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Evaporation in the micro-gap heat sink has a very high heat transfer coefficient. As a 
result, it is significant for high heat flux management. Heat transfer rate can be 
enhanced further by including internal micro-fins. However, the pressure drop penalty 
due to the small gap height and fin surfaces is a major concern. Wall shear stress 
development is responsible for pressure drop. This paper investigates the effects of 
operating conditions, e.g., wall heat flux, pumping power, and inlet void fraction, on 
evaporation rate and wall shear stress development in a micro-gap heat sink with 
internal micro-fins of rectangular and triangular profiles, while the cross-sectional area 
(21.8 mm2) is kept constant. R-134a is considered as coolant. Results show that the 
evaporation rate from per unit volume increases with the increment of wall heat flux 
and decreases with the enhancement of pumping power. However, after a threshold 
value of the pumping power (2×10-4 W), the decrement rate falls. Again, the wall shear 
stress rises with the increasing wall heat flux and pumping power while reduces for 
escalating inlet void fraction. 

Keywords: 
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1. Introduction

Micro-gap heat sinks have potentials to serve as high performance coolant flow paths [1]. Alam 
et al., [2] showed that for high heat flux and low mass flow rate, micro-gaps have higher heat transfer 
capability compared to microchannel heat sinks. Heat transfer rate can be enhanced further by 
including micro-fins in the micro-gap [3-7]. It has been reported that evaporation of the coolant in a 
micro-gap heat sink is efficient for cooling of electronic devices, micro-electromechanical systems 
(MEMS), micro-opto-electronic devices, and micro-reactors [8]. However, pressure drop is a major 
concern for micro-gaps due to the small gap height [9]. Wall shear stress development is responsible 
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for pressure drop in the heat sink [10]. Hence, it is important to investigate the effects of operating 
conditions on evaporation rate and wall shear stress.  

This paper presents a numerical work to investigate the effects of operating conditions, e.g., wall 
heat flux, pumping power, and inlet void fraction, on evaporation rate and wall shear stress 
development in a micro-gap heat sink with rectangular and triangular fins for the R-134a coolant.  
Fluent solver in the Ansys 14.5 release has been used for the simulation purpose. 
 
2. Simulation 
2.1. Multiphase Flow and Turbulence Modelling 
 

The Volume of Fluid (VOF) method [11] has been used to model the multiphase flow. The void 
fraction equation is the following: 

 
𝜕(𝛼𝜌𝑣)

𝜕𝑡
+ 𝛻. (𝛼𝜌𝑣𝑣⃗𝑣) = 𝑚𝑒𝑣𝑝                                                                                                                           (1) 

       
Here α is the void fraction, ρv is the vapor density, 𝑣⃗𝑣 is the vapor velocity vector and mevp is rate 

of mass transfer from liquid to vapor phase due to evaporation. The void fraction is defined 
mathematically as follows: 
 

𝛼 =
1

𝑉
∫ 𝐼(𝜒, 𝑡)𝑑𝑉
𝑉

                                                                                                                                             (2) 

           
Here I(χ,t) is known as the marker function, which is a multi-dimensional unit step function. In the 

primary phase, the value of the marker function is 1, while in the secondary phase it is 0.  
The conservation of momentum equation: 
 

𝜕(𝜌𝑣⃗)

𝜕𝑡
+ 𝛻. (𝛼𝜌𝑣⃗𝑣⃗) = −∇𝑃 + ∇𝜏 + 𝜌𝑔⃗ + 𝐹⃗                                                                                                 (3) 

         
Here τ is wall shear stress and g is gravitational acceleration. For Newtonian fluid, the shear stress 

is expressed as follows: 
 
𝜏 = 𝜇[𝛻𝑣 + (𝛻𝑣 )𝑇]                                                                                                                                           (4) 

           
Here μ is the dynamic viscosity. The conservation of energy equation for the fluid domain: 

 
𝜕(𝜌𝐸)

𝜕𝑡
+ 𝛻. (𝑣⃗(𝜌𝐸 + 𝑃)) = ∇(𝑘𝑒𝑓𝑓∇𝑇)                                                                                                         (5) 

         
Here keff is the effective thermal conductivity. Again, for the solid domain: 

 

𝛻. (𝑘𝑠∇𝑇𝑠) =
𝜕(𝜌𝑠𝑐𝑝,𝑠𝑇𝑠)

𝜕𝑡
                                                                                                                                  (6) 

           
Here cp,s is specific heat capacity of solid at constant pressure. 
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Internal fins are responsible for turbulence generation [8]. Hence, it is important to model 
turbulence in the flow field. The following equation is used to calculate the turbulence kinetic energy 
[12]: 
 
𝜕𝑘

𝜕𝑡
+ 𝛻(𝑣⃗ . 𝑘) =

1

𝜌
[𝛻(𝑎𝑘 . 𝜇𝑒𝑓𝑓. 𝛻𝑘) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘]                                                            (7) 

       

Here, Gk = generation of turbulent kinetic energy due to the mean velocity gradients. Gb = 
generation of turbulent kinetic energy due to buoyancy. YM = contribution of the fluctuating 
dilatation in compressible turbulence to the overall dissipation rate.  ε=turbulence energy 
dissipation rate. 

