

1

𝛬1𝜂2
(𝑋 − 𝑁).                       (39) 

 
3.2 Linear Stability Analysis 

 
The linear stability analysis is performed on Eq. (36) to Eq. (39) by ignoring the non-

linear   terms. Hence, we obtain 
 
𝑑𝑋

𝑑𝜏
= −𝛬 𝑃𝑟 𝑋 + 𝑃𝑟 𝑌 [1 +

𝜂2

𝜂2+𝑘2𝐿
𝛽 𝑐𝑜𝑠(𝛺𝜏)] − (1 − 𝛬)𝑁𝑃𝑟,                  (40) 

 
𝑑𝑌

𝑑𝜏
= 𝑟𝑋 − 𝑌,                        (41) 

 
𝑑𝑍

𝑑𝜏
= −

4𝜋2𝑍

𝜂2 ,                        (42) 

 
𝑑𝑁

𝑑𝜏
=

1

𝛬1𝜂2
(𝑋 − 𝑁).                        (43) 

 
3.2.1 Limiting case 

 
The linear system of equations under the particular case of  
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|
𝜂2

𝜂2+𝑘2𝐿
𝛽 𝑐𝑜𝑠(𝛺𝜏)| ≪ 1,                      (44)

  
reduces to Eq. (45) to Eq. (48). 
 
𝑑𝑋

𝑑𝜏
= −𝛬 𝑃𝑟 𝑋 + 𝑃𝑟 𝑌 − (1 − 𝛬)𝑁𝑃𝑟,                     (45) 

 
𝑑𝑌

𝑑𝜏
= 𝑟𝑋 − 𝑌,                        (46) 

 
𝑑𝑍

𝑑𝜏
= −

4𝜋2𝑍

𝜂2
,                        (47) 

 
𝑑𝑁

𝑑𝜏
=

1

𝛬1𝜂2
(𝑋 − 𝑁).                        (48) 

 
The above mathematical system is a system of linear equations representing the 

unmodulated case and hence can be resolved analytically. The linear solution is obtained by 
substituting Eq. (46) and Eq. (48) in Eq. (45) to obtain: 
 

[𝐷3 + 𝐷2 (
1

𝛬1𝜂2 + 𝛬𝑃𝑟 + 1) + 𝐷 (
1

𝛬1𝜂2 + 𝛬𝑃𝑟 − 𝑟𝑃𝑟 +
𝑃𝑟

𝛬1𝜂2) − (
𝑟𝑃𝑟

𝛬1𝜂2 −
𝑃𝑟

𝛬1𝜂2)] 𝑋 = 0,              (49) 

 

where 𝐷 =
𝑑

𝑑𝜏
 is the differential operator. 

The solution of Eq. (45) to Eq. (48) is given by  
 
𝑋(𝜏) =  𝑐1𝑒

𝑚1𝜏 + 𝑐2𝑒
𝑚2𝜏 + 𝑐3𝑒

𝑚3𝜏                     (50) 
 

𝑌(𝜏) =  𝑐4𝑒
−𝜏 + 𝑟 [

𝑐1𝑒𝑚1𝜏

𝑚1+1
+

𝑐2𝑒𝑚2𝜏

𝑚2+1
+

𝑐3𝑒𝑚3𝜏

𝑚3+1
]                   (51) 

 

𝑍(𝜏) =  𝑐5𝑒
−4𝜋2𝜏

𝜂2                        (52) 
 

𝑁(𝜏) =  𝑐6𝑒
−

𝜏

𝛬1𝜂2 +
1

𝛬1𝜂2  [
𝑐1𝑒𝑚1𝜏

𝑚1+
1

𝛬1𝜂2

+
𝑐2𝑒𝑚2𝜏

𝑚2+
1

𝛬1𝜂2

+
𝑐3𝑒𝑚3𝜏

𝑚3+
1

𝛬1𝜂2

]                  (53) 

 
where 𝑚1, 𝑚2 and 𝑚3 are the roots of the differential Eq. (49) and 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 and 𝑐6 are 
arbitrary constants which are obtained by evaluating the boundary conditions given by Eq. (73).  

It is interesting to observe that |
𝜂2

𝜂2+𝑘2𝐿
𝛽 𝑐𝑜𝑠(𝛺𝜏)| ≪ 1 provided 𝛽 ≪

𝜂2+𝑘2𝐿

𝜂2
.  On estimating the 

right-hand side of the inequality, it is found that it is of order 𝑂(10−2) and Eq. (44) is the condition 
under which the modulation effect is negligible and 𝑔0 is the effect of nonlinear terms. 
 
