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The semi-analytical expressions for the autocatalytic reactions with the mixed cubic 
and quadratic terms are derived. The kinetic model is associated with the diffusion, 
which is considered in a one-dimensional reactor. The semi-analytical solutions are 
derived for the concentrations of dimensionless reactant and dimensionless 
autocatalyst in the cubic autocatalytic reaction-diffusion equations for the steady-
state and non-steady state by using the Homotopy analysis method (HAM). The 
derived approximate analytical solutions are compared with the numerical simulation 
and found to be very good fit for all values of the dimensionless parameters. 
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1. Introduction 
 

Chemical reactions representing multiple steady-state solutions and oscillatory solutions have 
been of great enthusiasm to theorists and experimenters for over one hundred years. Some 
experimental models of oscillatory performance in chemical systems consisting of the Bray–
Liebhafsky, Belousov–Zhabotinskyand Briggs–Rausher reactions, where periodic changes in 
concentration can be visualized as colour changes; Also, Corbel et al., [1] reviewed these reactions 
and remaining oscillatory phenomena. The almost common reactor scenario in the literature, for 
chemical systems research is the continuous flow well-stirred tank reactor (CSTR). Typically, CSTRs 
are driven by system of Ordinary Differential Equations (ODE’s) that can be analysed using standard 
methods. However, the reaction–diffusion cell is also an important reactor scenario, defined as a 
system of Partial Differential Equations (PDE’s), and not easily analysed. 

The theoretical model with both cubic and quadratic autocatalysis having linear decay of the 
catalyst is treated, 
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where a  and b  are the concentrations of the reactant and autocatalyst respectively. In Eq. (1), the 
first one is the reaction of cubic followed by the second is the reaction of quadratic and third is the 

linear catalyst of decay. The reaction ratio  1,0p , calculate the stability for the reaction of the 

quadratic correlate with cubic reaction, where 0=p  denotes cubic Gray–Scott model, also 1=p  

indicates the quadratic limit. The combined quadratic-cubic system is taken because, its dynamic 
stability and static shows a vast type of complex structures and phenomena which are much 
prosperous than the cubic and quadratic schemes alone. 

The combined cubic-quadratic autocatalytic system in Eq. (1) is a system of the prototype, but 
Horváth et al., [2] reports that the acid reaction namely the iodate–arsenous is one of the examples 
of combined cubic-quadratic autocatalytic system where the reaction of cubic influences the 
quadratic limit. This system has been broadly studied due to the presence of propagating wave fronts 
as the autocatalytically developed iodate spreads into regions with fresh reactant (arsenous acid). 
Horváth et al., [2] found that instabilities developed when the ratio of reactant to autocatalyst 
diffusivities exceeds a critical value and found a good comparison between numerical solutions and 
experimental results. Merkin and Ševčíková [3] simulated the acid reaction namely iodate–arsenous 
by using the Dushman–Roebuck kinetic scheme and found suitable conditions to model it according 
to the cubic autocatalytic rate law. The form of travelling wave solution was shown to depend on the 
initial concentration ratio of reactant to autocatalyst. 

Gray and Scott [4,5] studied cubic autocatalytic (Eq. (1) when 0=p ) in a CSTR. Three of steady-

state bifurcation diagrams occurred, the unique, mushroom and isola patterns, and they also 
identified the Hopf bifurcation parameter region. Numerical simulations of the ODE model had 
shown the evolution of the system to both stable and unstable limit-cycles and also the oscillatory 
decay to a stable steady state. Kay et al., [6] added an uncatalysed conversion step to the Eq. (1) 
which increased the number of bifurcation diagrams to five. The two new divergent patterns were 
the disruptive wave and isola disruptive wave patterns, both of which occurred in very small regions 
of the parameter space. 

Scott [7] and Kay and Scott [8] studied the autocatalytic cubic system of reaction–diffusion cell 
represented in Eq. (1). The Partial Differential Equation model can be solved numerically by 
discretization, which permitted bifurcation diagrams of four steady-state to be identified. The 
disruptive-wave isola patterns cannot be found numerically, because the range of their parameters 
is too small. Furthermore, they treated the stability of the solution by calculating the eigenvalues for 
the discretized ODE form of the controlling PDE’s. 

