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The conical problem represents one of the important problems in the various fields of 
industrial as the automotive industry and the aerospace industry, due to their great 
role in controlling the flow of liquids and gases. This article covers a computational 
investigation of incompressible the Phan–Thien/Tanner shear-thinning viscoelastic 
fluid flow through a conical converging channel. Here, we select hybrid finite 
element/finite volume algorithm as a first time to treat such problem. This method 
consists of the combination of a Taylor-Galerkin/pressure correction finite element 
method (TGPC-FEM) and a cell-vertex finite volume approach (CV-FEA) to solve the 
system of partial differential equations that govern the fluid flow. The TGPC-FEM is 
employed to the momentum and mass conservation models, while the stress 
constitutive models are treated by finite volume implementation. The findings of 
current study are concerned with stress response, deformation rate, and pressure drop 
under variations in Weissenberg number and EPTT parameters. The effect of shear-
thinning behaviour with the EPTT representation is also considered.  
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1. Introduction 
 

One of the most fascinating phenomena is the shear-thinning viscoelastic flow through the 
conical, which is extensively studied in the computational fluid dynamics. Practically, conical fluid 
flow refers to the flow of a fluid through a conical-shaped conduit or channel, and it is a common 
phenomenon encountered in various engineering applications and fluid dynamics studies. In fact, the 
behavior of fluid flow in a conical channel is influenced by factors such as the inlet conditions, 
geometry of the conduit, fluid properties, and any external forces acting on the flow. In addition, 
conical fluid flow finds applications in various fields such as the design of nozzles, diffusers, ejectors, 
converging-diverging ducts, and fluidic systems. In this domain analytical methods, numerical 
simulations, and experimental techniques are employed to study and analyses conical fluid flow 
behavior in practical applications.  

Relationships regarding incompressible conical flow can be formulated back to the early 20th 
century, where the analytical solutions for creeping Newtonian flow are presented by Harrison [1] 
and Bond [2]. In these studies, the velocity and pressure fields and Harrison studied the velocity field, 
and Bond found the pressure field are extensively studied. However, the obtained solutions assume 
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a purely radial flow throughout which the flow at the inlet and outlet of the cone cannot be modified. 
Or the conical flow analysis of energy law fluids Oka and Takami [3] used the creeping radial flow, 
where the provided an ordinary differential equation for the velocity field; however, unlike Harrison, 
they did not establish an analytic or numerical solution to the equation. Forsyth [4] later concluded 
that the assumption of radial flow constrains Harrison and Bond solutions to small-angle cones. Some 
studies have discussed non-Newtonian fluids. Moreover, Sutterby [5] studied the effect of the angles 
and diameter ratio on the flow. There, the author found out that the small diameter ratio and small 
angles generate only slight normal elastic pressures in the flow. By ignoring the inertia, Kwon et al., 
[6], and Kajiwara et al., [7] employed the finite element method for the first time to analyze the 
conical flows. In contrast, the finite difference method is has been used by Jarzebski and Wilkinson 
[8] to study inelastic fluid in a conical channel using a power law model, including inertia. They 
obtained data on evolution length, stress evolution and pressure drop. However, their findings are 
limited to light-shear fluids and small conical angles. Furthermore, they did not use fluxes to enter or 
exit the conical duct. These studies had been achieved when inertia was neglected. In addition, many 
accomplished research papers include converging flow had been published (see for example [9–12]). 
In fact, the study of viscoelastic flows represents a high challenge in the field of fluid dynamics. 
Particularly, for a circular conical viscoelastic problem, few studies have been conducted. Thus, in 
this article we concerned with the study of viscoelastic solutions for axisymmetric conical problem 
under isothermal condition, by appealing to the exponential Phan-Thien Tanner (EPTT) viscoelastic 
models, with properties of shear-thinning and moderate-high Trouton ratios.  

Given the importance of studying conical problem due to of its wide applications, we have 
highlighted its numerical solutions. Basically, the conical flows play an essential role in effective fields 
including irrigation, hydraulic systems, and transportation. In addition, providing a numerical method 
with high accuracy will be of great importance in providing an important aid in finding many of the 
problems that confront researchers in these areas. For these reasons, this study concerned in this 
type of scientific issue.  