Again, the equation based on turbulence kinetic energy dissipation rate: 
 
𝜕𝜀

𝜕𝑡
+ 𝛻(𝑣⃗ . 𝜀) =

1

𝜌
[𝛻(𝑎𝜀 . 𝜇𝑒𝑓𝑓. 𝛻𝜀) + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
− 𝑅𝜀 + 𝑆𝜀]                                 (8) 

     
αk and αε are inverse effective Prandtl numbers for k and ε, respectively and Sk and Sε are source 
terms.  

The model constants have the following default values: 
C1ε= 1.42, C2ε= 1.68 
 
2.2 Modelling Mass Transfer 
 

During boiling, mass is transferred from liquid to vapor phase. Modelling mass transfer rate due 
to evaporation includes determining empirical model for calculating evaporation rate and define the 
constraint to maintain interfacial temperature condition.  
 
2.2.1 Interfacial temperature condition  

 
Interface temperature condition is critical. According to Schrage [13], at thermodynamic 

equilibrium condition, a temperature jump at the interface exists due to pressure difference between 
vapour and bulk fluid. Hence, temperature condition at the interface can be written as: 
𝑇𝑠𝑎𝑡(𝑃𝑙)=𝑇𝑙≠𝑇𝑣=𝑇𝑠𝑎𝑡(𝑃𝑣). To employ this condition in the mathematical model is a challenge.  
 
2.2.2 Evaporation-condensation model  
 

Mass exchange between two phases is calculated from evaporation-condensation model, 
proposed by Lee [14]. Following equation is used: 

 
𝑚𝑒𝑣𝑝 = 𝑐𝑜𝑒𝑓𝑓. (1 − 𝛼)𝜌𝑙(𝑇𝑙 − 𝑇𝑠𝑎𝑡)𝑇𝑠𝑎𝑡                                                                                                      (9) 

 
In this equation, the value of evaporation coefficient should be defined to maintain saturation 

temperature (Tsat) at the interface. Wu et al., [15], De Schepper et al., [16], and Alizadehdakhel et al., 
[17] recommended that the value of evaporation coefficient should be 0.1 to satisfy the criterion.  
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2.3 Initial and Boundary Conditions 
 
At time t = 0; v = 0, Tf = Ts = Tatm, α = 0.  Various boundary conditions are defined at the inlet, 

outlet, and outer walls of the heat sinks. At the inlet: Tf = Tin, v = vin, α = αin. Turbulence intensity is 
also defined at the inlet. For fully developed internal flow, turbulence intensity is calculated from the 
following formula: 
 

𝐼 =
𝑢′

𝑢𝑎𝑣𝑔
= 0.16(𝑅𝑒)−

1
8                                                                                                                                   (10) 

 
Again, atmospheric pressure is defined at the outlet: P = Pout=Patm.  

Heat transfer from wall to fluid is by convection. Convective heat transfer coefficient is 
calculated from the following equation: 
 

ℎ =
𝑄𝑒𝑓𝑓

𝐴𝑓(𝑇𝑠 − 𝑇)
                                                                                                                                                 (11) 

 
Uniform heat flux is applied at the bottom of the heat sink. Heat is transferred through the solid 

wall by conduction in the normal direction of the bottom surface. Heat flux transferred by conduction 
is calculated from the following equation: 
 

𝑞 = −𝑘𝑠
𝜕𝑇𝑠
𝜕𝑛

                                                                                                                                                       (12) 

           
Adiabatic condition is applied to other channel walls. Hence, qloss = 0. As a result, temperature 

gradient at boundaries:  
 
𝜕𝑇𝑠
𝜕𝑛

= 0                                                                                                                                                                (13) 

             
2.4 Heat-Sink Dimensions and Range of Operating Conditions 
 

Dimensions of the micro-gap heat sink are shown in Table 1 and the range of operating conditions 
are given in Table 2. R-134a has been considered as coolant.  
 

