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In this article, the stagnation point flow of a micropolar fluid on a stretching/shrinking 
sheet has been discussed subject to the assumption of velocity slip. Similarity 
transformation is used to transform the modelled Partial Differential Equations (PDEs) 
into a system of Ordinary Differential Equations (ODEs). The numerical results have 
been found by the shooting technique along with Adams Moulton method of order 
four. The obtained numerical results are compared with the help of Fortran Language 
program and compared with the earlier published results and excellent validation of 
the present numerical results has been achieved for the local Nusselt number.  Finally, 
the numerical results are presented with discussion of the effects of different physical 
parameters. 
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1. Introduction 
 

Stagnation point refers to the location in the flow field when the fluid velocity is zero. In the 
subject of fluid dynamics, the study of viscous, incompressible fluid passing through a permeable 
plate or sheet is crucial. Because of its wide range of applications in the manufacturing sectors, 
research on the stagnation point flow of an incompressible fluid across a permeable sheet has gained 
prominence in recent decades. 

Some of the most common uses include fan-cooled electrical devices, atomic receptacles cooling 
for the length of an emergency power outage, solar receivers, and so on.  Hiemenz [15] was the first 
to examine two-dimensional (2D) stagnation point flow, while Eckert [11] expanded this problem by 
including the energy equation to obtain an accurate answer. As a result, Mahapatra and Gupta [14], 
Ishak et al., [2], and Hayat et al., [29] investigated the effects of heat transmission in stagnation point 
across a permeable plate. 

The effect of slip condition gives an interesting result for different fluids. Sharma et al., [27] 
investigated the slip effect of the heat transfer due to stretching sheet on a CuO  water nanofluid. A 
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new model effect of second order slip velocity was introduced by Wu [34]. Wang et al., [6] extended 
the article of Wu [34] by considering the slip effect of stagnation point flow on a heated vertical plate. 
Fang et al., [8] investigated the second order velocity slip effect on the viscous flow due to a 
stretching sheet. Nandeppanaver et al., [19] discussed the heat transfer and second order slip flow 
due to a stretching sheet. Deissler [7], Rosca and Pop [22] and Turkyilmazoglu [32] investigated the 
second order velocity slip effect, under different physical conditions. 

Many researchers found interest in the study of micropolar fluid for the different geometries. 
Erigen [12] was the first one who investigated micropolar fluid. Ariman et al., [30] theoretically 
investigated micropolar fluids and their applications. Ishak et al., [1] discussed the stagnation point 
flow of a micropolar fluid in a two-dimensional boundary layer flow of mixed convection on a 
stretching sheet. Bhargava et al., [24] numerically investigated the solutions of micro-polar transport 
due to a non-linear stretching sheet. Rees and Pop [23] theoretically discussed free convection from 
a vertical at plate in a micropolar fluid. Nazar et al., [25]. Sajid et al., [28] analyzed the stretching flow 
with a general slip consition. 

System involving chemical reactions are completed. Batcha Srisailam et al., [5] analyzed the effect 
of viscous dissipation and chemical reaction on the flow of MHD nanofluid over a stretching sheet. 
Lim Yeou Jiann et al., [18], the effects of Wu’s velocity slip and Smoluchowski’s temperature slip are 
taken into consideration. Thirupathi et al., [31] presented a numerical investigation for the 
magnetohydrodynamics (MHD) stagnation point Casson nanofluid flow towards stretching surface 
with velocity slip and convective boundary condition. Abu Bakar, Shahirah et al., [3], investigated the 
mixed convection boundary layer flow over a permeable surface embedded in a porous medium, 
filled with a nanofluid and subjected to thermal radiation, magnetohydrodynamics (MHD) and 
internal heat generation. E. N. Maral et al., [10] studied on peristaltic transport of menthol 
electrolytes altered utilizing an external electric field which contributes to the creation of a net 
surface charge attracting counter ions and repels co ions from the menthol based nanofluid.  