The novelty of this work is to treat the conical viscoelastic problem by using hybrid of finite 
element and finite volume methods, which did not use previously for such problem. Here, a Taylor-
Galerkin/ pressure correction method (TG-PC-M) is employed to solve the continuity and momentum 
equations, while the stress constitutive model is treated by invoking a cell-vertex fluctuation 
distribution finite volume method for more details about such method (see Ref. [13,14]). Here, 
particular attention is paid to study the effect of some parameters, such as the viscoelasticity (We) 
and the used constitutive model on the solution components. In addition, the difference of the 
geometric parameters influences the distribution of the static pressure and the drag force, which in 
turn influences the mass flow rate at the outlet.  

In the next section, the mathematical model and constitutive model of the viscoelastic fluid flow 
will be introduced. The discretization method that utilized to treat the governing equations will be 
introduced in Eq. (3). The problem specification, material functions and the numerical results will be 
presented in Eq. (4), (5) and (6), respectively. 
 
2.  Mathematical Equations and Constitutive Models  
 

The fundamental governing equations of the incompressible viscoelastic fluid flow are presented 
in this section. These equations consist of continuity, momentum and stress constitutive equation, 
which are expressed in the following forms [15-18]: 

 
.0 u                                                                                                                                              (1) 
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Where, u, ρ, τ and p represent fluid velocity, fluid density, the polymeric contribution to the extra-
stress tensor and hydrodynamic pressure, respectively. In addition, (d=(∇u + (∇u)T )/2)is the rate-of-
deformation and  (μs) represents a solvent component of viscosity. Furthermore, the EPTT model can 
be obtained as follows: 

 

𝑊𝑒 𝜕𝜏/𝜕𝑡 = (2(1 − 𝛽)𝑑 − 𝑓(𝜏)𝜏) − 𝑊𝑒(𝑢 ⋅ 𝛻𝜏) + 𝑊𝑒(1 − 𝜉)(𝛻𝑢† ⋅ 𝜏 + 𝜏 ⋅ 𝛻𝑢)                           (3) 
 
Here, We is the Weissenberg number and 𝑓 represents the nonlinear function expressed as 
 

𝑓(𝜏) = exp (
𝜀𝐸𝑃𝑇𝑇 𝑊𝑒

(1−𝛽)
𝑡𝑟(𝜏)).                                                                                                                          (4)  

 
The constant 𝜀𝑃𝑇𝑇 and 𝜉 are material parameters of the non-dimensional model. 
 
3 Numerical Method  
3.1 Taylor–Galerkin Pressure Correction Discretization  
 

The 𝑇𝐺−𝑃𝐶−𝐹𝐸𝑀 algorithm is presented to treat the system of current governing equations. This 
algorithm was suggested by Townsend and Webster [19]. A Taylor–Galerkin scheme based on two-
step Lax–Wendroff and a pressure-correction scheme represent the general framework of this 
algorithm. In contrast, a second-order accuracy in time by adopting a semi-implicit Crank–Nicolson 
time split with the time increment factor 𝜃𝑐𝑟 is the main base of the pressure-correction method.  The 
stages of this algorithm are gathered as follows:  
 

Stage 1a: -   
2𝑅𝑒

∆𝑡
[𝑢𝑛+

1

2 − 𝑢𝑛] = [∇. (𝜏 + 2𝛽𝑑) − 𝑅𝑒𝑢. ∇𝑢 − ∇𝑝]𝑛 ,                                                                        (5)  

 

                      
2𝑊𝑒

∆𝑡
[𝜏𝑛+

1

2 − 𝜏𝑛]=[2(1 − 𝛽)𝑑 − 𝜏 + 𝑊𝑒(∇𝑢. 𝜏 + 𝜏. (∇𝑢)𝑇]𝑛 ,                                                           (6) 

 

Stage 1b: -   
𝑅𝑒

∆𝑡
[𝑢∗ − 𝑢𝑛]=[∇. (𝜏 + 2𝛽𝑑) − 𝑅𝑒 𝑢. ∇𝑢]𝑛+

1

2  - ∇𝑝𝑛,                                                                             (7) 

