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The current paper studies the MHD and heat transfer characteristics of radiative upper-
convected Maxwell fluid flow between two plates approaching or receding from each 
other with injection at the fixed lower porous plate. The governing momentum and 
energy equations are reduced into non-linear ordinary differential equations 
employing similarity transformations. With the help of the Homotopy Perturbation 
Method (HPM), an approximate analytic solution is obtained. This work aims to 
determine the effects of Reynolds number (R), Deborah number (De), Radiation 
parameter (Rd), Magnetic parameter (M), and Prandtl number (Pr) on the velocity and 
temperature profiles. It is observed that the Deborah number has a direct impact on 
the velocity profile when there is a squeezed flow. It is also observed that the magnetic 
parameter shows an indirect impact on the temporal distribution for both the upper 
plate moving away and towards the lower. The variations in the significant physical 
parameters on the coefficient of skin friction and heat transfer rates are also 
calculated. The results are then compared with the classical finite difference method 
and are in excellent agreement. It is found that larger the magnetic parameter, the 
dominance of viscous forces retards the velocity in the core region, and the increase in 
radiation parameter suppresses the heat transfer rates. This study is helpful in 
industrial applications, specifically in polymer processing.  
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1. Introduction 
 

Analysing fluid transport phenomena in porous media is essential for many science and 
engineering applications. Fluid through a porous channel depends on Darcy’s law. Due to the 
property of porous media to allow and resist the flow, it is pictured as a vital topic in the study of 
fluid mechanics. Moreover, it helps in better understanding of the behaviour of the fluid in real-world 
situations. The applications of porous materials are usually found in filters and water treatment 
systems to remove impurities from the fluids. Also, this concept is used in geology to study the 
movement of fluids through rocks and soil. Hence, the fluid flow through porous media becomes one 
of the most fascinating fields for researchers [1-3]. Berman [4] studied the laminar flow in porous 
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wall channels. Further, Yuan [5] continued the same work. The authors have dealt with the 
Newtonian fluid model in these papers. 

Fluids are broadly classified into Newtonian and non-Newtonian fluids. The fluids that obey 
Newton’s law of viscosity are known as Newtonian fluids. These fluids are the ideal fluids that do not 
exist in reality. Nevertheless, these fluids help in the basic understanding of nature. However, most 
of the fluids in nature are non-Newtonian. The diverse physical structure of non-Newtonian fluids 
cannot be expressed by a single rheological equation [6-13]. From the current information regarding 
the non-Newtonian fluids, the fluids are classified by rate, differential, and integral type fluid models. 
Rate-type non-Newtonian fluid models describe the mechanism of stress relaxation and retardation. 
Amongst such models, Maxwell fluid is the simplest one [14]. 

The Maxwell fluids are fluids that exhibit both elastic and viscous properties. The upper-
convected Maxwell (UCM) fluid type represents the combined effects of inertia and 
viscoelasticity. UCM fluids have a broad scope in various industries, such as pharmaceutical, 
chemical, and food processing. Due to its viscoelasticity, its applications are found in lubricants, 
suspension formulations, and coatings. Due to their ability to maintain stable emulsions and suspend 
particles, these fluids are used as emulsifiers and thickeners in the chemical industry. Further, in the 
pharmaceutical industry, to control drug release rates, they are used in drug delivery systems. 

The UCM fluid model is mainly used to explore the relaxation time of the fluid [15]. Fetecau et 
al., [16] studied Stoke’s second problem for Maxwell fluid flow. Vieru and Rauf [17] found an analytic 
solution for Stokes flow for Maxwell fluid, and further, the author [18] obtained solutions for Couette 
flows of Maxwell fluid using the Laplace transform technique. M L De Haro and others [19] analysed 
the Maxwell fluid flow in a rigid porous channel and gave some insight into the impact of elasticity 
on the dynamic permeability using the volume averaging method. Choi [20] investigated the Maxwell 
fluid flow in a porous channel through the power series method. Satish et al., [21] explored the 
required time for the steady state of Maxwell fluid, and they also found the dependency of pressure 
on viscosity. Syed et al., [22] examined the run-up fluid flow of the Maxwell model through the 
Laplace transformation method. Rana et al., [23] obtained a solution for the UCM fluid flow in a 
porous medium considering suction/injection and extended it into a three-dimensional setup using 
the series method. Many authors have contributed significantly to the study of the Maxwell fluid with 
different geometries [24–27]. 

