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The present investigation concentrates on the unsteady flow of tangent hyperbolic 

liquid past a vertical plate under the influence of Lorentz force, Joule heating, and 

viscous dissipation. The mathematical modelling leads to nonlinear coupled partial 

differential equations (PDEs). Suitable non-dimensional quantities are applied to the 

governing PDEs to obtain dimensionless systems of equations. The transformed 

boundary layer PDEs are solved with the aid of the spectral relaxation method (SRM). 

The SRM employs the Gauss-Seidel techniques to linearize and decouple the system of 

nonlinear PDEs. The applied magnetic field acts as an opposition to the flow by 

producing the Lorentz force. The Weissenberg parameter, alongside the magnetic 

parameter, is observed to decline the velocity profile. An increment in thermal 

radiation parameter is observed to enhance the thickness of the hydrodynamic and 

thermal boundary layer. Therefore, the thermal condition and convective flow are 

improved with heat generation and thermal radiation in the flow phenomenon. This 

investigation is unique because it investigates the combined influence of Soret-Dufour 

and MHD, viscous dissipation, and Joule heating. This study plays a significant role in 

astrophysics, heat exchanger devices, MHD power generation, and geothermal energy 

extraction. When this study is compared to studies that have already been done, it 

agrees with those studies. 
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1. Introduction 
 

The study of non-Newtonian liquids is more comprehensive when compared with Newtonian 
liquids. Non-Newtonian liquids possess variable viscosity due to the presence of an applied force. In 
analyzing non-Newtonian liquid behavior, many constitutive model equations have been used in the 
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literature. The tangent hyperbolic liquid is good enough to describe the phenomenon of shear 
thinning. The tangent hyperbolic fluid is a type of non-Newtonian fluid with shear-thinning 
characteristics. It has the same behaviour with pseudoplastic fluid with shear-thinning processes. This 
type of fluids undergo both steady and unsteady flow. 

The analysis of tangent hyperbolic fluid as examined in this study flows over a semi-infinite 
vertical plate.  Fluids of this type are blood, paint, ketchup, etc. Different physical properties are 
described in the literature to explain hyperbolic tangent fluid. The study of non-Newtonian fluids 
finds applications in bioengineering drilling operation and food processing. The flow of hyperbolic 
tangent liquid through a slanting, exponentially stretchy cylinder was investigated by Naseer et al., 
[1]. Zakir and Gul [2] have studied MHD and slip restrictions in the Lie group for hyperbolic tangent 
fluids. Rao et al., [3] use spectral techniques for solving the MHD boundary layer flow from a tangent 
hyperbolic liquid stretching cylinder. The nano-liquid flow of poisonous substances was studied by 
Mahdy and Hoshoudy [4]. The peristaltic flow of hyperbolic tangent liquid in three-dimensional and 
non-uniform media has been studied by Abbas et al., [5]. The recent study of Falodun and Ige [6] 
examined the analysis of linear and quadratic multiple regression on the magneto-thermal and 
chemical reactions on the simultaneous flow of Casson-Williamson nanofluids.                

The MHD flow of non-Newtonian liquids has gained attention in recent years because it is 
essential in physics and engineering. In heat alongside mass transport, the MHD nature of an 
electrically conducting liquid produces the Lorentz force. This force explains the usefulness of the 
imposed magnetism in controlling turbulence flow. The MHD finds numerous applications in 
electronics, chemical industries, power generations, MHD pumps and so on. The dynamics of MHD is 
the production of magnetic field due to fluid movement into a magnetic field. However, the MHD 
finds applications in nuclear power plants, MHD accelerators, gas turbines, geophysics, etc. Alao et 
al., [7] explored the MHD flow of a chemically reacting liquid by utilizing spectral relaxation 
techniques. Bala [8] discussed the MHD flow of Casson liquid past a slanting penetrable stretchable 
surface. Hosseinzadeh et al., [9] presented the impact of varying Lorentz forces on nano-liquid flow 
using an analytical approach. Ghadikolaei et al., [10] give a detailed analysis of unsteady MHD Eyring-
Powell flow in a stretchable medium. The flow of Powell-Eyring MHD nanomaterials has been 
elucidated by Hayat et al., [11]. Shah et al., [12] inspected MHD thin films on radiative Williamson 
liquid past a porous stretching sheet. Vijaya et al., [13] discussed the unsteady flow of MHD Casson 
liquid with thermal radiation. Reddy and Krishna [14] discussed MHD micropolar liquid flow with 
Soret-Dufour's influence. Suneetha et al., [15] studied heat and mass transport flows with MHD and 
thermal radiation. The recent study by Idowu and Falodun [16] explained the behavior of MHD while 
varying viscosity alongside thermal conductivity. Falodun et al., [17] recently examined double-
diffusive MHD viscous fluid flow in a porous medium in the presence of Cattaneo-Christov theories. 