Marchant [9] found a semi-analytical expression to the Gray and Scott model in a reaction–
diffusion cell. The semi-analytical solutions established to be very accurate and this method proved 
an adequate substitute for the direct PDE discretization used by Scott [7]. Marchant [10] studied 
autocatalyst cubic in a One-Dimensional (1-D) reactor by replacing the linear decay for Gray and Scott 
model with the decomposition of the Michaelis–Menten catalyst decay being limited at high catalyst 
concentrations. The effect of changing Michaelis constant on the structure of parameter maps 
explaining the Hopf bifurcations and bifurcation patterns was reported. Thornton and Marchant [11] 
studied the effect of applying an electric field in the Gray and Scott model having reaction– diffusion–
advection cell. The electric field, modelled as advection elements in the governing equations causes 
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the migration of ions in the cell which alters the static and dynamic stability of the system. It used as 
a possible feedback mechanism. Also, it has been found that it can act as a switch between high-low 
conversion states and change the parameter map in which the Hopf bifurcation occurs. Wang et al., 
[12] solved 2D and 3D convection–diffusion–reaction equations by using novel local knot method 
(LKM). Also, diffusion and convection-diffusion problem were solved by using localized space-time 
method of fundamental solutions (LSTMFS) proposed by Wang et al., [13]. 

In this article, we investigate the considered mixed quadratic-cubic autocatalytic scheme defined 
in Eq. (1) on a One-Dimensional Reaction-Diffusion cell (1-D R-Dcell). Approximate analytical 
expressions are found by using the Homotopy analysis technique. A comparison is put together 
between the numerical simulation and approximate analytical expression of the governing PDE’s 
determination and shows the accuracy of the semi-analytical expression. 

The main aim of this study is to produce an approximate analytical solution for thenon-linear 
Reaction-Diffusion equations in a mixed quadratic-cubic autocatalytic reactions for both steady and 
non-steady state via HAM. The obtained approximate analytical solution and numerical simulation 
are compared and displayed graphically. Also, the effects of several parameters are depicted. 
 
2. Mathematical Formulation of the Problem 
 

The governing PDE’s of a mixed quadratic-cubic autocatalytic reaction using the linear decay Eq. 
(1) in a One-Dimensional Reaction-Diffusion (1-D R–D) cell reported by Alharthi et al., [14] are: 
 

( ) 21 bapbapaa xxt  −−−=            (2) 

 

( ) bbapabpbb xxt  −−++= 21           (3) 

 
The respective boundary conditions of the Eq. (2) and Eq. (3) are given by 
 

0== xx ba  at 0=x              (4) 

 

)(,1 0 saykbba ===  at 1=x  and 0=t           (5) 

 
where the reactant and autocatalyst concentrations are given by a and b, respectively. The reactor 
boundary at 1=x  is permeable and connected with constant concentrations of reactant and 
autocatalyst. At 0=x  there is a zero-flow boundary condition. Alternatively, an identical reservoir 
could be located at 1−=x ; the solution is then symmetric about the centre of the cell 0=x . The 

system has a dimensionless form and six parameters; 0b  is the autocatalyst reservoir concentration, 

( )p−1  is the rate of cubic reaction, p  the rate of quadratic reaction,   the rate of autocatalyst 

decay while   is the diffusion coefficient for the reactant. The reaction ratio  1,0p  measures the 

relative rates of quadratic and cubic reactions. Choosing 1=p  will gives a purely quadratic system 

while 0=p  gives the Gray and Scott cubic scheme. The parameters can be empirically tuned by 

changing the reservoir concentrations. Other options for changing the parameters are discussed by 
Scott [7], for example the diffusivity could be adjusted by adding inactive salts to the cell. 

The non-linear differential Eq. (2) and Eq. (3) under non-steady state conditions are given by 
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The corresponding initial and boundary conditions of the Eq. (6) and Eq. (7) are 
 

At 0=t ,  )(,1 0 saykbba ===            (8) 

 

At 0=x ,  0=



=
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x

b

x
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            (9) 

 

At 1=x ,  ( )saykbba === 0,1                      (10) 

 
The non-linear differential Eq. (2) and Eq. (3) under steady-state conditions are given by 
 

( ) 01 2

2

2
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The corresponding initial and boundary conditions of the Eq. (6) to Eq. (9) are 
 

At 0=x ,   0==
dx

db

dx

da
                      (13) 

 

At 1=x ,   ( )saykbba === 0,1                      (14) 