 

                     
𝑊𝑒

∆𝑡
[𝜏𝑛+1 − 𝜏𝑛] = [ 2(1 − 𝛽)𝑑 − 𝜏 + 𝑊𝑒(∇𝑢. 𝜏 + 𝜏. (∇𝑢)𝑇]𝑛+

1

2 ,                                                      (8) 

 

Stage 2: - ∇2(𝑝𝑛+1 − 𝑝𝑛) =
𝑅𝑒

𝜃𝑐𝑟∆𝑡
 ∇. 𝑢∗,                                                                                                                        (9) 

 

Stage 3: -𝑢𝑛+1 = 𝑢∗ −
𝜃𝑐𝑟∆𝑡

𝑅𝑒
[∇(𝑝𝑛+1 − 𝑝𝑛)],                                                                                                             (10) 

 

In these fractional stages, velocity and stress fields are calculated at the half time step 

(𝑢, 𝜏)𝑛+
1

2 and corrected for the full time step (𝑢∗, 𝜏)𝑛+
1

2 (𝑆𝑡𝑎𝑔𝑒 1). The momentum diffusion term is 
treated in a semi-implicit way to improve the convergence and stability of the solution. The velocity 
field (𝑢∗), which is derived through the full time step of the momentum, may not satisfy continuity 
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and require correction. Thus, a Poisson-like equation is generated to increase the time step of 
pressure (𝑆𝑡𝑎𝑔𝑒 2) accompanied with a correction (𝑆𝑡𝑎𝑔𝑒 3). 
 
3.2 Sub-vertex Finite Volume Discretization 
  

The stress constitutive is rewritten into a conservative form and the flux (𝑅) and source (𝑄) terms 
are identified to outline the application of 𝑓𝑣 theory: 

 

𝜕𝜏/ 𝜕𝑡 = − ( 𝑢𝜏) + ( 
1

𝑊𝑒
(2(1 − 𝛽)𝑑 − 𝜏) + ∇𝑢. 𝜏 + 𝜏. ∇𝑢)                                           (11) 

 
The cell-vertex 𝑓𝑣 approaches are achieved for Eq. (11) through fluctuation distribution as an 

upwinding strategy to distribute control volume residuals and furnish nodal solution updates [20-23]. 
Each scalar stress component, 𝜏, is considered to be acting on an arbitrary volume Ω = ∑𝑙 Ω, whose 
variation is controlled by the corresponding fluctuation components of the flux (𝑢𝜏) and the source 

(
1

𝑊𝑒
(2(1 − 𝛽)𝑑 − 𝜏) + ∇𝑢𝑇 . 𝜏 + 𝜏. ∇𝑢): 

 
𝜕 /𝜕𝑡 ∫Ω𝑙 𝜏𝑑Ω = − ∫Ω𝑙 𝑅𝑑Ω + ∫Ω𝑙 𝑄𝑑Ω                                                         (12) 
 

The integral source variations and flux are calculated over each finite volume triangle (Ω) and 
appropriated proportionally by the chosen cell-vertex distribution method to its three vertices. The 
update of nodal is gained by summing all contributions from its control volume Ω composed of all 𝑓𝑣 
triangle surrounding nodes (𝑙). Moreover, the flux and source residuals are probably determined 
through two separate control volumes associated with a given node (𝑙) within the 𝑓𝑣 cell 𝑇, 
generating two contributions: one is upwinded and governed over the 𝑓𝑣 triangle 𝑇, ((𝑢𝜏)𝑇, 

1

(𝑊𝑒
(2(1 − 𝛽)𝑑 − 𝜏) + ∇𝑢𝑇 . 𝜏 + 𝜏. ∇𝑢 )𝑇), and the other is area averaged and subtended over the 

median dual-cell zone (𝑅𝑀𝐷𝐶, 𝑄𝑀𝐷𝐶). For the reasons of temporal accuracy, this procedure 
demands appropriate area weighting to maintain consistency with extension to time terms likewise. 
In this context, a generalized 𝑓𝑣 nodal update equation is derived per stress component by separating 
the treatment of individual time derivative, flux, and source terms and integrating the associated 
control volumes given as; 