Thermal radiation and chemical reaction play a significant role in engineering and applied science. 
Its industrial applications are found in furnace design, glass production, plasma physics, propulsion 
systems, etc. The practical applications of thermal radiation is majorly in cooling system and 
surfactant applications to large scale heating. Thermal radiation is of great significance in scenario 
where the temperature is very high. It finds usefulness in oil-pipeline friction reduction. It is also 
applicable in the utilization of high-polymer additives to enhance petroleum pipe-lines flow which is 
very useful for commercial purposes.  Fagbade et al., [18] examined the effects of chemical reactions, 
magnetic fields, viscous dissipation, and thermophoresis on a mixed convective limit layer fluid flow. 
The effect of thermal radiation on heat transfer of liquid Casson with nanoparticles was investigated 
by Sobamowo [19]. Ganesh et al., [20] investigated the heat transfer of thermal and magnetic fields 
of dusty hyperbolic tangent water. The MHD heat transfer of viscoelastic fluid was addressed by 
Fagbade et al., [21]. Daniel [22] discussed laminar convective boundary layer slip flow over a flat plate 
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using the homotopy analysis method. Shehzad et al., [23] investigated MHD tangent hyperbolic 
nanofluid with chemical reaction, viscous dissipation, and Joule heating effects. Shahzad et al., [24] 
studied heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable 
surface. Hussain et al., [25] examined the effects of viscous dissipation on MHD tangent hyperbolic 
fluid with convective boundary conditions. The recent study of Ayegbusi et al., [26] elucidates the 
unsteady problem of MHD convective flow with thermal radiation and thermophoresis influence. 
Jabeen et al., [27] studied chemically reacting MHD fluids in a porous channel with heat radiation. 
Anjum et al., [28] studied the investigation of binary chemical reactions in magnetohydrodynamic 
nanofluid flow with double stratification. MHD Powell-Eyring dusty nanofluid flow due to stretching 
surface with heat flux boundary condition was investigated by Abo-Zaid et al., [29]. Yadav and Verma 
[30] elucidated the analysis of immiscible Newtonian and non-Newtonian micropolar fluid flows 
through a porous cylindrical pipe enclosing a cavity.  

Hussain et al., [31] explored the computational investigation of the combined impact of nonlinear 
radiation and magnetic field on three-dimensional rotational nanofluid flow across a stretching 
surface. Dawar et al., [32] studied magnetized and non-magnetized Casson fluid flow with gyrotactic 
microorganisms over a stratified stretching cylinder. Falodun et al., [33] recently examined the 
positive and negative Soret and Dufour mechanisms in unsteady heat and mass transfer flow. In 
another study by Falodun et al., [34], MHD heat and mass transfer of Casson fluid flow past a semi-
infinite vertical plate with thermophoresis are considered. The significance of Lorentz force and 
thermal radiation has attracted many researchers in recent time due to their industrial applications 
in engineering and applied sciences. The Lorentz force finds usefulness in the control of turbulent 
flow in aerospace engineering. Thermal radiation is very useful in flow phenomenon where the 
temperature is very high and in the conversion of thermal energy. Hussain et al., [35] studied heat 
transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the 
thermal radiation regime. In another study, Hussain et al., [36] gave detailed explanation on three-
dimensional water-based magneto-hydrodynamic rotating nanofluid flow using numerical approach.  

Based on the aforementioned published works, little or no work has examined the effects of 
Lorentz force, Joule heating, and viscous dissipation on the unsteady flow of tangent hyperbolic liquid 
past a vertical plate. Keeping this in mind, the dynamics of unsteady tangent hyperbolic fluid flow 
past a semi-infinite vertical plate is addressed in this paper. The study of Alao et al., (2016) was 
Newtonian, it was extended in the present study to examine the flow of Tangent hyperbolic non-
Newtonian fluid. Also, the motivation to this study was to examine the significance of Joule heating, 
viscous dissipation, and Soret-Dufour mechanisms on the dynamics of Tangent hyperbolic fluid. The 
study of this type has not been examined in literature before based on our knowledge. Tangent 
hyperbolic fluid is a non-Newtonian fluid in which the constitutive equation is valid for low and high 
shear rates. The fluid under investigation shows the characteristics of the relaxation time and the 
retardation time. In experiments, the viscosity of non-Newtonian fluids is independent of shear, but 
average stress differences can still be seen. The novelty of this paper is the consideration of the 
combined effects of the Soret-Dufour mechanism on the tangent hyperbolic fluid in the presence of 
heat generation and chemical reactions. The analysis in this paper is of practical applications in 
science and engineering, such as the Lorentz force in MHD accelerators, chemical catalytic reactors, 
Soret in isotope separation, etc. Using SRM, the flow PDEs are solved numerically, and the effects of 
the parameters that are found are shown in graphs. 
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2. Flow Analysis 
 

Consider the laminar, unsteady, two-dimensional flow of MHD tangent hyperbolic liquid past a 
semi-infinite vertical porous plate with viscous dissipation and thermal radiation. The plate is 

assumed to be infinite in *x direction while the *y -direction normal to the plate (see Figure 1). The 

movement of the upward plate is assumed only towards the *y -axis. Hence the derivative 
*

*

u

x




 is 

forgone. Initially, when the fluid is set into motion, the time * 0t   both the plate alongside the fluid 
maintains uniform temperature. The plate is considered to be vertically upward. As the plate moves 
vertically upward, the effect is noticed towards the 𝑦∗-axis. Hence, any function with respect to 𝑥∗-
axis is neglected in the model (see Alao et al., (2016), Falodun et al., (2018)). The vertical component 
has effect on the flow phenomenon due to the thermal buoyancy and mass buoyancy considered in 
this study. The 𝑥∗ −axis was neglected in the governing equations because the moving semi-infinite 
plate moves vertically towards the horizontal 𝑦∗-axis. Also, terms involving 𝑥∗-axis is neglected in the 

heat flux because it is considered such that 
𝜕𝑞𝑟

𝜕𝑦∗
≫

𝜕𝑞𝑟

𝜕𝑥∗
. Hence, the radiative heat flux in the 𝑥∗ -

direction 
𝜕𝑞𝑟

𝜕𝑥∗
 is negligible. Therefore, 

𝜕𝑞𝑟

𝜕𝑦∗
 dominate the flow. Figure 1 describes the physical 

phenomenon of the tangent hyperbolic fluid flow within the boundary layers. The magnetic field 
strength is observed to be in opposite direction as shown in Figure 1. The flow direction as shown in 
Figure 1 is vertically upward. 