Recently Noreen Sher Akbar et al., [21] focused on the viscous flow of cu-water/Methanol 
suspended nanofluids towards a 3D stretching sheet. Faisal Z. Duraihem et al., [13] analysed the 
impact of thermal stratification and medium porosity on gravity-coerced transport of hybrid carbon 
nanotubes. E.N. Maraj et al., [9] study on oscillatory pressure-driven MHD flow of a hybrid 
nanofluid in a vertical rotating channel. Khalid Y. Ghailan et al., [17] study of unsteady peristaltic flow 
across a channel with finite width and porous medium. Javaria Akram et al., [16] investigation 
emphasizes the fluid flow analysis and the heat transfer characteristics of 10 W40-based titanium 
dioxide nanofluid subject to electroosmotic forces and the peristaltic propulsion in a 
curved microchannel. Javaria Akram and Noreen Sher Akbar et al., [4] analysis is conducted for a 
theoretical examination of the fluid flow characteristics and heat transferred by the nanoparticle 
enhanced drilling muds flowing through drilling pipes under various physical conditions. 

To the best of Authors’ knowledge, no information is available on the effect of magnetic 
parameter on the stagnation point flow of a micro fluid over a stretching/shrinking sheet. The present 
work is aims to fill the gap in the existing literature. Therefore, in the present paper, we consider the 
MHD stagnation point flow over a stretching/shrinking sheet placed in a micropolar fluid with second 
order slip condition. We shall apply Shooting technique along with Adams – Moulton method of order 
four to solve the similarity equations obtained from the governing boundary layer equations with the 
help of similarity transformation. The structure of the present paper is as follows: The problem 
formulation and quantity of physical interest are presented in Section 2. Adams – Moulton method 
for the proposed problem is presented in Section 3. In Section 4 results and discussion are reported 
whereas Section 6 is reserved for concluding remarks. 

 

https://www.sciencedirect.com/topics/physics-and-astronomy/nanofluid
https://www.sciencedirect.com/topics/chemical-engineering/thermal-stratification
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/carbon-nanotube
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/carbon-nanotube
https://www.sciencedirect.com/topics/physics-and-astronomy/magnetohydrodynamic-generator
https://www.sciencedirect.com/topics/physics-and-astronomy/hybrid-nanofluid
https://www.sciencedirect.com/topics/physics-and-astronomy/hybrid-nanofluid
https://www.sciencedirect.com/topics/engineering/nanofluid
https://www.sciencedirect.com/topics/engineering/microchannel
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2. Mathematical Modeling  
 

Consider a steady, electrically conducting, two-dimensional stagnation point flow of an 
incompressible micropolar fluid on a stretching/shrinking sheet with the assumption of slip velocity 
effect. Assume that ( )eu x ax= be the free stream velocity and ( )wu x bx= be the 

stretching/shrinking velocity respectively, where a  and b  are some real constants. The flow 
configuration and axes system are depicted in Figure 1.  The length of the sheet is taken along the 
x − axis whereas y − axis taken normal to the sheet. 

 

 
Fig. 1. Geometry of the problem 

 
For stretching sheet 0b   and for shrinking sheet 0b  . The mathematical model of the flow, 

presented by Sharma et al., [26] is as follows: 
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Where the velocity components has been represented by u  and v  respectively. Dynamic viscosity is 
denoted by  , microrotation viscosity by k , fluid density by  , micro inertia density by j  and 

component of microrotation is denoted by N . The boundary conditions of the above equations are 
given as [31] 
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Where ( )eu x , slipu and ( )wu x  represent the free steam velocity, slip velocity and stretching 

/shrinking velocity.  
In the boundary conditions n = constant with 0 1n  . The boundary condition with 0n = =no 

slip condition, which requires that fluid particles closest to the solid boundary stick to it. The 
boundary condition with 0n  (i.e., microrotation is equal to the fluid velocity at the boundary) 
implies that the neighbourhood of a grid boundary. 
 
The stream function   identically satisfies the continuity equation. Mathematically, 
 

, .u v
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          (5) 

 
Now, introduce the following similarity variables from [26], 
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Where the stream function is represented by   and the kinematic viscosity is represented by  . 