 
3. Approximate Analytical Solution of the One-Dimensional R-D Equation (Eq. (2) and Eq. (3)) by 
using Homotopy Analysis Method 
 

Linear and non-linear differential equations can be modelled many phenomena are essentially 
important in different areas of science and technology. Many non-linear differential equations do not 
have analytical expressions. Semi-analytical methods such as the Homotopy perturbation method by 
Meena and Rajendran [15], Homotopy analysis method by Rasi et al., [16], a new approach to 
Homotopy perturbation method by Mehala and Rajendran [17], Variational iteration method by 
Wazwaz [18], Adomian decomposition method by Adomian [19] and Akbari Ganji’s method by Mary 
et al., [20] can be utilized to attain specific solutions of non-linear differential equation. 

The Homotopy analysis technique is a powerful semi-analytical method to solve non-linear Partial 
and Ordinary Differential equations by Liao [21,22]. The Homotopy analysis technique use homotopy 
concepts from the topology to generate the convergence series solution for non-linear systems. HAM 
was proposed by Shi-Jun Liao in 1992 and has been strongly utilized to solve many problems in 
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Physical and Chemical Science [23-28]. HAM does not need a small parameter to develop a 
perturbation solution and hence is applicable for both weakly and strongly non-linear problems. It 
provides an easy method to fine-tune and dominate the convergence region of solution series by 
assigning approximate values for auxiliary parameter h. Unlike other methods, it gives an analytical 
solution in terms of an infinite power series. 
 
3.1 Approximate Analytical Solution for Steady State One-Dimensional R-D Equation 
 

By using Homotopy analysis method, the approximate analytical solutions of concentration of 
reactant and autocatalyst in terms of distance x is given for the Eq. (11) and Eq. (12) is obtained as 
follows [23,24,29]: 
 

( )  ( ) kpp
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3.2 Approximate Analytical Solution of the Eq. (6) and Eq. (7) for Non-Steady State by using the 
Homotopy Analysis Method 
 

The non-steady state solution of Eq. (6) and Eq. (7) has been derived briefly by using the boundary 
conditions in Eq. (8) to Eq. (10). 

We construct the homotopy for Eq. (6) and Eq. (7) as follows 
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Consider the initial approximation solutions of the Eq. (17) and Eq. (18) as follows: 
 

+++= 2
2

10 aPPaaa                       (19) 

 

+++= 2
2

10 bPPbbb                        (20) 
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Substituting the Eq. (19) and Eq. (20) into the Eq. (17) and Eq. (18), we get 
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Now equating the coefficients of 0P  and 1P  in the Eq. (21) and Eq. (22), we get 
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The initial and boundary conditions of the Eq. (17) and Eq. (18) becomes 
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At ,4,3,2,0;,1,1 0 ==== iaax i                       (29) 
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,4,3,2,0;,0 === ibkb i                       (30) 

 
At ,4,3,2,0;,1,1 0 ==== iaat i                      (31) 

 
,4,3,2,0;,0 === ibkb i                       (32) 

 
Applying the Laplace transform to the Eq. (23) to Eq. (26) with respect to ,t  we have 
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The corresponding boundary conditions becomes 
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Solving an Eq. (33) by using the boundary conditions in Eq. (39) to Eq. (42), we get 
 

s
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0 =                          (43) 
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Taking the inverse Laplace transform for both sides of Eq. (43), we get 
 

10 =a                           (44) 

 
Solving an Eq. (34) by using the boundary conditions in Eq. (39) to Eq. (42), we get 
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Taking the inverse Laplace transform for both sides of Eq. (45), we get 
 

kb =0                          (46) 

 
Solving an Eq. (35) by using the boundary conditions in Eq. (39) to Eq. (42), we get 
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Now, let us invert Eq. (47) using the complex inversion formula. 

If ( )sy  represents the Laplace transform of a function ( ),y  then according to the complex 

inversion formula ( ) ( ) ( )dssys
i

y
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 exp
2

1
, where the integration has to be performed along a line 

cs =  in the complex plane and iyxs += . The real number c  is chosen in such a way that cs =  which 

lies to the right of all singularities, otherwise it is assumed to be arbitrary. In practice, the integral is 
evaluated by considering the contour integral presented on the right-hand side of the equation, 
which is then evaluated using the so-called Bromwich contour. In analytic functions )(zF , the 

contour integrals are computed by using the residue theorem. 
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where the residues are computed at the poles of the function )(zF . Hence from Eq. (48), we note 

that 
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From the theory of complex variables, we can show that the residue of a function )(zF  at a simple 

pole az =  and is given by 
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By means of complex inversion formula, we have 
 

( ) ( ) == 
+

−

dssxue
i

xu

i

i

s ,
2

1
, 00








 sum of the contributions from all the poles of the integrand. 