In view of this, thermal radiation along with heat generation is taking into account. A magnetism 
of uniform strength 0( )B  is transversely imposed to both plate and flow direction. The magnetic 

Reynolds number is assumed to be small such that induced magnetic field is forgone. The level of 
species is assumed to be high such that Soret-Dufour effects are considered. Following Hussain et al., 
[25] and the definition of Cauchy stress tensor 𝜏 as:  

 
𝜏 = −𝑝𝐼 + 𝑆       (1) 
 

The constitutive analysis of extra tensor S  of tangent hyperbolic liquid as described by Hussain 
et al., [25], gives;  
 

0 1= [ ( ) tanh( ) ]nS A    + +    (2) 

 
  signifies shear rate viscosity, 

0  signifies zero shear rate viscosity,   signifies dependent 

material constant, n  signifies the power-law index, 1A  signifies the first tensor Rivlin-Erickson. From 

the above,   gives:  

 

2

1

1
= ( )

2
tr A   (3) 
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Fig. 1. Physical geometry 

 
For the sake of simplicity, consider = 0

 in Eq. (2) and since tangent hyperbolic liquid explains 

shear-thinning analysis. Therefore, Γ𝛾 < 1̇ . Utilizing the above simplifications on Eq. (2) to obtain:  
 
𝑆 = 𝜇0[(Γ𝛾̇)𝑛]𝐴1                                                                        (4) 
 
Simplifying the above to obtain; 
 

0 1= [1 ( 1)]S n A +  −         (5) 

 
Under the assumptions above and following Alao et al., [7] the flow equations along with the 

boundary constraints are:  
 

*

*
= 0

v

y




  (6) 

 
2* * 2 * * 2 *

* *0

* * *2 * *2
= (1 ) 2 ( ) ( )t c

Bu u u u u
v n n u g T T g C C

t y y y y


   


 

    
+ − +  − + − + −

    
 (7) 

 

2

2

0

2*

2

0

*

2

*

*

2*

2

*

*

*
)(

1
u

c

B

y

C

cc

Dk
TT

c

Q

y

q

cy

u

cy

T

y

T
v

t

T

pps

T

p

r

pp 






 +




+−+




−












+




=




+




             (8) 

 
2 2

*

* * *2 *2
= ( )T

r

m

DkC C C T
v D K C C

t y y T y


   
+ + − −

   
                                                 (9) 

  
subject to the constraints [Alao et al., [7]]:  
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* * * * *

0= , = ( ) , = ( ) , = 0n t n t

w w w wu U T T T T e C C C C e at y  + − + −    (10) 

 
* *0, , ,u T T C C as y → → → →   (11) 

 
We obtain the suction velocity normal to the plate by integrating both sides of Eq. (1). Following 

the analysis presented by Idowu and Falodun [37], the wall suction velocity is a function of constant 
and time-dependent given as; 
 

𝑣∗ = −𝑣0(1 + 𝜉𝐴𝑒𝑛∗𝑡∗
)  (12) 

 

In this analysis, the radiative heat flux was assumed to be 
* *

>>r rq q

y x

 

 
 since the heat flux diverges 

only towards *y -direction. Hence, the heat flux 
*

rq

y




 dominates the fluid flow. Considering that, the 

difference in temperature throughout the flow is small in a way that 4T  is evaluated as a linear 

function of the ambient temperature, T
. Simplifying 4T  in Taylor's approach in T

 and forgone 

terms of higher-order to obtain:  
 

4 3 44 3T T T T  −   (13) 

 

Utilizing Rosse; and approximation, the heat flux in terms of *y  gives  

 
4

0

*

4
=

3
r

T
q

ke y

 
−


  (14) 

 
Here 

0  signifies Stefan-Boltzmann constant and ke  signifies mean absorption coefficient. Since 

the Rosseland approximation was utilized in this analysis, the tangent hyperbolic liquid is assumed to 
be optically thick liquids. Linearizing the (9) above and utilizing the outcome on the energy equation 
to obtain; 

 

2

2

0

2*

2

0

2*

2
30

2

*

*

2*

2

*

*

*
)(

3

16
u

c

B

y

C

cc

Dk
TT

c

Q

y

T
T

kecy

u

cy

T

y

T
v

t

T

pps

T

ppp 






 +




+−+




+












+




=




+




  (15) 

 
The flow governing equations are written in a dimensionless form using   
 

2 * 2 ** *

0 0

2

0 0

= , = , = , = , = , =
w w

v y v t T T C Cu n
u y t n

u v T T C C


 

 
 

 

− −

− −
 (16) 

 
Utilizing the above quantities on the flow equations with the boundary constraints to obtain the 

following flow PDEs:  
 
𝜕𝑢

𝜕𝑡
− (1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝑢

𝜕𝑦
= (1 − 𝑛)

𝜕2𝑢

𝜕𝑦2 + 𝑛𝑊𝑒
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 − 𝑀2𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚𝜙 (17) 
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𝜕𝜃

𝜕𝑡
− (1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝜃

𝜕𝑦
= (

1+𝑅

𝑃𝑟
)

𝜕2𝜃

𝜕𝑦2
+ 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)
2

+ 𝐷𝑢
𝜕2𝜙

𝜕𝑦2
+ 𝛿𝑥𝜃 + 𝑀2𝐸𝑐𝑢2 (18) 

 
𝜕𝜙

𝜕𝑡
− (1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝜙

𝜕𝑦
= (

1

𝑆𝑐
)

𝜕2𝜙

𝜕𝑦2 − 𝐾𝑟𝜙 + 𝑆𝑜
𝜕2𝜃

𝜕𝑦2  (19) 

  
Subject to:  
 
𝑢 = 1, 𝜃 = 1 + 𝜉𝑒𝑛𝑡, 𝜙 = 1 + 𝜉𝑒𝑛𝑡           𝑎𝑡     𝑦 = 0 (20) 
 

