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Heat exchangers are commonly utilized to transfer heat between two fluids in a 
number of industries. However, parameters such as fluid flow velocity, temperature 
difference, and thermal conductivity limit their efficiency. Researchers have 
investigated the use of nanofluids - fluids containing nanoparticles that boost thermal 
characteristics - to improve the performance of heat exchangers. The use of nanofluids 
can improve the efficiency of double-pipe heat exchangers. However, research on the 
influence of TiO2/water nanofluid on the performance of double-pipe heat exchangers 
is insufficient. The purpose of this research is to investigate the impact of TiO2/water 
nanofluid on the efficiency of a double-pipe copper counter-flow heat exchanger. A 
double-pipe copper counter-flow heat exchanger using cold (room temperature) and 
hot (70°C) water as working fluids was used in an experimental investigation. They 
created nanofluids by adding varying concentrations (0.1%, 0.3%, and 0.5%) of TiO2 
nanoparticles to water and measuring their heat conductivity and viscosity. They then 
calculated the overall heat transfer coefficient and efficacy by measuring the input and 
outlet temperatures as well as the flow rates of both fluids. It was discovered that 
adding TiO2 nanoparticles to water enhanced its heat conductivity and viscosity 
substantially. The overall heat transfer coefficient increased up to 0.3% but declined at 
0.5% nanoparticle concentration. At a nanoparticle concentration of 0.3%, the 
maximum effectiveness was attained, with a corresponding increase in efficiency of up 
to 23%. The scientists found that using TiO2/water nanofluid to improve the efficiency 
of double-pipe heat exchangers is a viable option. 
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1. Introduction 
 

A heat exchanger is a mechanical device that allows heat to be transferred from one fluid to 
another at different temperatures to prevent them from combining. A bigger heat exchanger can be 
used to lessen this disparity but doing so will increase both the size and expense of the system. When 
developing tools, it is crucial to consider both orientations [1].  

The use of nanofluids can increase a fluid's thermal conductivity. Choi [2] from the Argonne 
National Laboratory in the United States first used the term "nanofluid" to describe fluids containing 
nanoparticles (with a diameter of less than 50 nm) (diameter less than 50 nm). Nanoparticles 
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suspended in different base fluids can change how that fluid flows and how it transfers heat. 
Basefluid components are H2O, EG, and Engine Oil. The fluid's ability to transport heat depends on 
how well the nanoparticles are dispersed throughout it. Using an ultrasonic mixer or ultrasonic 
homogenizer to combine the nanofluid with the regular fluid results in a homogenous suspension. 
The frequency range of operation for the ultrasonic mixer is 20 to 40 KHz. The usefulness of the 
nanofluid is determined by the concentration and particle size of the fluid. With a larger surface area 
and less pressure drop over the test section, nanoparticles of a finer grade will remain uniformly 
suspended. The heat transfer rate was calculated using several factors, including the Nusselt number, 
the Peclet number, and the Reynolds number. The Nusselt and Peclet numbers of a nanofluid are 
inversely proportional to the heat transfer coefficient and rate of the fluid.  

Several authors [3, 4] worked together to formulate a relation that describes the nanofluid's 
effective thermal conductivity for a specific boundary condition. Boundary layer phenomena and 
Brownian motion of the particles play an important role in accelerating the rate of heat transfer. As 
the nanofluid's concentration in volume grows, the resultant Nusselt number rises dramatically. A 
heat exchanger's performance depends on more than just its technical specifications; it also must 
consider the size of the room set aside for it and the price tag of its production. Because of the heat 
exchangers, engineers became concerned with energy and looked for best designs that would 
maximize thermal analyses and economic rewards. 

Changing the physical-thermodynamic parameters of the fluids being used is necessary to 
enhance the heat transfer process [5]. The thermal conductivity of common liquids is lower than that 
of non-metallic solids like copper oxide and alumina, or even metals like copper and aluminum. So, 
it's important to figure out how to improve the fluids' characteristics by incorporating solid particles 
into them.  