 

∑ 𝛿𝑇𝛼𝑙
𝑇Ω𝑇 + ∑ (1 − 𝛿𝑇)Ω𝑙

𝑇]
∆𝜏𝑙

𝑛+1

∆𝑡
= ∑ 𝛿𝑇𝛼𝑙

𝑇𝑏𝑇 + ∑ (1 − 𝛿𝑇)𝑏𝑙
𝑀𝐷𝐶

∀𝑀𝐷𝐶𝑙∀𝑇𝑙∀𝑀𝐷𝐶𝑙∀𝑇𝑙
,                       (13) 

 

Where 𝑏𝑇= (−𝑅𝑇 + 𝑄𝑇), 𝑏𝑙
𝑀𝐷𝐶= (−RMDC +  QMDC)𝑙, Ω𝑇is the area of the 𝑓𝑣 triangle 𝑇, and (10 × 

20) element is the area of its median dual-cell (𝑀𝐷𝐶). The weighting parameter, 0 ≤ 𝛿𝑇≤ 1, balances 
the proportions taken between the contributions from the median dual cell and 𝑓𝑣 triangle 𝑇. The 
discrete stencil (18) identifies fluctuation distribution, median dual-cell contributions, area 

weighting, and upwinding factors (𝛼𝑙
𝑇scheme dependent) [24-27]. 

 
3.3 Low Diffusion 𝐵 Scheme  
 

Aboubacar et al., [21] and Al-Muslimawi et al., [23] showed the approach of low diffusion 𝐵 (𝐿𝐷𝐵) 
is appropriate option to find the fluctuation distribution parameter 𝛼. It is a linear method with the 
properties of second-order linear preservation and accuracy. The 𝐿𝐷𝐵 distribution coefficients 𝛼𝑖 are 
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determined in each triangle via angles 𝛾1 and 𝛾2, subtended at an inflow vertex (𝑖) by the advection 
velocity 𝑎, where 𝑎 is the average of velocity field per 𝑓𝑣 cell: 
 

𝜶𝒊 =
𝒔𝒊𝒏𝜸𝟏𝒄𝒐𝒔𝜸𝟐

𝒔𝒊𝒏(𝜸𝟏+𝜸𝟐)
 , 𝜶𝒋 =

𝒔𝒊𝒏𝜸𝟐𝒄𝒐𝒔𝜸𝟏

𝒔𝒊𝒏(𝜸𝟏+𝜸𝟐)
 , 𝜶𝒌 = 𝟎 .                                                                                                (14) 

 
If 𝜸𝟏 > 𝜸𝟐, then 𝜶𝒊 > 𝜶𝒋; thus, by design, the contribution of the flow from node (𝑖) is greater than 

that of the flow from node (𝑗). 
 
Additionally, the setting of boundary condition (BCs) of the current problem with is given as:  
 

i. The chosen inflow conditions are those corresponding to the analytical expression of fully 
developed axial velocity and zero radial velocity.  

ii. No-slip boundary condition is applied to the top and bottom walls of channels.  
iii. Zero radial velocity and zero pressure are applied to the outlet of channels.  
iv. The radial velocity along the axisymmetric line is removed. 

 
4. Problem Specification 
 

The problem in this study is chosen to be a cone connected to upstream and downstream 
cylinders. In this context, a Poiseuille flow through a 2D axisymmetric conical channel [1:0.5, 2:0.5, 
3:0.5 and 4:0.5] is considered for an isothermal incompressible viscoelastic fluid. The radius of the 
upstream tube is selected to be twice the downstream tube width. Figure 1(a) illustrates the 
schematic of such a benchmark flow problem. A triangular finite element mesh called C-M is used 
with a half angle of α = 30°, as shown in Figure 1. Table 1 and 2 presents further details about the 
mesh characteristics. 
 