3.2.2 Correction Rayleigh number 

 
Eq. (40) to Eq. (43) is a system of linear equations representing the modulated case.  Eq. (42) 

does not have terms which are coupled with any of the amplitudes and therefore can be solved 
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independently. However, the equations Eq. (40), Eq. (41) and Eq. (43) are solved by expanding   
the amplitudes 𝑋, 𝑌,𝑁and the scaled Rayleigh number 𝑟 in terms of amplitude 𝛽 as given below: 
 
𝑋 = 𝑥0 + 𝛽𝑥1 + 𝛽2𝑥2+. . . . . . ..,                     (54) 
 
𝑌 = 𝑦0 + 𝛽𝑦1 + 𝛽2𝑦2+. . . . . . . ..,                     (55) 
 
𝑁 = 𝑛0 + 𝛽𝑛1 + 𝛽2𝑛2+. . . . . . . ..,                     (56) 
 
𝑟 = 𝑟0 + 𝛽𝑟1 + 𝛽2𝑟2+. . . . . . . ..….                     (57) 

 
Substituting the Eq. (54) to Eq. (57) in Eq. (40) to Eq. (43), we get the following equations by 

equating the like powers of 𝛽. 
 

𝑂(𝛽0): 𝐼𝑊0 = 0,                       (58) 
 
𝑂(𝛽1): 𝐼𝑊1 = [𝑅21 𝑅22 𝑅23]

𝑇,                     (59) 
 
𝑂(𝛽2): 𝐼 𝑊2 = [𝑅31 𝑅32 𝑅33]

𝑇,                     (60) 
 

𝐼 =

[
 
 
 
 −

𝑑

𝑑𝜏
− 𝛬𝑃𝑟 𝑃𝑟 −(1 − 𝛬)𝑃𝑟

𝑟0 −1 −
𝑑

𝑑𝜏
0

1

𝛬1𝜂2 0 −
1

𝛬1𝜂2 −
𝑑

𝑑𝜏 ]
 
 
 
 

,                    (61) 

 
where 𝐼 and 𝑊𝑖 (𝑖 = 0,1,2)are the operators while T represents the transpose. 
 

𝑅21 =
−𝑃𝑟 𝜂2

𝜂2+𝑘2𝐿
(𝑐𝑜𝑠 𝛺 𝜏)𝑦0;   𝑅22 = −𝑟1𝑥0;   𝑅23 = 0,               (62) 

 

𝑅31 =
−𝑃𝑟 𝜂2

𝜂2+𝑘2𝐿
(𝑐𝑜𝑠 𝛺 𝜏)𝑦1;  𝑅32 = −𝑟2𝑥0 − 𝑟1𝑥1;  𝑅33 = 0.               (63) 

 

Typically, for the stationary mode of convection, 
𝑑

𝑑𝜏
= 0. Therefore, the marginal stability 

analysis at 𝑂(𝛽0) yields 
 

𝑊0 = [

𝑥0

𝑦0

𝑛0

] = [

𝑥0

𝑟0𝑥0

𝑥0

],                       (64) 

 
with 𝑟0 = 1. The operator 𝐼(𝜏) is rewritten in terms of frequency following Venezian [30] 
as given below: 
 

𝐼(𝛺) = [

−𝑖𝛺 − 𝛬𝑃𝑟 𝑃𝑟 −(1 − 𝛬)𝑃𝑟
𝑟0 −1 − 𝑖𝛺 0
1

𝛬1𝜂2 0 −
1

𝛬1𝜂2 − 𝑖𝛺
]                   (65) 
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Substitution of Eq. (65) in Eq. (59) results in 
 

(−𝑖𝛺 − 𝛬𝑃𝑟)𝑥1 + 𝑃𝑟 𝑦1 − (1 − 𝛬)𝑃𝑟 𝑛1 =
−𝑃𝑟 𝜂2𝑦0

𝜂2+𝑘2𝐿
𝑐𝑜𝑠(𝛺𝜏),                 (66)

 
 
𝑟0𝑥1 − (1 + 𝑖𝛺)𝑦1 = −𝑟𝑥0,                      (67)

 
 
𝑥1

𝛬1𝜂2
− (

1

𝛬1𝜂2
+ 𝑖𝛺)𝑛1 = 0.                      (68) 

 

where the bar over cos(Ω𝜏) is the time-average over [0,
2𝜋

𝛺
]. 