 
Thus, the dimensionless form of the mathematical model of the present problem is: 
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( ) ( ) ( )
2' "' " ' '1 1 1 0,f K f ff Kh M f− + + + + − − =                     (7) 
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                     (8) 

 
along with BCs: 
 

( ) ( ) ( ) ( ) ( )' " "' "(0) 0, 0 0 0 , 0 0 ,f f f f h nf  = = + + = −                              (9) 

 

( ) ( )' 1, 0,f h → → as , →                                (10) 

 

In the above equations, the micropolar parameter by 
k k

K
 

= = the stretching/shrinking rate 

has been represented by 
b

a
 =   the first order slip represented by 

a
A


=  and the second order 

slip by 
a

B


=  where A  and B  have the following formulations [7] 
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3. Solution Methodology 
 

The numerical solution of the mathematical model in the form of non-linear differential equations 
Eq. (7) – Eq. (8) along with the boundary conditions Eq. (9) – Eq. (10) was reported by Sharma et al., 
[26]. They opted for the finite-difference method for the numerical solution of the above model. In 
the present section, shooting technique with Adams Moulton method has been proposed to 
reproduce the same solution. The Adams Moulton method of order four and the Newton's method 
for solving the non-linear algebraic equations, are the main components of the shooting method. Let 
us re-write Eq. (7) – Eq. (8) as: 
 

( )
( ) ( )

2"' " ' ' '1
1 1 ,

1
f ff f Kh M f

K
 = − + − + + −
 +

                  (12) 

 

( )" ' ' "2
2 .
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h fh f h K h f

K
 = − − +
 +

                        (13) 

 
Use the notations to construct a system of first order ODEs: 

' " '

1 2 3 4 5, , , ,f y f y f y h y h y= = = = =                    (14) 
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By using the notations Eq. (14), we have the following IVP: 
 

( )

( )

( )
( ) ( )

( ) ( )( )

( ) ( )( )

( )
  ( )

5

'

1 2 1

'

2 3 2

1 2

3 1 3 2 5 2

2

3

' 2

4 4

1

5 1 5 2 4 4 3 5

, 0 0,

, 0 ,

1
1 1 ,

1

1 1
0 1 ,

1

1
, 0 1 ,

1

2
(2 ) , 0) .

2

y y y

y y y s

y y y y Ky M y
K

y s s Kt
K

n
y y y s s Kt

K

y y y y y K y y y t
K

 


 


= =


= = 

 = − + − + + −

 + 

     = − + − +   +   


    = = − − + − +    +  

= − + + + =
+ 

                 (15) 

 
In order to get the approximate numerical results, the problem's domain is considered to be 

bounded i.e.,  0, , where   is chosen to be an appropriate finite positive real number so that 

the variation in the result for   is ignorable. In Eq. (15), the missing initial conditions s  and t  

are to be chosen such that.  
 

( ) ( )2 4, , 1 0, , , 0.y s t y s t  − = =                    (16) 

 

To start the iterative process, choose 0 ,s s=  and 0t t= . To the values of s , t  Newton's iterative 

scheme has been used. 
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To implement the Newton's scheme, consider the following notations: 
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Differentiating Eq. (15), first w.r.t. s and then w.r.t. t , we get the following fifteen first order ODEs 

along with the associated initial conditions. 
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(18) 

         
Next, the IVP in the form of fifteen first order ODEs given in Eq. (15) and Eq. (18) is solved by the 

fourth order Adams Moulton method and the Newton's method. If for a sufficiently small * , 
 

( ) ( )  *
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− −                   (19) 

 
The guessed values of s  and t  are updated by the Newton's iterative scheme: 
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The iterative process is repeated until the following criteria is met. 
 

( ) ( )  *

2 4max , , 1 , , , 1n n n ny s t y s t  
 

− −                   (21) 

 
4. Results and Discussion 
 

The main objective of the present section is to study the effect of different physical parameters 
like K (micro-polar parameter),  (the first order slip parameter),  (the stretching/shrinking rate), 
 (the second order slip parameter) on the velocity and micro-rotation profiles. The present results 
have been compared with the previous results of Wang [33] and Bachok et al., [20] for different 
values of the stretching/shrinking rate   in Table 1 which are in good agreement.  Wang [33] and 
Bachok et al., [20] have discussed the stagnation point flow towards a stretching/shrinking sheet. 
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Table 1 

Comparison of " (0)f  for different values of   when 0, 0, 0K = = = , and 0.5n =  

Values of   Wang [33] Bachok et al., [20] [26] Current results 

2.0 -1.88731 -1.8873066 -1.88730667 -1.88730627 

1.0 0 0 0 0 

0.5 0.713300 0.7132949 0.71329496 0.71525570   
0.0 1.232588 1.2325877 1.23258765 1.23257700 
-0.25 1.402240 1.4022408 1.40224081 1.40224872 

-0.5 1.495670 1.4956698 1.49566977 1.49566265 

-1.0 1.328820 1.3288170 1.32881688 1.32881259 

-1.2 0.554300 0.9324730 0.93247336 0.93247167 

-1.2465 -- 0.5842956 0.58428274 0.58428643 

 
The impact of the first order slip   on the velocity profile is presented in Figure 2. By increasing 

the values of the  , the velocity profile is increased. Physically, when a slip occurs, the velocity of 
flow near the sheet is no longer equal to the stretching velocity of the sheet.  