Table 1 
Dimensions of micro-gap heat sinks 

Parameters (unit)  Rectangular fin gap  Triangular fin gap  

Cross-sectional area, Acs (mm2)  21.8  21.8  
Convective surface area, Af (mm2)  2.66×10-3  2.04×10-3  
Hydraulic diameter, Dh (mm)  1.11  1.45  

 
Table 2 
Range of operating conditions 
Operating conditions (unit) Range  

Wall heat flux (Wm-2) 1×106 - 8×106 
Pumping power (W) 0.8×10-4 - 1×10-3 
Inlet void fraction 0 – 0.8 
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2.5 Validation of Numerical Model 
 

The numerical model has been validated experimentally. The experimental setup has been 
presented in other publications of the author [6, 7]. Validation results are given in Figure 1 and Figure 
2. Figure 1 shows that Biot number decreases with the increment of Reynolds number calculated 
from outlet vapour velocity. Pressure drop also decreases with the decrement of vapour Reynolds 
number (Figure 2). Note that in the figures, dimensionless heat flux is constant, which is the ratio of 
heat flux absorbed by the fluid to heat flux supplied at the bottom of the heat sink. Mathematically, 

𝑞  = 
𝑞𝑒𝑓𝑓

𝑞𝑖𝑛
.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Plot of Biot number against vapour Reynolds 
number for numerical and experimental results when 
𝑞 ̅=1 

Fig. 2. Pressure drop vs. vapour Reynolds number 
plot for numerical and experimental results when 
𝑞 ̅=1 

 
3. Results and Discussion 
3.1 Evaporation Rate 

 
Mass exchange from liquid to vapor phase is calculated from Eq. (9). From the equation, it is 

apprehended that evaporation rate depends on liquid superheat (Tl - Tsat), and void fraction (α). In 
Figure 3 and Figure 4, rate of mass transfer from per unit volume of fluid (ṁ) due to evaporation in 
rectangular and triangular-fin micro-gaps have been plotted for incrementing wall heat flux (q") and 
pumping power (Ω). It is accomplished that rate of evaporation escalates with ascending heat flux. 
For a fixed saturation temperature, liquid superheat increases for increasing heat flux, which in turn 
augments evaporation rate. However, for advancing pumping power, a steeply decreasing trend of 
evaporation rate is noted at the beginning, which diminishes after surpassing 2×10-4 W of pumping 
power for both heat sinks (Figure 4). 
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Fig. 3. Rate of evaporation from per unit volume for 
wall heat flux variation at Ω=3×10-3 W, αin=0  

Fig. 4. Rate of evaporation from per unit volume for 
pumping power variation at qin=1×106 Wm-2, αin=0 

 
Due to ascending evaporation rate, total thermal resistance (Rth) increases with the increment of 

wall heat flux (Figure 5). Again, Rth decreases with the augmenting pumping power (Figure 6). 
 

  
Fig. 5. Variation of total thermal resistance with wall 
heat flux (Ω=3×10-3 W, αin=0) 

Fig. 6. Variation of total thermal resistance with 
pumping power (qin=1×106 Wm-2, αin=0) 

 
3.2 Wall Shear Stress Development 
 

Wall shear stresses developed on upper and lower surfaces of rectangular and triangular fin 
micro-gaps during flow boiling have been plotted against heat flux, pumping power and inlet void 
fraction increment. It is seen that the wall shear stress increases with upgrading heat flux (Figure 7) 
and pumping power (Figure 8) in both heat sinks and decreases with rising inlet void fraction (Figure 
9).  

Wall shear stress development on lower surfaces of rectangular and triangular fin micro-gaps is 
visualized in Figure 10 and Figure 11, respectively. Almost uniform shear stress distribution on 
interfaces is noted. A slight variation can be perceived near walls of the heat sinks.  
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Fig. 7. Variation of the wall shear stress with the 
wall heat flux (Ω=3×10-3 W, αin=0) 

 

 
Fig. 8. Variation of the wall shear stress with the 
pumping power (qin=1×106 Wm-2, αin=0) 

 

 
Fig. 9. Variation of the wall heat flux with the inlet 
void fraction (Ω=5.5×10-4W, qin=1×106 Wm-2) 
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Fig. 10. Wall shear stress distribution on lower interface of a rectangular fin micro-
gap for Ω=2×10-3W, qin=1×106 Wm-2, αin=0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Wall shear stress distribution on lower interface of a triangular fin micro-gap 
for Ω=2×10-3W, qin=1×106 Wm-2, αin=0 

 
4. Conclusions 
 

Following key points are noted from this research: forexample: 
 

i. Evaporation rate enhances with the increasing wall heat flux and decreases with the 
increasing pumping power. The decrement rate of evaporation slows down after 
achieving a threshold value of the pumping power. 

ii. Wall shear stress rises with the increasing wall heat flux and pumping power and 
decreases with the decreasing inlet void fraction. 
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