In view of Venezian [30], 𝑟1 = 0 and hence 
 

𝑥1 =
𝑃𝑟 𝜂2

(𝜂2+𝑘2𝐿)(−𝑖𝛺−𝛬 𝑃𝑟 +
𝑃𝑟

1+𝑖𝛺
−

(1−𝛬)𝑃𝑟

𝑖𝛺
)
cos(𝛺𝜏); 𝑦1 =

𝑥1

1+𝑖𝛺
 and 𝑛1 =

𝑥1
𝛬1𝜂2

(
1

𝛬1𝜂2+𝑖𝛺)
.                  (69) 

 

The Fredholm solvability condition as stated in Siddheshwar et al., [31] yields 𝑅31𝑥0

∧
+

𝑅32𝑦0

∧
+ 𝑅33𝑛0

∧
= 0 where 𝑥0

∧
, 𝑦0

∧
 and 𝑛0

∧
 are the adjoint solutions of system. 

 

[

−𝛬1𝑃𝑟 𝑃𝑟 −(1 − 𝛬)𝑃𝑟
𝑟0 −1 0
1

𝛬1𝜂2 0 −
1

𝛬1𝜂2

]

𝑇

[

𝑥0

𝑦0

𝑛0

] = 0.                    (70) 

 

Thus, �̂�0 = 𝑃𝑟 �̂�0 and  �̂�0 = −𝛬1𝜂
2(1 − 𝛬)𝑃𝑟 �̂�0 where �̂�0 = 1. Substituting of  𝑥0

∧
, 𝑦0

∧
 and 𝑛0

∧
 in 

the solvability condition results in 
 

𝑟2 = 𝑅𝑒 [
−𝜂2(𝑐𝑜𝑠(𝛺𝜏))𝑥1

(𝜂2+𝑘2𝐿)(1+𝑖𝛺)
],                      (71) 

 
where 𝑅𝑒 denotes the real part. Ignoring terms of 𝑂 > 𝛽2 in Eq. (57), we get  
 
𝑟 = 𝑟0 + 𝛽2𝑟2.                        (72) 

 
In view of equation Eq. (72), 𝑟2is a correction to the Rayleigh number. The critical values of 

𝑟2 for different parameters are obtained using 𝑟2𝑐 = 𝑟2(𝑘𝑐) following Venezian [30]. 
 
3.3 Non-Linear Analysis 

 
The non-linear study primarily concentrates on the estimation of heat transport. The scaled 

Khayat-Lorenz model for dielectric liquid given by Eq. (36) to Eq. (39) is solved numerically 
subjected to the initial condition 
 

(𝑋(0), 𝑌(0), 𝑍(0), 𝑁(0)) = (3,3,3,3).                                      (73) 

 
The numerical solutions thus obtained are used to calculate the Nusselt number, the ratio of 

heat transfer through convection to heat transfer through conduction. Hence 
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8 

𝑁𝑢 = 1 + [
𝑘

2𝜋
∫    

𝜕𝑇

𝜕𝑧 
 𝑑𝑥

2𝜋/𝑘
0

𝑘

2𝜋
∫   

𝜕𝑇𝑏
𝜕𝑧

  𝑑𝑥
2𝜋/𝑘
0

]
𝑧=0

= 1 − 2𝜋𝐶 = 1 +
2

𝑟
𝑍.                  (74) 

 
Further, the average Nusselt number is computed as 

 

𝑁𝑢(𝜏) =
1

𝑏−𝑎
∫ (1 +

2

𝑟
𝑍) 𝑑𝜏

𝑏

𝑎
.                     (75) 

 
4. Results and Discussion 

 
The current study deals with the study of linear and non-linear stability analysis in a dielectric 

liquid under the influence of gravity modulation and an AC field. The liquid properties are 
characterized by the dimensionless parameters 𝐿 and 𝑃𝑟 whereas the effect of electric field 
is manifested by the electric number 𝐿. The influence of g-jitter is regulated through the 
modulation frequency, 𝛺 and the amplitude, 𝛽. The impact of the above parameters on the 
onset of convection and heat transfer for Jeffrey, Newtonian and Maxwell dielectric liquid has 
been discussed. The presence of gravity modulation renders system of differential equations Eq. 
(40) to Eq. (43) to be a non-autonomous system of differential equations. Hence, they are solved 
numerically using the “ode” function in Scilab, a free and open-source software. The default 
setup in the “ode” function uses the LSODA solver from the ODE pack.  Heat transfer is 

quantified by the average Nusselt number and computed using Simpson’s (
3

8
)
𝑡ℎ

rule for 

evaluating Eq. (75). The domain for the parameters defining the viscoelasticity as stated by 
Melson et al., [32] is given by Table 1. 
 