                                                    Table 1 
                                                    Geometry (C-M) dimensions 

Dimension Measures 

L1 4 

L2 1 
L3 1 
L4 6 
R1 1 
R2 0.5 

 
                                                 Table 2 
                                                 Geometry (C-M) dimensions 

Dimension Measures 

Elements 128 
Nodes 97 
Boundary nodes 80 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Schematic and finite element mesh (C-M) for conical  

 
5. Results and Discussion 
 

In this study, the numerical solutions of a viscoelastic conical flow are presented through various 
key parameters of the EPTT model (εEPTT = 0.02, 0.15, 0.25) and the solvent fraction (𝛽 = 0.9) with 
variation in Weissenberg number. 
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5.1 Effect of We Variation 
 

Figure 2 illustrates the pressure drop plot for a Newtonian case and viscoelasticity with We = {1, 
5, 10} along the axis of symmetry. The profiles show that We affects pressure distribution in channels. 
In this context, the level of pressure drop increases gradually as We increases because of the shear-
thinning behaviour. Here, the maximum level of pressure of a Newtonian flow is reached compared 
with viscoelasticity through the channel zone. By comparison, no change is observed in the cone 
section.  
 

 
Fig. 2. Pressure drops along centerline: EPTT{εEPTT =
0.02, ξEPTT = 0.0}, 𝛽 = 0.9, 𝑊𝑒 variation 

 
The radial stress ( 𝜏𝑟𝑟) in the top and centreline zones is displayed in Figures 3(a–b) for EPTT 

{εEPTT = 0.02, ξEPTT = 0.0} and 𝑊𝑒 = {1,5, 10} at fixed 𝛽 = 0.9. The profiles show that the 
magnitude in the cone area significantly increases as We decreases. The findings reveal that an 
overshoot exists in pre- and post-cone exit regions with a maximum level at We = 1. Figure4 presents 
more details of the zoned part of the cone. 

 

 
(a) Top surface 

 

 
(b) Centreline 

Fig. 3. Radial stress (𝜏𝑟𝑟), EPTT{εEPTT = 0.02, ξEPTT = 0.0}: 𝛽 = 0.9, 𝑊𝑒 variation 
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(a) We=1 

 
(b) We=5 

 

 
(c) We=10 

Fig. 4. Axial stress (𝜏𝑟𝑟) fields in the cone zone, EPTT{εEPTT = 0.02, ξEPTT = 0.0}: 𝛽 = 0.9, 𝑊𝑒 variation 

 
Figure 5 illustrates normal stress (𝜏𝑍𝑍) along the axis of symmetry under the same set of 

parameters. Constant normal stress levels occur along the die section and cone exit. They increase 
and then sharply decrease in the cone section. In this case, normal stress increases as We decreases 
because of the influence of shear-thinning behaviour with the EPTT representation. For instance, on 

the top surface with We = 1, the maximum zz is around 12 units; by comparison, the maximum zz at 
We = 10 is 2 units, which is almost O(83%) reduction. In addition, 𝜏𝑍𝑍 on the top surface is much 
higher than that in the centreline. Specifically, Figure 6 presents the field structures of axial normal 
stress in the cone section for three different values of We = {1, 5, 10}, 𝛽 = 0.9, and εEPTT = 0.02. 
The fields show that the maxima of zz occurs at the zone of the drawdown section. Normal stress 

decreases as We increases. 
 

 
(a) Top surface 

 

(b) Centreline 

Fig. 5. Normal stress (𝜏𝑧𝑧), EPTT{εEPTT = 0.02, ξEPTT = 0.0}: 𝛽 = 0.9, 𝑊𝑒 variation 
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(a) We=1 

 
(b) We=5 

 

 
(c) We=10 

Fig. 6. Normal stress (𝜏𝑧𝑧) field, EPTT{εEPTT = 0.02, ξEPTT = 0.0}: 𝛽 = 0.9, 𝑊𝑒 variation 

 
Figure 7 plots the shear data, with shear stress (𝜏𝑟𝑧) along the top surface of the conical for the 

same parameter settings. The findings reveal that relaxation that is apparent through the channel 
region with a shear component almost vanishes. In the cone region, an opposing feature from normal 
stress is indicated by a peak shear in magnitude observed at We = 1. 