0, 0, 0,u as y → → → →   (21) 

 

Note that 𝑊𝑒 =
√2𝑢0𝑣0

2Γ

𝜈
, 𝐺𝑚 =

𝑔𝛽𝑐𝜈(𝐶𝑤−𝐶∞)

𝑢0𝑣0
2 , 𝐸𝑐 =

𝑢0
2

𝑐𝑝(𝑇𝑤−𝑇∞)
, 𝑆𝑐 =

𝜈

𝐷
, 𝑀 =

𝜎𝐵0
2𝜈

𝜌𝑣0
2 , 𝑅 =

16𝜎0𝑇∞
3

3𝑘𝑒𝐾
,

𝐷𝑢 =
𝐷𝑘𝑇(𝐶𝑤−𝐶∞)

𝑐𝑠𝑐𝑝𝜈(𝑇𝑤−𝑇∞)
, 𝐾𝑟 =

𝑘𝑟𝜈

𝑣0
2 , 𝐺𝑟 =

𝑔𝛽𝑡𝜈(𝑇𝑤−𝑇∞)

𝑢0𝑣0
2 , 𝑃𝑟 =

𝜈𝜌𝑐𝑝

𝑘
=

𝜈

𝛼
, 𝛿𝑥 =

𝑄0𝜈

𝜌𝑐𝑝𝑣0
2 , 𝑆𝑜 =

𝐷𝑘𝑇(𝑇𝑤−𝑇∞)

𝑇𝑚𝜈(𝐶𝑤−𝐶∞)
  

 
where , , , , , , , , , , xWe Gm Ec Sc M R Du Kr Gr Pr   and So  are Weissenberg number, mass Grahof 

number, Eckert number, Schmidt number, magnetic term, thermal radiation parameter, Dufour 
term, chemical reaction parameter, thermal Grashof number, Prandtl number, heat generation 
parameter and Soret term. The engineering quantities of curiosity are defined as follows: 
 

Skin friction 𝐶𝑓 =
𝜏𝑤
′

𝜌𝑈0𝑉0
= (

𝜕𝑢

𝜕𝑦
) |𝑦=0 

 

Nusselt number Nu =
qw

k(Tw−T∞)
 

 

Sherwood number ( ) =
( )

m

w

Dq
Sh

C C

−

−
 

 
Where; 

 

 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
|𝑦=0 −

4𝜎0

3𝑘𝑒
(
𝜕𝑇4

𝜕𝑦
) |𝑦=0) , 𝑆𝑤 = (

𝜕𝐶

𝜕𝑦
)
𝑦=0

 

 
By utilizing dimensional quantities stated in Eq. (16), the physical quantities are resolved to be; 
 

𝑁𝑢𝑅𝑒𝑥
−1 = −(

𝜕𝜃

𝜕𝑦
−

𝑅

𝑃𝑟

𝜕2𝜃

𝜕𝑦2)
𝑦=0

 is the rate of heat transfer 

 

𝑆ℎ𝑅𝑒𝑥
−1 = −(

𝜕𝜙

𝜕𝑦
)
𝑦=0

 is the rate of mass transfer 

 

Where 𝑅𝑒𝑥 =
𝑉0𝑥

𝜈
 denote the local Reynolds number 
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3. Spectral Relaxation Technique 
 

The transformed PDEs are solved numerically utilizing SRM. SRM is an iterative approach that 
uses the Gauss-seidel type's relaxation approach to decouple and linearize the coupled equations. 
The linearized equations will be discretized and solved by employing the Chebyshev pseudo-spectral 
method (Motsa, [38]). The degree of iteration was facilitated on all linear terms at the current 
iteration noted, while nonlinear terms are assumed to be known from the previous iteration noted. 
The SRM is a powerful tool in solving PDEs. It helps in decoupling and linearizing coupled or nonlinear 
equations. The SRM played a significance role in solving non-Newtonian complex equations. The basic 
steps of the spectral approach are: 

 
i. First, decouple the nonlinear equations and linearize them using Gauss-Siedel techniques; 

ii. The linearized equations were further discretized, and 
iii. The discretized equations are solved iteratively by utilizing the Chebyshev pseudo-spectral 

technique. 
 
Using the SRM on the nonlinear coupled PDEs (12) - (14) leads to:  
 
𝜕𝑢𝑟+1

𝜕𝑡
= (1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝑢𝑟+1

𝜕𝑦
+ (1 − 𝑛)

𝜕2𝑢𝑟+1

𝜕𝑦2 + 𝑛𝑊𝑒
𝜕𝑢𝑟+1

𝜕𝑦

𝜕2𝑢𝑟+1

𝜕𝑦2 − 𝑀2𝑢𝑟+1 + 𝐺𝑟𝜃𝑟 + 𝐺𝑚𝜙𝑟 (22) 

 
𝜕𝜃𝑟+1

𝜕𝑡
= (1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝜃𝑟+1

𝜕𝑦
+ (

1+𝑅

𝑃𝑟
)

𝜕2𝜃𝑟+1

𝜕𝑦2 + 𝐸𝑐 (
𝜕𝑢𝑟+1

𝜕𝑦
)
2

+ 𝐷𝑢
𝜕2𝜙𝑟

𝜕𝑦2 + 𝛿𝑥𝜃𝑟+1 + 𝑀2𝐸𝑐𝑢𝑟+1
2  (23) 

 

𝑆𝑐
𝜕𝜙𝑟+1

𝜕𝑡
= 𝑆𝑐(1 + 𝜉𝐴𝑒𝑛𝑡)

𝜕𝜙𝑟+1

𝜕𝑦
+

𝜕2𝜙𝑟+1

𝜕𝑦2 − 𝑆𝑐𝑘𝑟
2𝜙𝑟+1 + 𝑆𝑐𝑆𝑟

𝜕2𝜃𝑟+1

𝜕𝑦2  (24) 