The study of MHD and heat transfer characteristics of fluid flow spans a range of scientific and 
engineering domains, including the petroleum industry, nuclear reactor, earth science, and 
metallurgy, specifically in the manufacturing process of polymers, artificial fibers, and thin films and 
many more [28-33]. Swati Mukhopadhyay [34] analysed the heat transfer profile of Maxwell fluid 
numerically using the shooting method. Ali et al., [35] found an analytical and numerical solution for 
the effect of MHD and heat transfer in Maxwell fluid flow between two parallel plates. Zeeshan et 
al., [36] found the exact solution for the UCM fluid flow in a porous channel with a source/sink 
immersed in it using the Homotopy analysis technique. Hayat [37] found the solution for the MHD 
flow of UCM fluid using a semi-analytical method. Further, the author extended his work to a rotating 
frame and found exact solutions using the Fourier sine transform method [38]. Raftari and Yildrim 
[39] gave the homotopy perturbation solution for the MHD UCM fluid flow above porous stretching 
sheets. Ilyas Khan et al., [40] discussed some interesting results on the required time for the steady 
state of MHD Maxwell fluid in a porous half space. Anuj Kumar [41] presented an analytical solution 
and velocity profiles for electrically conducting UCM fluid in a porous medium. 

Electromagnetic radiation generated by the particles in matter when there is an internal energy 
state transition is known as thermal radiation. It plays a critical role in the operations of many natural 
and man-made systems. The radiation properties are one of the most crucial process parameters in 
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the thermal industry. The importance of thermal radiation emerges from the dependency on the heat 
flux quality of the final product in the polymer and the petroleum industry. Thermal radiation’s 
impact on the construction of nuclear power plants, satellites, and a variety of complicated 
conversion systems is indeed crucial [42-44]. Hayat et al., [45] described the exact solution for the 
impact of thermal radiation on MHD and heat transfer of Maxwell fluid in a porous medium using the 
homotopy analysis technique. Fazel and others [46] numerically analysed the impact of non-linear 
thermal radiation on MHD Maxwell fluid over a stretching sheet. Hosseinzadeh et al., [47] did a 
numerical investigation of the non-linear thermal radiation effects of Maxwell fluid in a porous 
medium with a heated plate. 

The MHD radiative squeezing flow of Maxwell fluid between porous plates is observed to have 
quite extensive applications. Various engineering and industrial applications such as petroleum 
transport, chemical processing, and metal casting employ these kinds of flows. Moreover, the 
potential applications of these flows are found in environmental and biomedical engineering. Due to 
its versatility, this flow can be modified to suit specific applications. It has become a valuable tool in 
several fields because of its ability to control flow patterns and fluid dynamics. However, it is found 
from the literature that the knowledge of the thermal radiation of the UCM fluid flow in a porous 
channel is limited. Hence, the study of MHD squeezing flow of a UCM fluid under radiation between 
parallel plates of which the lower plate is porous and fixed where the injection takes place is of 
interest in this work. This work attempted to study the thermal radiation effect on MHD and the 
temperature profile of UCM fluid flow between two plates, where the lower plate is fixed and porous, 
and the upper plate is moving with uniform velocity towards or away from the lower plate. 

Most of the real-world problems are non-linear in nature. Obtaining solutions to these non-linear 
differential equations using the known analytical techniques is not possible. Hence, to obtain an 
approximate solution, numerical methods find scope in fluid mechanics [48-54]. FDM is one of the 
popular numerical methods in analysing many areas of science and technology. The abilities of FDM 
are confined when it comes to handling non-linear differential equations and require significant 
modification to do so. As numerical methods are very sensitive to grid size, FDM is prone to numerical 
instability that leads to inaccuracy and non-convergence in results. To overcome these challenges, 
researchers came up with the idea of semi-analytical methods. One such semi-analytical technique 
with broad scope is the Homotopy Perturbation method (HPM). 

HPM is one of the promising modern analytical techniques to obtain solutions for non-linear 
problems in applied science and engineering. Ji-Huan He introduced, developed, and refined the HPM 
[55–57]. HPM can systematically generate a sequence of closed-form solutions that eventually 
converge to the exact solution with a higher convergence rate. This method overcomes the 
limitations of the traditional perturbation method and is helpful in solving a wide range of linear and 
non-linear problems [58–60]. HPM is more robust and has a broader scope in handling problems. 
Hence, this method can be applied to solve different class of problems and applications due to its 
flexibility. 
 
2. Mathematical Formulation 
 

Figure 1 shows the schematic diagram of the problem in two-dimensional cartesian coordinate 
system. Let 𝑢∗ and 𝑣∗ be the velocity components along 𝑥∗ and 𝑦∗  direction. The fluid model here 
considered is an incompressible electrically conducting UCM fluid. The fluid flow is between two 
plates located at 𝑦∗ = 0 and 𝑦∗ = 𝐻. The bottom plate is porous and stationary, and the upper plate 
is moving uniformly with a velocity Vw. A uniform magnetic field B0 is applied along the 𝑦∗  axis. Let 𝜏 
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denote the extra stress tensor, 𝜇0 denote the low shear viscosity,  λ1 be the relaxation time, and 𝛾 
be the rate of strain tensor. Then the stress strain relationship of Maxwell fluid is given by 

 
𝜏 + 𝜆1�̂� = 𝜇0𝛾 .        (1) 