Table 1 
Parametric domain for viscoelastic models 
𝛬1 = 𝛬2 Newtonian dielectric liquid 
𝛬1 > 0and 𝛬2 = 0 Maxwell dielectric liquid 
𝛬1 > 0and 𝛬2 > 0 Jeffrey dielectric liquid 

 
The influence of g-jitter is expressed through the plots of frequency of modulation versus the 

critical scaled correction Rayleigh number, 𝑟2𝑐 Figure 2 to Figure 7 for the Jeffrey, Newtonian 
and Maxwell dielectric liquids with variation of parameters 𝐿 and 𝑃𝑟.  

It is observed that for the Jeffrey dielectric liquid Figure 2 and Figure 3 and the Newtonian 
dielectric liquid Figure 4 and Figure 5 the correction scaled Rayleigh number remains positive 
throughout with the variation in parameters 𝐿, 𝑃𝑟 and 𝛺.  
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Fig. 2. Frequency (𝜴) dependence of scaled correction Rayleigh number 
𝒓𝟐𝒄 for Jeffrey dielectric liquid with variations in 𝑳 

 
This indicates that the modulation frequency stabilizes the system by delaying the onset of 

convection. The effect of frequency of modulation is significant at moderate values only. At very 
high values of 𝛺, 𝑟2𝑐 tends to zero. Increasing values of 𝐿 results in decreasing values of 𝑟2𝑐 which 
indicates reducing supercritical region. This in turn indicates that the effect of modulation is 
insignificant at high values of 𝐿. An opposite effect is seen with an increase in Prandtl number, 
𝑃𝑟 that is, increasing 𝑃𝑟 results in increasing 𝑟2𝑐 hence an increase in the supercritical region 
which indicates that the system is more stable at higher values of 𝑃𝑟. 
 

 
Fig. 3. Frequency (𝜴) dependence of scaled correction Rayleigh number 𝒓𝟐𝒄 
for Jeffrey dielectric liquid with variations in 𝑷𝒓 

 
In Figure 4 and Figure 5, the Newtonian dielectric liquid also shows the same result as 

noted in the Jef frey dielectric liquid for increasing value of electric buoyancy, 𝐿 whereas a mixed 
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behavior is noticed with increase in 𝑃𝑟. For Newtonian dielectric liquid, increasing 𝑃𝑟 results 
in thinning    of supercritical region for 𝛺 > 12. However, the effect of 𝑃𝑟 is opposite for   𝛺 >
12. A similar result is found in Siddheshwar and Kanchana [25] which states that with the 
increase in 𝑃𝑟, the critical scaled correction Rayleigh number decreases thereby 
destabilizing the system. 

 

 
Fig. 4. Frequency (𝜴) dependence of scaled correction Rayleigh number 
𝒓𝟐𝒄 for Newtonian dielectric liquid with variations in 𝑳 
 

 
Fig. 5. Frequency (𝜴) dependence of scaled correction Rayleigh number 
𝒓𝟐𝒄 for Newtonian dielectric liquid with variations in 𝑷𝒓 
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Fig. 6. Frequency (𝜴) dependence of scaled correction Rayleigh number 
𝒓𝟐𝒄 for Maxwell dielectric liquid with variations in 𝑳 

 

 
Fig. 7. Frequency (𝜴) dependance of scaled correction Rayleigh number 
𝒓𝟐𝒄 for Maxwell dielectric liquid with variations in 𝑷𝒓 

 
The Maxwell dielectric liquid shows different behaviour as compared to the Jeffrey and the 

Newtonian dielectric liquid. It is observed that, with the increase in frequency of modulation, the 
correction scaled Rayleigh number initially increases and then decreases for different values of 
𝐿 and a mixed behaviour is noted as we increase the Prandtl number, 𝑃𝑟. In a Maxwell’s 
dielectric liquid, for 0 < 𝛺 < 3.86, modulation advances the onset of convection. Further 
increase in 𝛺 delays the onset of convection. 

Now the discussion pertains to non-linear stability and heat transport. The solution of 
dynamical system of Eq. (36) to Eq. (39) show oscillatory behaviour which hampers the 
observations on the impact of different parameters on heat transport measured through Nusselt 

number, 𝑁𝑢(𝜏). Hence time averaged Nusselt number, 𝑁𝑢(𝜏) is used to quantify heat transport. 
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Figure 8 shows that increasing values of electric buoyancy, 𝐿 results in reduced heat transfer 

indicated by decreasing values of 𝑁𝑢(𝜏) . Heat transport decreases with increasing 𝐿 and the 
Newtonian fluid shows the highest heat transfer and the Jeffrey fluid the least. 