 
Subject to  
 
𝑢𝑟+1(0, 𝑡) = 1, 𝜃𝑟+1(0, 𝑡) = 1 + 𝜉𝑒𝑛𝑡, 𝜙𝑟+1(0, 𝑡) = 1 + 𝜉𝑒𝑛𝑡 (25) 
 
𝑢𝑟+1(∞, 𝑡) = 0, 𝜃𝑟+1(∞, 𝑡) = 0, 𝜙𝑟+1(∞, 𝑡) = 0 (26) 
 
Defining coefficient parameters from the above equations as:  
 

𝛾 = (1 + 𝜉𝐴𝑒𝑛𝑡), 𝛾0,𝑟 = 𝑛𝑊𝑒
𝜕𝑢𝑟+1

𝜕𝑦
, 𝛾1,𝑟 = 𝐺𝑟𝜃𝑟 + 𝐺𝑚𝜙𝑟 , 𝛾2,𝑟 = (

1 + 𝑅

𝑃𝑟
) 

 
2 2 2

2 21 1
3, 4, 5, 1 6,2 2

= , = , = , =r r r
r r r r r

u
Ec Du M Ecu So

y y y

 
   + +

+

   
 
   

 (27) 

 
Putting the coefficient parameters above into (17)-(19) to obtain; 
 

2 2
21 1 1 1

0, 1 1,2 2
= (1 )r r r r

r r r

u u u u
n M u

t y y y
  + + + +

+

   
+ − + − +

   
 (28) 
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2

1 1 1
2, 3, 4, 1 5,2

=r r r
r r r x r r

t y y

  
      + + +

+

  
+ + + + +

  
 (29) 

 
2

1 1 1
1 6,2

1
=r r r

r rKr
t y Sc y

  
  + + +

+

  
+ − +

  
  (30) 

 
Subject to  
 
𝑢𝑟+1(0, 𝑡) = 1, 𝜃𝑟+1(0, 𝑡) = 1 + 𝜉𝑒𝑛𝑡, 𝜙𝑟+1(0, 𝑡) = 1 + 𝜉𝑒𝑛𝑡      𝑎𝑡   𝑦 = 0 (31) 
 

1 1 1( , ) = 0, ( , ) = 0, ( , ) = 0,atr r ru t t t y + + +   →                                                                                 (32) 

 
The Gauss-Lobatto points given as follows are used to define the unknown functions. 
 

= , = 0,1,2,..., ; 1 1j

j
cos j N

N


   −   (33) 

 
Here, it N signifies the collocation points number. The physical region domain [0, ]  is 

transformed to [ 1,1]−  change the present region. Thus, the problem is solved in this way: The 

transformation defined below is used to map the interval. 
  

1
= , 1 1

2L

 


+
−     (34) 

 
Here L  signifies the scaling term utilized in simplifying the boundary constraint at infinity. The 

initial simplification for solving Eq. (23)-(25) are gotten at = 0y  and are considered subject to the 

boundary constraints (20) and (21). Hence, 
0 0( , ), ( , )u y t y t  and 

0( , )y t  are chosen as;  

 
𝑢0(𝑦, 𝑡) = 𝑒−𝑦, 𝜃0(𝑦, 𝑡) = 𝜙0(𝑦, 𝑡) = 𝑒−𝑦 + 𝜉𝑒𝑛𝑡 (35) 
 

The systematic Eq. (28)-(30) would be solved using the iterative technique for unknown functions 
right from the initial approximations in Eq. (35). The schemes Eq. (28), (29), and (30) are iteratively 
solved for 

1 1( , ), ( , )r ru y t y t+ +
 and 

1( , )r y t +
 as = 0,1,2r . In the Eq. (28)-(30), we discretized by 

utilizing the Chebyshev spectral collocation approach y  while the implicit finite difference technique 

is utilized in the direction of t . The finite difference scheme was employed at the mid-point between 
1nt +  and nt . The mid-point is defined as  
 

1 1

2 =
2

n n
n t t

t
+

+ +
  (36) 

 

Thus utilizing the centering about 
1

2
n

t
+

 to the functions, say ( , ), ( , )u y t y t  and ( , )y t  alongside 

associated derivative to obtain; 
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1
1 11 1

2
2 2( , ) = = , =

2

nn n n n
n n j j j j

j j

u u u uu
u y t u

t t

++ +
+ + + − 

 
  

 (37) 

 
1

1 11 1
2

2 2( , ) = = , =
2

nn n n n
n n j j j j

j jy t
t t

   
 

++ +
+ + + − 

 
  

 (38) 

 
1

1 11 1
2

2 2( , ) = = , =
2

nn n n n
n n j j j j

j jy t
t t

   
 

++ +
+ + + − 

 
  

 (39) 

 
The spectral collocation approach requires the implementation of a differentiation matrix D  to 

evaluate the derivatives of variables unknown gave as  
 

=0

= ( ) = , = 0,1,...
r N

r r

ik kr
k

d u
D u D u i N

dy
  (40) 

 

=0

= ( ) = , = 0,1,...
r N

r r

ik kr
k

d
D D i N

dy


    (41) 

 

=0

= ( ) = , = 0,1,...
r N

r r

ik kr
k

d
D D i N

dy


    (42) 

 
Figure 2 shows the Flow diagram of the present solution techniques. 
 

 
Fig. 2. Flow diagram of the present 
solution techniques (see Falodun et 
al., [17]) 



CFD Letters 

Volume 16, Issue 2 (2024) 162-183 

172 
 

The Chebyshev spectral collocation approach was first used on Eq. (28) - (30), followed by the 
finite differences.  
 