 

 
Fig. 7. Shear stress (𝜏𝑟𝑧) along the top wall, 

EPTT{εEPTT = 0.02, ξEPTT = 0.0}: 𝛽 = 0.9, 𝑊𝑒  variation 
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5.2. Effect of 𝜀𝐸𝑃𝑇𝑇 Variation 
 

For more details, Figure 8 illustrates the pressure profiles along the centreline at We = 1 and 
through variation in the εEPTT ratio. This result indicates the largest pressure in both regions at εEPTT 
= 0.02. The pressure drop slightly decreases as the εEPTT ratio increases from εEPTT = 0.02 to εEPTT = 
0.25, which reflects the shear-thinning impact.  
 

 
Fig. 8. Pressure drops along centreline: EPTT{𝑊𝑒 = 1, ξEPTT =
0.0}, 𝛽 = 0.9, εEPTT variation 

 
The effect of  εEPTT variation on radial stress (𝜏𝑟𝑟) are provided in Figure 9 by plotting (𝜏𝑟𝑟) along 

the top surface and the axis of symmetry with fixed {We=1, 𝛽 = 0.9}. The profile of 𝜏𝑟𝑟 reflects that 
its magnitude increases as εEPTT decreases. From  εEPTT = 0.02 to  εEPTT = 0.25, 𝜏𝑟𝑟 reduces by 
about 70%, which implies that the effects of axial stress are important in this problem.  
 

 

 

 
(a) Top Surface  (b) Centreline 

Fig. 9. Radial stress (τ_rr), EPTT{We=1, ξ_EPTT=0.0}: β=0.9, ε_EPTT variation 

 

Studying the shear stress range (𝜏𝑟𝑧) can provide a complete feature about the history of 
deformation and the response of the fluid under consideration. Figure 10 displays the shear stress 
profiles under the same settings of parameters. Generally, a similar behaviour is observed in (𝜏𝑟𝑧) 
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with an opposite sign, where the magnitude of 𝜏𝑟𝑧 decreases as  εEPTT decreases because of the 
shear-thinning reflects 
 

 
Fig. 10. Shear stress (𝜏𝑟𝑧) along the top wall, 

EPTT{𝑊𝑒 = 1, ξEPTT = 0.0}: 𝛽 = 0.9, εEPTT-variation 

 
For the same set of parameters, Figure 11 shows the normal stress (𝜏𝑍𝑍) along the top surface 

and the axis of symmetry. The results reveal that the normal constant stress levels occur along the 
die section and the outlet cone. They initially increase and then sharply decrease in the cone section. 
In both surfaces, the normal stress level increases as εEPTT decreases. The level of normal stress on 
the top surface is higher than that in the axis of symmetry.  
 

 

 

 
(a) Top Surface  (b) Centreline 

Fig. 11. Normal stress ( ), EPTT : ,  variation 
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6. Conclusion 

 
This investigation covered the numerical solution of exponential Phan-Thien Tanner (EPTT) 

viscoelastic conical fluid. Conical channels are crucial to this study because it can help us understand 
how fluids behave in intricate geometries. This analysis advances our knowledge of fluid flow in 
conical channels and can help with the design and optimization of several industrial processes 
requiring similar by examining the effects of various parameters, such as (𝑊𝑒) and εEPTT, on 
pressure drop and stress. Using a hybrid 𝐹𝐸/𝐹𝑉 technique in a cylindrical coordinate system, we 
propose solutions for an axisymmetric conical issue with a shear-thinning viscoelastic EPTT model in 
this work. We research how (𝑊𝑒) and εEPTT have an impact. Our findings demonstrate that, when 
(𝑊𝑒) grows, the shear thinning qualities lead the degree of pressure drop to decrease and solvent 
fraction εEPTT) to rise. We observe the same feature in radial stress, shear stress, and normal stress, 
which agree with other experimental results. We perform our study at three different levels of 
{εEPTT}: εEPTT = 0.02, εEPTT = 0.15, and εEPTT = 0.25. Here, we note a moderate effect on 
pressure drop and a significant effect of {εEPTT} on stress. 
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