 
In order to invert an Eq. (47), we need to evaluate 
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The first residue in Eq. (51) is given by 
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The second residue in Eq. (51) is presented by 
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Adding the Eq. (52) and Eq. (53), we get  
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Solving an Eq. (36) by using the boundary conditions in Eq. (39) to Eq. (42), we get 
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The above equations are also inverted by using the residue inversion approach. 

Now, finding the poles of 1b  we see that there is a pole at 0=s  and there are infinitely many 
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The first residue in an Eq. (56) is given by 
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The second residue in Eq. (56) is given by 
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Adding the Eq. (57) and Eq. (58), we get 
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From Eq. (19) and Eq. (20), we get the following result 
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Adding the Eq. (44) and Eq. (54), we get 
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Adding the Eq. (46) and Eq. (59), we get 
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3.3 Approximate Analytical Solution for Non-Steady State One-Dimensional R-D Equation 
 

By using Homotopy analysis method and Laplace transform technique, the approximate analytical 
expressions of concentration of reactant and autocatalyst in terms of time t  given in Sub-section 3.2 
of the Eq. (6) and Eq. (7) is obtained as follows [29-34]: 
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Moreover, Omar et al., [34] briefly explained how to apply the Laplace transform for non-linear 

PDEs. 
 
4. Numerical Simulation 
 

The semi-analytical solutions for the dimensionless concentration of the reactant and 
autocatalyst for non-steady state and steady state have been obtained using Homotopy analysis 
method. The solutions derived using HAM for non-steady state is explained in Sub-section 3.2 
respectively. The achieved approximate analytical expressions along with the numerical simulation 
by using MATLAB have been plotted in Figure 1 to Figure 4. The MATLAB programming for the 
considered model is given in Sub-section 4.1. The specific application of numerical simulation was 
described in depth by Ghouizi et al., [35]. 
 
4.1 MATLAB Program for The Non-Steady One-Dimensional R-D Equation (Eq. (1) to Eq. (4)) 
 
function pdex4 
m = 0; 
x = linspace(0,1); 
t = linspace(0,0.5); 
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sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%—————————————————————— 
figure 
plot(x,u2(end,:)) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(x,2)') 
% ————————————————————– 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1]; 
f = [1; 1] .* DuDx; 
g=0.5; 
b=1; 
r=0.5; 
d=0.8; 
F=(-r*b*u(1)*u(2)-(1-r)*b*u(1)*u(2)*u(2))/(d); 
F1=(r*b*u(1)*u(2)+(1-r)*b*u(1)*u(2)*u(2)-b*g*u(2)) 
s=[F; F1]; 
% ————————————————————– 
function u0 = pdex4ic(x); 
u0 = [1; 1]; 
% ————————————————————– 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
pl = [0;0]; 
ql = [1;1]; 
pr = [ur(1)-1;ur(2)-0.5]; 
qr = [0;0]; 
 
5. Results and Discussion 
 

The approximate analytical solution of the concentrations for the reactant and the autocatalyst 
for non-steady is given in Sub-section 3.2. Figure 1 shows that dimensionless concentration of the 
reactant a  versus the dimensionless distance x  by using Eq. (15). From the Figure 1(a), Figure 1(b) 

and Figure 1(c) it is clear that, when the values  ,  and p  increases, the corresponding 

dimensionless concentration decreases for specified values of the further dimensionless parameters. 
Figure 2 depicts that dimensionless concentration of the autocatalyst b  versus the dimensionless 

distance x  by using Eq. (16). Figure 2(a), Figure 2(b) and Figure 2(c) displays that, when  ,  and p  
increases, the corresponding dimensionless concentration increases for fixed values of the remaining 
dimensionless parameters. 
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(a) (b) 

 
(c) 

Fig. 1. Dimensionless concentration of the reactant a  versus dimensionless distance x . The curves are 
marked by using Eq. (15) for different values of (a)  , (b)  , and (c) p  and specified values of the 

remaining dimensionless parameters 

 