 

 
Fig. 1. Plot of 𝑵𝒖 versus 𝑳 with 𝑷𝒓 =𝟏𝟎, 𝒓 = 𝟓, 𝜷 = 𝟎. 𝟐 

 
Figure 9 shows the impact of Prandtl number, 𝑃𝑟 on heat transport. A decrease in heat 

transfer is seen with an increase in 𝑃𝑟. On a comparative note, a similar result is observed that 
is the Newtonian fluid shows the highest heat transfer and the Jeffrey fluid the least. 
 

 
Fig. 9. Plot of 𝑵𝒖 versus 𝑷𝒓 with 𝑳 = 𝟏𝟎, 𝒓 = 𝟓, 𝜷 = 𝟎 

 
In Figure 10, it is noticed that with an increase in the scaled Rayleigh number, the heat 

transfer      gets enhanced. Newtonian fluid shows more heat transfer than the Jeffrey fluid and 
Maxwell fluid.  
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Fig. 10. Plot of 𝑵𝒖 versus 𝒓 with 𝑳 = 𝟏𝟎, 𝑷𝒓 = 𝟏𝟎, 𝜷 = 𝟎. 𝟐 

 
Further, Figure 11 highlights the influence of stress relaxation parameter on heat transfer 

with and without modulation. An increasing value of 𝛬1 results in reduced heat transport in 
the presence (𝛽 ≠ 0)  as  well as the absence (𝛽 = 0)of gravity modulation. 
 

 
Fig. 11. Plot of 𝑵𝒖 versus 𝜦𝟏 with 𝑳 = 𝟏𝟎, 𝒓 = 𝟓, 𝑷𝒓 =𝟏𝟎 

 

A similar result is noted in Figure 12 for the elasticity ratio (𝛬 =
𝛬2

𝛬1
). Heat transfer reduces with 

increasing values of elasticity ratio 𝛬 or strain retardation parameter 𝛬2. Thus, i t  can be 
inferred that the effect   of modulation with an increase in viscoelastic parameters results in the 
reduced heat transfer. 
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Fig. 12. Plot of 𝑵𝒖 versus 𝜦 with 𝑳 = 𝟏𝟎, 𝒓 = 𝟓, 𝑷𝒓 =𝟏𝟎 

 
5. Conclusion  

 
The gravity modulation effect on convection and heat transfer in a dielectric liquid has been 

investigated. The linear stability analysis results in a correction scaled Rayleigh number which 
indicates the existence of supercritical/subcritical region. The non-linear theory results in a non-
autonomous system of equations, the limiting case of which yields Lorenz-like model. The results of 
Jeffrey, Newtonian and Maxwell dielectric liquids are obtained as special cases. 

i. The gravity modulation results in super-critical region in the case of Newtonian and Jeffrey 
dielectric liquid. In the Maxwell dielectric liquid, a sub-critical region is observed for 0 <
𝛺 < 3.86 and a super-critical region for  Ω >  3.86. 

ii. The impact of modulation frequency, Ω is observed for moderate values. At high values 
of Ω, the super-critical/sub-critical region almost vanishes. 

iii. Increasing values of 𝐿 leads to shrinking of the super-critical region in Jeffery and 
Newtonian dielectric liquid. 

iv. A mixed behaviour is observed in 𝑟2𝑐for the variations in 𝑃𝑟. 
v. The scaled correction Rayleigh number for dielectric liquids satisfy the relation 

𝑟2𝑐(𝑀𝑎𝑥𝑤𝑒𝑙𝑙) > 𝑟2𝑐(𝐽𝑒𝑓𝑓𝑟𝑒𝑦) > 𝑟2𝑐(𝑁𝑒𝑤𝑡𝑜𝑛𝑖𝑎𝑛) 
vi. Heat transfer decreases with an increase in 𝐿. 

vii. Prandtl number is not significantly influential on heat transport. A similar result reported 
in Melson et al., [32] for 𝑀1 = 𝐿, 𝑀3 = 0 and 𝛽 = 0. 

viii. Heat transfer enhances with an increase in scaled Rayleigh number. 
ix. Among the viscoelastic dielectric liquids, heat transfer capability is maximum in the 

Newtonian dielectric liquid and minimum in the Jeffery dielectric liquid. 
x. The presence of modulation in the body force yields in reduced heat transfer. 

xi. Increasing values of viscoelastic parameters results in reduced heat transfer. 
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