The variations in the micro-rotation profile for the   are demonstrated in Figure 3 and 4. An 
opposite flow behavior is determined with the first and second solution. The thickness of boundary 
layer is deceased in the first solution and increases in the second solution. 

Figure 5 and Figure 6 demonstrate the impact of the second order slip parameter  on the 
velocity profile. Figure 5 indicates that by increasing  , the velocity profile is increased. Figure 6 
represents that by increasing  , the velocity profile is reduced. 

The variations in the microrotation profile for different values of the second order velocity slip   
are demonstrated in Figure 7 and Figure 8. It shows that the microrotation profile is initially increased 
as   is increased for the first solution and microrotation profile is decreased as   is increased for 
the second solution.  

The variations in the velocity profile for micropolar parameter K  are demonstrated in Figure 9 
and Figure 10. By increasing the values of the micropolar fluid K , the velocity field is reduced in both 
the first and the second solution. It is evident from Figure 9 and Figure 10 that all curves approach 
the far field boundary conditions asymptotically. 

The variations in the microrotation profile for micropolar parameter K  are demonstrated in 
Figure 11 and Figure 12. From these graphs, it can be observed that increasing the micropolar K , 
the velocity field is reduced in the lower half of the surface whereas it is enhanced in the upper half. 
The velocity is going to reduce initially with the mounting values of the micropolar K . The boundary 
layer thickness is increased in both the first and the second solution. 

Figure 13 illustrates the changes in the velocity profile at various magnetic field strengths. As the 
magnetic field strength increased, the velocity profile increased. This phenomenon is a result of the 
magnetic field that enhances fluid motion within the boundary layer. 

Figure 14 shows the variation in the micro-rotation profile for different estimations of the 

magnetic field M . By increasing M , the micro-rotation is increased. Thus, the boundary layer 
thickness is decreased. 
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Fig. 2. Impact of 0.05,0.1,0.15 =  on ( )'f   

 

Fig. 3. Impact of 0.05,0.1,0.15 =  on ( )h   

 

Fig. 4. Impact of 0.05,0.10,0.15 =  on ( )'f   
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Fig. 5. Impact of 0.05,0.10,0.15 =  on ( )'f   

 

Fig. 6. Impact of 0.05, 0.10, 0.15 = − − −  on ( )'f   

 

Fig. 7. Impact of 0.05,0.10,0.15 =  on ( )h   
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Fig. 8. Impact of 0.05, 0.10, 0.15 = − − −  on ( )h   

 

Fig. 9. Impact of 0.05,0.10,0.15K =  on ( )'f   

 

Fig. 10. Impact of 0.05, 0.10, 0.15K = − − −  on ( )'f   
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Fig. 11. Impact of 0.05,0.10,0.15K =  on ( )h   

 

Fig. 12. Impact of 0.05, 0.10, 0.15K = − − −  on ( )h   

 

Fig. 13. Impact of 0.05,0.10,0.15K =  on ( )'f   
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Fig. 14. Impact of 0.05,0.10,0.15K =  on ( )h   

 
4. Conclusions 
 

The governing equations for the 2D stagnation point flow of a viscous and incompressible fluid 
over a stretching/shrinking sheet with second order slip boundary condition and magnetic field were 
formulated.  The resulting partial differential equations were transformed into a set of ordinary 
differential equations using the similarity transformations. 

These equations are solved numerically using Shooting techniques with Adams Moulton method. 
The conclusions of the study are as follows: 

Increasing the suction parameter, the velocity and microrotation profiles are increased. Due to 
an increase in the shrinking parameter, the velocity and micro-rotation profiles are decreased. 
Increasing the micropolar parameter, the velocity and micro-rotation profiles are decreased. By 
increasing magnetic field, the velocity and micro-rotation profiles are increased. This problem may 
be extended in many directions focusing on the fluid model of Jeffery, Tangent hyperbolic nanofluid. 
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