  
(a) (b) 
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(c) 

Fig. 2. Dimensionless concentration of the autocatalyst b  versus dimensionless distance x . The curves 
are drawn by using Eq. (16) for different values of (a)  , (b)  , and (c) p  and specified values of the 

remaining dimensionless parameters 

 
Figure 3 demonstrates that dimensionless concentration of the reactant a  versus the 

dimensionless distance x  by using Eq. (62). From these Figure 3(a), Figure 3(b) and Figure 3(c) it is 

noted that, when  ,  and p  increases, the corresponding dimensionless concentration decreases 

for certain values of the further dimensionless parameters. Figure 4 shows that dimensionless 
concentration of the autocatalyst b  versus the dimensionless distance x  by using Eq. (63). As in 

Figure 4(a) and Figure 4(c), it portrays that when   and p  increases, the corresponding 

dimensionless concentration also increases for specified values of the remaining dimensionless 
parameters. From the Figure 4(b) it is evident that, when   increases, the corresponding 

dimensionless concentration decreases for specified values of the further dimensionless parameters. 
 

  
(a) (b) 
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(c) 

Fig. 3. Dimensionless concentration of the reactant a  versus dimensionless distance x . The curves 
are marked by using Eq. (62) for different values of (a)  , (b)  , and (c) p  and specified values of 

the remaining dimensionless parameters 

 

  
(a) (b) 

 
(c) 

Fig. 4. Dimensionless concentration of the autocatalyst b  versus dimensionless distance x . The 
curves are marked by using Eq. (63) for different values of (a)  , (b)  , and (c) p  and specified 

values of the remaining dimensionless parameters 

 
Figure 5(a) shows that dimensionless concentration of the reactant a  versus the dimensionless 

distance x  by using Eq. (62). From the Figure 5(b) to Figure 5(d) illustrates that dimensionless 
concentration of the reactant a  versus the dimensionless time t  by using Eq. (62). Figure 5(a) it 
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describes that, when t  increases, the corresponding dimensionless concentration decreases for 
certain values of the further dimensionless parameters. From these Figure 5(b) to Figure 5(d) it is 

observed that, when increases  ,  and p , the corresponding dimensionless concentration 

decreases for fixed values of the remaining dimensionless parameters. Figure 6(a) shows that 
dimensionless concentration of the autocatalyst b  versus the dimensionless distance x  by using Eq. 
(63). As in Figure 6(b) to Figure 6(d) it is cleared that dimensionless concentration of the autocatalyst 
x  versus the dimensionless time t  by using Eq. (63). According to the Figure 6(a) depicts that, when 
t  increases, the corresponding dimensionless concentration decreases for specified values of the 

further dimensionless parameters. Figure 6(b) and Figure 6(d) it displays that, when increases   and 

p , the corresponding dimensionless concentration increases for specified values of the further 

dimensionless parameters. Figure 6(c) depicts that, when increases  , the corresponding 

dimensionless concentration decreases for specified values of the other dimensionless parameters. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Dimensionless concentration of the reactant a  versus dimensionless distance x . The curves 
are plotted by using Eq. (62) for different values of (a) t , (b)  , (c)  , and (d) p  and specified 

values of the remaining dimensionless parameters 
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(a) (b) 

  
(c) (d) 

Fig. 6. Dimensionless concentration of the autocatalyst b  versus dimensionless distance x . The 
curves are marked by using Eq. (63) for different values of (a) t , (b)  , (c)  , and (d) p  and 

specified values of the remaining dimensionless parameters 

 
6. Conclusions 
 

In this paper, the approximate analytical solutions for the concentrations of reactant and 
autocatalyst in cubic autocatalysis were derived for both time dependent and independent. With the 
help of Homotopy analysis technique, the semi-analytical solution was reached. For small parameter 
values, the results are in perfect fit with the numerical results. The approximate analytical results 
obtained under non-steady state will help the researchers to visualize the effects of various 
parameters on concentration. The graphs were displayed to show the impacts of several parameters 
by varying the values including rate of cubic reaction, rate of quadratic reaction, rate of autocatalyst, 
and diffusion coefficient. These impacts of chemical parameters can be useful for many researchers 
and chemical engineers to control the model at any state (steady and non-steady) with the help of 
the derived semi-analytical expressions. 
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