The gap of this study is the lack of research on the effect of TiO2/water nanofluid on the 
performance of double-pipe heat exchangers. The significant of this study is that it provides 
experimental evidence that adding TiO2 nanoparticles to water can significantly improve its thermal 
conductivity and viscosity, leading to an increase in efficiency by up to 23% in a double-pipe copper 
counter-flow heat exchanger. This finding has practical implications for industries that use heat 
exchangers, as it suggests that using nanofluids can be an effective way to improve their performance 
and energy efficiency. 

The current state of development allows nanoparticles that are easily dispersed and suspended 
in the liquid. The improved thermal characteristics of the new fluids were accompanied by the 
absence of deposits that may clog the channels passing through them [6-8]. What kind of nanofluid 
is used, how much of it is used, and what kind of heat exchanger it is [9-11]. Based on the results of 
the performed investigations, nanofluids are a potentially useful possibility for increasing heat 
transfer efficiency [12-14]. 
 
2. Methodology  
2.1 Experimental Procedure 

 
The apparatus for testing is demonstrated in Figure 1. It consists of two 6-liter plastic basins 

connected by double-tube heat exchangers, one of which is heated to 65°C by a 3000-watt electrical 
coil before water enters into the primary heat exchanger (which has two concentric tubes). The 
diameters are 15 mm on the inside and 25 mm on the outside. The second reservoir was used to 
collect the water from the secondary exchanger. In this region, the nanoparticles were kept at a 
constant temperature of 20 degrees Celsius by being cooled in an airtight plastic container filled with 
a frozen surface. The water was kept in motion by an electric mixer submerged in the water. 
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Fig. 1. The test rig of the experimental study 

 
A type k thermocouple measures the temperature of the entering cold water, whereas a type j 

thermocouple measures the temperature of the arriving hot water. Two thermocouples (type k) 
measure the input and output temperatures of the heat exchanger. Volumetric flow meter with 
rotameter (Z-3002). Copper pipes that have been insulated. Heater water storage. One of those 
pumps circulates hot water. Controls for the heater, the hot water pump, the cold water pump, the 
cold water tank, the cold water pump, and the plastic piping connect the various components. 

The total amount of solid nanoparticles that will be distributed by water that has been filtered to 
nanoparticle size at a weight concentration ratio of (0.1%, 0.3% and 0.5%) for three different volumes 
of water (2, 4 and 6 litters) has been determined using the following equations: 

 

∅ = (
𝑚𝑝

𝑚𝑝+𝑚𝑓  
) × 100                                                                                                                                        (1) 

 
The nanoparticles were mixed with clean water in two steps using a two-step process (and for the 

two types of particles) which are summarized as follows: 
The TiO2 nanoparticles determined in Eq. (1) above are added to 2, 4, and 6 liters of pure water, 

with the exact weights evaluated by electronic weighing as shown in Figure 2. 
 

 
Fig. 2. Electronic balance 

 
The produced nanoparticles were mixed with 2 liters of clean water in an electric mixer that was 

left running for 30-40 minutes, until the mixture was totally homogenous. Since the mixer could only 
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hold one liter, this procedure required four separate phases to complete. To ensure that the 
nanoparticles are uniformly dispersed in the mixture. Ultrasonic equipment (Ultrasonic) has been 
applied to help their dispersion as can be seen in Figure 3, the ultrasound device and the mixer were 
in use for a total of (40-45) minutes.  
 

 
Fig. 3. The mechanical stirrer and ultrasound machine 

 
After the nanofluid was prepared and a homogenous fluid was obtained, it was poured into the 

test device's Nano scale water reservoir, where an electric mixer was built to mix the water 
constantly. Throughout the duration of the test to ensure the suspension and spread of the 
nanoparticles. Thermal properties of TiO2 nanoparticle and water at 25°𝐶 is indicated in Table 1. 
 