2 2 21
0, 1 1,= [ (1 ) ]r

r r r

du
D n D D M u

dt
  +

++ − + − +   (43) 

 

21
2, 1 3, 4, 5,= [ ]r

r x r r r r

d
D D

dt


      +

++ + + + +   (44) 

 

21
1 6,

1
= [ ]r

r r

d
D D Kr

dt Sc


  +

++ − +   (45) 

 

 Subject to Eq. (20) and (21) where  
 

1 0 0, 0

1 1 0, 1

1 0,

1
1

0,1

( , ) ( , )

( , ) ( , )

= , =

( , )

( , )( , )

r r

r r

r r

r N
x

r Nr N xx

u x t x t

u x t x t

u

u x t

x tu x t









+

+

+

+
−

+

   
   
   
   
   
   
   
    

 (46) 

 

𝜃𝑟+1 =

[
 
 
 
 

𝜃𝑟+1(𝑥0, 𝑡)
𝜃𝑟+1(𝑥1, 𝑡)

⋮
𝜃𝑟+1(𝑥𝑁𝑥−1

, 𝑡)

𝜃𝑟+1(𝑥𝑁𝑥
, 𝑡) ]

 
 
 
 

, 𝜙𝑟+1 =

[
 
 
 
 

𝜙𝑟+1(𝑥0, 𝑡)
𝜙𝑟+1(𝑥1, 𝑡)

⋮
𝜙𝑟+1(𝑥𝑁𝑥−1

, 𝑡)

𝜙𝑟+1(𝑥𝑁𝑥
, 𝑡) ]

 
 
 
 

  (47) 

 
From Eq. (40)-(42), the following scheme is obtained  
 

1

1 1 2 1 1=n n

r rM u M u K+

+ + +  (48) 
1

3 1 4 1 2=n n

r rM M K +

+ + +  (49) 
1

5 1 6 1 3=n n

r rM M K +

+ + +  (50) 

 
 Subject to the following initial and boundary conditions:  
 

1 1 1( , ) = ( , ) = ( , ) = 0n n n

r x r x r xu xN t xN t xN t + + +  (51) 

 
𝑢𝑟+1(𝑥0, 𝑡

𝑛) = 1, 𝜃𝑟+1(𝑥0, 𝑡
𝑛) = 𝜙𝑟+1(𝑥0, 𝑡

𝑛) = 1 + 𝜉𝑒𝑛𝑡, 𝑛 = 1,2, … (52) 
 

𝑢𝑟+1(𝑦𝑗 , 0) = 𝑒−𝑦𝑗 , 𝜃𝑟+1(𝑦𝑗 , 0) = 𝜙𝑟+1(𝑦𝑗 , 0) = 𝑒−𝑦𝑗 + 𝜉𝑒𝑛𝑡 (53) 

 
 The above matrices are defined as;  
 

2 2 2 2 2 2

0, 0,

1 2

( (1 ) ) ( (1 ) )1 1
= , =

2 2 2 2

r rD n D D M D n D D M
M M

   + − + − + − + −
− +  
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2 2

2, 2,

3 4

( ) ( )1 1
= , =

2 2 2 2

r x r xD D D D
M M

     + + + +
− +  

 

2 2

5 6

1 1

1 1
= , =

2 2 2 2

D D Kr D D Kr
Sc ScM M

 + − + −

− +  

 

4. Results and Discussions 
 

The equations that govern the fluid model are solved numerically via SRM. The procedure of this 
iterative numerical method (SRM) is illustrated in Figure 2. The effects of physical flow parameters 
on dimensionless concentration, velocity, and temperature are presented in graphs and tables. The 
default values of parameters are set to be We=M=1, So=0.6, Du=0.9, R=0.5, Sc=0.61, Pr=7.0, 
Gr=2Gm=2, kr=0.3 and Ec=0.1. 

Figure 3 depicts the effect of the Weissenberg number (We) on velocity plot. It is noted in Figure 
3 that an increase in We lowers the fluid motion by decelerating the velocity profile. The Tangent 
hyperbolic fluid possess a shear-thinning characteristics. It has the same behaviour with 
pseudoplastic fluid with shear-thinning processes. A higher value of We decreases the velocity 
because the Tangent hyperbolic fluid is a high viscous fluid. This shows a decrease in the 
hydrodynamics boundary layer thickness. The thickness of the layer reduces as a result of high 
viscosity which brings resistance to the fluid flow phenomenon. The Weissenberg number is 
equivalent to relaxation time. Therefore, we will enhance the relaxation time to allow more 
significant resistance to the motion of the fluid by reducing the momentum layer thickness. On 
temperature and concentration, they are found to be negligible, with no effect on the profiles. The 
effect of the Soret term (So) on the temperature, velocity, and concentration is depicted in Figure 4. 
An increase in the values of So is observed to enhance the velocity alongside the concentration plot. 
This is owing to greater thermal diffusion as the values of So are raised. It is worth noting that a 
positive Soret term leads to a stabilized effect. The moment So > 0, a hike in temperature will lead to 
a degeneration in density as well as the mass fraction of species concentration. It is referred to as a 
“cooperative solute” and a “thermal gradient” as the solute spreads to cold regions. On the other 
hand, when So, a hike in temperature results in a competitive solutal and thermal gradient as the 
solute spreads to warmer regions. Hence, an elevation is noticed on the velocity and concentration 
plots while the effect of So is negligible on the temperature plot. Higher So leads to an increase in 
both hydrodynamic and concentration boundary layer thickness. The outcomes in Figure 4 are in 
good agreement with the outcomes of Idowu and Falodun (2019) in the absence of the viscoelastic 
parameter. 

The Impact of the Dufour term (Du) on the temperature, velocity, and concentration plot is 
illustrated in Figure 5. The Dufour term portrays the impact of concentration gradients on the 
temperature, as noted in Eq. (8). The Dufour number explains the contribution of concentration 
gradients to the thermal energy flux which exists within the flow. It is a dimensionless number 
employed in examining thermodiffusion equivalent to elevation in enthalpy of a unit mass during 
isothermal mass transfer. It assists the flow and also tends to boost thermal energy within the layers. 
As depicted in Figure 5, a considerable value of Du is detected to elevate the momentum and the 
thermal layer thickness. Hence, an increase in velocity and temperature plots is noticeable for a 
considerable value of Du. On the other hand, the effect of Du on the concentration plot is negligible, 
as shown in Figure 5. 
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Figure 6 depicts the impact of the magnetic term (M) on the concentration, velocity, and 
temperature plots. The degeneration in the velocity profile is noticeable for a considerable value of 
M, while the effect of M is neglected on the temperature and concentration plots. This is because 
the Lorentz force is generated as the magnetic field is imposed in the direction of flow. The Lorentz 
force is the force exerted on charged particles moving with the fluid velocity through both electric 
and magnetic fields. This force acts against liquid velocity and thereby degenerates the velocity and 
the momentum layer thickness. Figure 7 portrays the thermal radiation parameter I impact on the 
velocity, concentration, and temperature plots. An increase in velocity and temperature is detected 
as the values of R increase. Physically, the thermal energy has a significant effect on the flow due to 
an increase in R. As a result of this, radiation has a significant impact on the flow when and. Hence, 
an increase in the thermal condition, temperature, and thermal layer are noticeable for R 
considerable value. The thermal radiation plays a significance role in a scenario where the 
temperature is very high. Hence, at a very high values of R the temperature within such environment 
increases drastically. 

The Schmidt number (Sc) effect on ”eloc’ty, temperature, and concentration plot is depicted in 
Figure 8. A considerable value of Sc causes degeneration of the velocity and concentration plots. Sc 
is the quotient of kinematic viscosity to fluid mass diffusivity. Practically, it signifies higher Sc and vice 
versa. The rate of mass transport degenerates due to the effects of concentration buoyancy and leads 
to a decrease in the concentration plot. Hence, the outcomes in Figure 8 show higher viscosities 
compared to mass diffusivity. A considerable value of Sc shows no impact on the temperature plot. 
Figure 9 illustrates the Prandtl number (Pr) impact on the velocity, temperature, and concentration 
plot. An increase in Pr causes the velocity and temperature plot to degenerate. The Prandtl number 
explains the relationship between kinematic viscosity and thermal conductivity. Pr is beneficial in 
coordinating the thickening of momentum alongside thermal layers in heat transport analysis. 
Physically, any fluid with a higher Pr possesses viscosity, which helps to reduce the hydrodynamics 
and thermal layer thickness by reducing the velocity and temperature plot. Thus, Pr is a suitable 
parameter for increasing the liquid flow rate of cooling. However, if Pr>1, the liquid is highly 
conducive. The effect of Pr on concentration has been detected to be negligible. Figure 10 illustrates 
the impact of thermal Grashof number (Gr) on concentration, temperature, and velocity plots. An 
upward increment in the velocity plot is detected as the value of Gr increases. Because of this, the 
thermal Grashof number acted like a buoyancy force on the fluid velocity alongside the hydrodynamic 
layer thickness. Buoyancy force describes the upward liquid force exerted on the liquid. Thus, 
experimentally, pressure hikes the depth. 

Furthermore, the bottom pressure of the displaced object becomes much greater than the force 
it possesses at the top. This implies a net vertical force that elevates the velocity along with the entire 
hydrodynamic layer thickness. As shown in Figure 10, the effect of Gr on temperature and 
concentration is negligible. The impact of the mass Grashof number (Gm) on the velocity, 
concentration, and temperature plots is illustrated in Figure 11. Gm is found to be significant on the 
velocity plot but negligible on the temperature and concentration plots. This indicates that the mass 
Grashof number behaves like a mass buoyancy effect. In Figure 12, an incremental value of the 
chemical reaction parameter (kr) is discovered to degenerate the velocity alongside the 
concentration plot. Practically, the chemical reaction term alters the species concentration by 
degenerating the solutal layer thickness. This indicates a destructive reaction in the fluid flow regime. 
Finally, the impact of Eckert number (Ec) is detected to elevate the velocity alongside the 
temperature plot in Figure 13. Physically, the Eckert number is derived from the viscous dissipation 
added to the energy Eq. (8). The Eckert number describes the relationship between the enthalpy in 
the flow and its kinetic energy. High values of Ec elevate the shear forces in the liquids. 
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Experimentally, heat energy is stored in the fluids due to frictional heating and elevating the thermal 
and hydrodynamic layers. 

Table 1 shows the computational values for skin friction coefficient, Nusselt number (Nu), and 
Sherwood number (Sh) for encountered flow parameters. An increase in We is found to enhance the 
local skin friction and has a negligible effect on Sherwood and Nusselt numbers. A higher M value is 
detected, indicating that the local skin friction has degenerated. An incremental value of Gr and Gm 
is found to increase skin friction, but it has no effect on the Nusselt and Sherwood numbers. An 
increase in R enhances the hydrodynamic and thermal layer thickness by enhancing the skin friction 
and Nusselt number. A higher value of Pr is found to lessen the skin friction and elevate the Nusselt 
number. 

On the other hand, a higher value of Ec is found to increase skin friction and lower the Nusselt 
number. An increase in the values of Du and So is found to accelerate the skin friction, while both 
effects are alternate on the Nusselt and Sherwood numbers. An increase in the values of Sc and kr is 
found to decelerate skin friction and elevate the Sherwood number. The skin friction and Nusselt 
number are observed to increase dramatically as the heat generation parameter is increased. In Table 
2, an increase in the Dufour parameter is observed to increase the skin friction but decrease the rate 
of heat transfer by lowering the Nusselt number. A considerable value of the heat generation 
parameter is observed to increase the local Nusselt number and speed up the rate of heat transfer. 
A higher value of both the Schmidt number and the chemical reaction parameter is observed to 
decrease the local skin friction but speed up the rate of mass transfer. A considerable value of the 
Soret number increases the local skin friction but lowers the rate of mass transfer. 
 