Table 1  
Thermal properties of TiO2 nanoparticle and water at 25°𝐶 
Material ρ 

kg/m3 
K 
w/m.k 

Cp 
J/kg.k 

μ 
Pa.s 

T 
°𝐶 

Np (TiO2) 4175 8.4 692 - 25 
Pure water 998.2 0.6 4180 0.001 25 

 
2.2 Experimental test   

 
Once the testing equipment was ready to go and the nanofluid in its reservoir, the following 

procedures were conducted: 
Throughout the experiment, make sure the electric mixer in the nanofluid tank is on to ensure 

that the nanoparticles are being uniformly dispersed throughout the liquid. Activating the electric 
coil to raise the temperature of the second basin's water to 65 degrees Celsius. A thermostat with 
the proper settings may do this. Within the tubes of a heat exchanger, nanoscale water temperatures 
and flow rates must be accounted for mathematically. The flow of hot water was regulated by pyloric 
valves at a rate of 4 liters per minute, while the flow of nanofluid was regulated at 2, 4, and 6 liters 
per minute. Two flow meters were installed in the tester to measure and find flow rates. Monitoring 
temperature gauges at the exchanger's input and outflow Monitoring the degree of stability and 
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taking temperature readings for both hot and cold fluids every 10 minutes. The temperature 
difference between the hot and cold water flows can be calculated as [15]: 
 

𝑚ℎ̇ = 
Q

60
×𝜌 (2) 

𝑚𝑐̇ = 
Q

60
×𝜌 (3) 

  
Hot and cold-water heat transfers can be evaluated as: 
 

 

𝑄ℎ = 𝑚ℎ × 𝐶𝑝, ℎ(𝑇ℎ𝑖 − 𝑇ℎ𝑜) (4) 
𝑄𝑐 = 𝑚𝐶 × 𝐶𝑝, 𝑐(𝑇𝑐𝑜 − 𝑇𝑐𝑖) (5) 
 

Average heat transfer can be evaluated as: 
 

 

𝑄𝑎𝑣𝑔=
𝑄ℎ+𝑄𝑐

2
 (6) 

 
Inner Pipe surface area [16] 
 

 

𝐴𝑖 = 𝜋 × 𝑑𝑖 × 𝐿 
 

(7) 

The Logarithmic Mean Temperature Difference (LMTD) for a counter flow configuration is 
calculated as [17]: 
 

LMTD=
(Thi–Tc0) −(Th0 –Tci)

ln ( Thi–Tc0) /(Th0 –Tci) 
 (8) 

 
Heat transfer coefficient is calculated based on the area of the inner pipe's wall. 
 

Ui = 
Qavg

Ai × LMTD 
 (9) 

   
Cold and hot water flow rate heat capacity can be evaluated as: 
 

𝐶𝑐 = 𝑚𝑐 × 𝐶𝑝𝑐 (10) 
𝐶ℎ = 𝑚ℎ × 𝐶𝑝ℎ (11) 
 

Flow rates for the lowest and highest possible heat capacities Cmin is Lowest Possible Value 
Between Cc and Ch: 

 
Cmax=Maximum Value out of Cc and Ch  

 
Maximum heat transfer possibility can be evaluated as: 
 

 

𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛 (𝑇ℎ𝑖 − 𝑇𝑐𝑖) (12) 
 
Effectiveness of the heat exchanger can be evaluated as:  
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∈= 
Qavg

Qma 
 (13) 

 

2.3 Uncertainty analysis 
 

Analysing and measuring the uncertainties in a measurement or calculation is known as 
uncertainty analysis. The overall uncertainty of measurement or calculation can be evaluated by first 
determining and describing all the sources of uncertainty that potentially affect the result, then 
estimating the magnitudes of these uncertainties, and then combining these estimates. Uncertainty 
analysis aims to quantify how precise and trustworthy a result is, as well as point out for improvement 
as following: 

 

𝑤𝐴 = {(
𝜕𝐴

𝜕𝑑
𝑤𝑑)

2
+ (

𝜕𝐴

𝜕𝐿
𝑤𝐿)

2
}

1
2⁄

                                                                                                                  (14) 

𝑤𝐴

𝐴
% = ± (

𝑤𝐴

𝐴
) × 100                                                                                                                                   (15) 

𝑤𝑇𝑖𝑛

𝑇𝑖𝑛
% = ± (

𝑤𝑇𝑖𝑛

𝑇𝑖𝑛
) × 100                                                                                                                              (16) 

𝑤∆𝑃

∆𝑃
= {(

𝑤∆𝑃

∆𝑃
)

2
}

1
2⁄

× 100                                                                                                                              (17) 

𝑤�̇�

�̇�
% = ± {(

𝑤𝜌

𝜌
)

2
+ (

𝑤�̇�

�̇�
)

2
}

1
2⁄

× 100                                                                                                        (18) 

 