 
Fig. 3. The effect of the Weissenberg number 
on velocity plot 
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Fig. 4. The effect of the Soret term on the velocity, and concentration plots 

 

 
Fig. 5. The effect of the Dufour term on velocity, and temperature plots 

 

 
Fig. 6. The effect of the magnetic parameter 
on the velocity plot 
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Fig. 7. The effect of the thermal radiation term on the velocity, and temperature 
plots 

 

 
Fig. 8. The effect of the Schmidt number on the velocity, and concentration plots 

 

 
Fig. 9. The effect of the Prandtl number on velocity, and temperature plots 
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Fig. 10. The effect of the thermal Grashof number on 
the velocity plot 

 

 
Fig. 11. The effect of the mass Grashof number on the 
velocity, temperature, and concentration plot 
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Fig. 12. The effect of the chemical reaction term on the velocity, temperature, and 
concentration plots 
 

 
Fig. 13. The effect of the Eckert number on the velocity, temperature, and 
concentration plots 
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Table 1  
Numerical values for skin friction coefficient(𝐶𝑓), Nusselt number(𝑁𝑢), and 180 herwood number 

(𝑆ℎ) for different values of 𝑊𝑒, 𝑀, 𝐺𝑟, 𝐺𝑚, 𝑅, 𝑃𝑟 and 𝐸𝑐 
𝑊𝑒  𝑀  𝐺𝑟   𝐺𝑚  𝑅  𝑃𝑟  𝐸𝑐  Cf   Nh  Sh 

0.1         1.750914 0.527259  0.846371 

0.3            1.471465 0.527259  0.846371 

0.5             0.697697 0.527259  0.846371 

 0.0           0.874356  0.600124  0.819900 

 0.5           0.703415  0.600124  0.819900 

 1.0           0.697697  0.600124  0.819900 

   1.0         1.492511  0.511721  0.421001 

   2.0         2.110665  0.511721  0.421001 

   3.0         2.728819  0.511721  0.421001 

     1.0       3.046706  1.812400  1.999900 

     2.0       4.132881  1.812400  1.999900 

     3.0      5.219055  1.812400  1.999900 

       0.5     1.084532  0.560012  0.811076 

       1.0     1.511023  0.6299  0.811076 

       2.0     1.676520  0.7459  0.811076 

         0.71   0.795904  0.567059  0.703384 

         1.00   0.573571  0.874814  0.703384 

         3.00   0.448097  1.498064  0.703384 

      0.3 1.619464 0.628843 0.738124 
      0.6 1.868109 1.014639 0.738124 

      0.9 2.116755 1.400436 0.738124 

 
Table 2 
Comparison of the present numerical results with the published work of Hussain et al., (2017) solved 
using analytical approach. 𝐺𝑟 = 𝐺𝑚 = 𝐷𝑢 = 𝑆𝑐 = 𝑡 = 𝛿𝑥 = 𝑅 = 0 
Pr We n 𝜃′(0) 𝜃′(0) 

   Hussain et al., (2017) 
Analytical solution (HAM) 

The present outcomes 
Numerical solution (SRM) 

0.1   0.3438 0.3440 

0.3   0.4597 0.4500 
0.5   0.7921 0.7926 

 1.0  0.2568 0.2570 
 2.0  0.2740 0.2742 

 3.0  0.3043 0.3047 
  1.0 2.1523 2.1525 

  2.0 1.5129 1.5130 
  3.0 0.8937 0.8940 

 

5. Conclusion  
 

The analysis of unsteady MHD tangent hyperbolic liquid flow past a semi-infinite upward plate 
with Joule heating and influences of Soret-Dufour, viscous dissipation, and thermal radiation has 
been scrutinized numerically. The Rosseland diffusion model has been employed on the simplified 
coupled nonlinear PDEs to check the behavior of radiative heat flux. The outcomes of the present 
analysis are obtained by utilizing SRM. SRM is expressed in Lagrange polynimials interpolation 
employed to decouple PDEs' decouple systems by employing a relaxation approach. The following 
final remarks are drawn from the outcomes: 
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i. The tangent hyperbolic fluid is considered. Due to the high viscosity in this fluid, an 
incremental value of the Weissenberg number is found to degenerate the velocity 
profile; 

ii. The Soret term is added to the specie equation in the problem of heat and mass, and in 
this paper, an increase in the Soret term is found to elevate the velocity alongside the 
concentration profile; 

iii. By increasing the Dufour term, it is found that the speed along the temperature plot 
goes up; 

iv. A magnetic field of uniform strength is imposed in the direction of the non-Newtonian 
fluid flow. Hence, the transverse magnetism is found to increase the strength of the 
Lorentz force as the velocity profile degenerates; and 

v. We find that as the Schmidt number goes up, the velocity along the concentration plot 
goes down. 

 
The outcomes of this study would be helpful in drilling operations, polymer engineering, and 

bioengineering. Because of the MHD nature of the liquid, this outcome is of interest in controlling 
magnetized metal welding and coating of metals. The outcomes of this study would also be helpful 
in separating isotopes. 
 
The present exploration is expected to be helpful in the following fields: 
 

i. This study will be of help in reducing the turbulence of blood flow due to magnetism; 
ii. This study will be helpful in treating blood cancer by applying electromagnetic radiation 

and 
iii. This study will be helpful in moderating pores in pathological studies. 
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