3. Results and Discussion: 
 
Figure 4 shows the temperature as a function of Reynolds number for nanofluids flowing through 

inner tube at three different concentrations (0.1, 0.3, and 0.5). The information presented here is the 
result of tests performed on a double-pipe heat exchanger. Low Reynolds numbers (Re=500) result 
in considerable temperature differences between the entering and exiting fluids. Cold fluids see less 
of a temperature drop between their entry and departure locations as the Reynolds number 
increases. It explains why high-mass heating leads the Reynolds number to rise proportionally with 
the increase in the flow accelerator [18].                                                                      
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(a) Hot water temperature 

 
(b) cold water temperature 

Fig. 4. Temperature gradient against Reynolds number 

 
Figure 5 depicts Nusselt numbers against Reynolds number when the volume concentration is 

varied from 0.1 to 0.5%. It explains why both the Nusselt and Reynolds numbers tend to increase 
together. The increasing fluid velocity is the result of a breakdown in the boundary layer on the tube 
wall, which allows for more efficient heat transfer [19]. Additionally, the increasing in the nanofluid 
concentrations is led to increase Nusselt number due to the increasing of heat transfer coefficient. 
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The increase in the heat transfer coefficient of the nanofluids is due to the enhanced thermophysical 
properties of the nanofluids compared to the base fluid and the effects of Brownian motion [20].  

 

 
Fig. 5. Shows the Nusselt-Reynolds correlation as volume concentration 
increases 

 
Different volume concentrations (0.1, 0.2, and 0.3) are depicted in Figure 6 to illustrate the 

relationship between the Reynolds number and the heat transfer coefficient. The enhanced thermal 
conductivity of nanofluids causes the heat transfer coefficient to increase as the concentration of the 
fluid does. As the concentration in each volume rises, so do its thermal and physical characteristics. 

 

 
Fig. 6. Heat transfer coefficient and nanofluid volume fractions at different 
Reynolds numbers 
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Using three different concentrations of volume (=0.1, 0.2, and 0.3), Figure 7 illustrates the 
relationship between the Reynolds number and the friction factor. At low Reynolds numbers, a 
significant friction factor was found (500). When the Reynolds number is raised, the friction factor of 
nanofluids is reduced. It explains why increased shear stress leads to a faster flow and hence a higher 
Reynolds number [21]. 

 

 
Fig. 7. Friction factor and Reynolds number with different volume concentration 

 
Figure 8 indicates that the number of heat transfer units (NTU) varies with the Reynolds number 

and nanofluid concentration. The optimum NTU is recorded when Reynolds number is 500 and a 
nanofluid concentration is 0.5%. It can be seen that the NTU is increasing as increase in the volume 
concentration of nanofluid from 0.1 to 0.5. This increase of NTU is due to the effect of the decrease 
in the specific heat at constant pressure, increase of the thermal conductivity and the decrease of 
the vicious force [21].  
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Fig. 8. NTU with different Reynolds number and volumetric concentrations 

 
The variation in heat exchanger efficiency at various Reynolds numbers is seen in Figure 9 for a 

heat exchanger using titanium oxide and water in the inner tube. At the Reynolds number, where the 
heat capacity of the hot water is lowest, the most efficient value of the exchanger was reached in the 
heat exchanger with the inner tube. When there is a larger temperature differential, heat exchange 
efficiency improves. With nanofluid titanium oxide, however, the inner-tube heat exchanger's 
efficiency peaked at 500 Reynolds number. This is because the cold fluid has a lower heat capacity, 
which boosts the effectiveness of the heat exchanger [22]. 
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Fig. 9. The heat exchanger's effectiveness with different Reynolds number and nanofluid 
concentrations 

 
4. Conclusion: 

 
The resulting hypotheses and findings are as follows: 
 

i. The heat transfer coefficient is increased as nanofluids concentrations increase from 0.1 to 
0.5%. 

ii. Improvements in heat transfer rate was 17% when using 0.5% nanofluid and 2 L/min volume 
flow rate. 

iii. The optimum NTU is recorded when Reynolds number is 500 and a nanofluid concentration 
is 0.5%. 

iv. The maximum effectiveness was 29% with using 0.5% nanofluid and 2 Lpm volume flow rate. 
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