 
The upper-convected time derivative of the stress tensor is defined as 
 

τ̂ =
∂τ

∂t
+ 𝑉 ∇𝜏 − (∇𝜏)T.             (2) 

 

 
Fig. 1. Schematic diagram of the problem 

 

Where 𝑡 ( )𝑇 , V, and ∇v denotes the time, transpose vector, velocity vector, and fluid velocity 
gradient vector, respectively. The continuity and the momentum equations governing such type of 
flow are 

 

 
𝜕 𝑢∗

𝜕 x∗ +   
𝜕 𝑣∗

𝜕 𝑦∗ = 0.        (3)  

  𝑢∗ 𝜕 𝑢∗

𝜕 x∗ + 𝑣∗   
𝜕 𝑢∗

𝜕 𝑦∗  +  𝜆 [𝑢∗2  
𝜕2𝑢∗

𝜕𝑥∗2 +  𝑣∗2 𝜕2𝑢∗

𝜕𝑦∗2  + 2 𝑢∗𝑣∗  
𝜕2𝑢∗

𝜕 x∗𝜕𝑦∗ ] =  𝜈 
𝜕2𝑢∗

𝜕 x∗𝜕𝑦∗  −
𝜎 𝐵0

𝜌
𝑢∗.        (4) 

 
Ignoring the ohmic and viscous dissipation, the energy equation can be written as 
 

𝑢∗ 𝜕𝑇

𝜕x∗ +   𝑣∗ 𝜕𝑇

𝜕𝑦∗ =  
𝑘

𝜌 𝐶𝑝

𝜕2𝑇

𝜕𝑦∗2 −
1

𝜌 𝐶𝑝

𝜕 𝑞𝑟

𝜕 𝑦∗ .        (5) 

 
Where 𝜌, 𝜎, 𝜈, 𝑇(𝑥∗, 𝑦∗), 𝑘, 𝐶𝑝, and 𝑞𝑟 are the fluid density, electrical conductivity of the fluid, 

kinematic viscosity, temperature at any point, thermal conductivity, specific heat, and radiation heat 
flux, respectively. The radiation heat flux 𝑞𝑟 is defined using Rosseland approximation and is given by 
 

𝑞𝑟 = − 
4 �̂�

3 �̂�
 
𝜕 𝑇4

𝜕 𝑦∗  ,        (6) 

 

Where �̂� and �̂� denote the mean absorption coefficient and the Stefan-Boltzmann constant. With 
the assumption of temperature difference within the flow is such that 𝑇4 may be expanded in a 
Taylor series and expanding 𝑇4 about 𝑇∞ and ignoring the higher orders, we obtain 

 
𝑇4 ≡ 4 𝑇∞𝑇 − 3𝑇4

∞ .        (7) 
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Then the energy Eq. (5) becomes 
 

𝑢∗ 𝜕𝑇

𝜕x∗ +   𝑣∗ 𝜕𝑇

𝜕𝑦∗ =  
𝑘

𝜌 𝐶𝑝

𝜕2𝑇

𝜕𝑦∗2 +
16 �̂� 𝑇3

∞

3𝜌 𝐶𝑝 �̂�
 

𝜕2𝑇

𝜕𝑦∗2  .        (8) 

 
The boundary conditions: 
 
At 𝑦∗ = 0: 𝑢∗(x∗, y∗) = 0,      𝑣∗(x∗, y∗) = 𝐴. 𝑉𝑤,     𝑇 = 𝑇𝑤 .        (9) 
At 𝑦∗ = 𝐻: 𝑢∗(x∗, y∗) = 0,      𝑣∗(x∗, y∗) = 𝑉𝑤,     𝑇 = 0 .      (10) 
 

Here 𝐴 is a constant parameter and 𝐴 < 0 corresponds to injection process. 𝑇𝑤 is the 
temperature at the lower plate. The dimensionless variables are presented as follow, 
 

 𝑥 =
𝑥∗

𝐻
;     𝑦 =

𝑦∗

𝐻
 ;     𝑢∗ = −𝑉𝑤 𝑥 𝑓′(𝑦).      (11) 

 
From Eq. (3) and Eq. (4) we get 
 
 𝑣∗ = 𝑉𝑤 𝑓(𝑦),      (12) 
 
and  
 

 𝜃 =
𝑇

𝑇𝑤
 .      (13) 

 
Using the non-dimensional parameters in momentum and energy equations, we get 
 
𝑓 ′′′′ − 𝑀2 𝑓 ′′ + 𝑅(𝑓 ′ 𝑓 ′′ − 𝑓 𝑓 ′′′)  +  𝐷𝑒( 2 𝑓 ′2 𝑓 ′′ +  2 𝑓 𝑓 ′′2  −  𝑓2 𝑓 ′′′) = 0.      (14) 

(1 +
4

3
 𝑅𝑑) 𝜃 ′′ − 𝑅 𝑃𝑟 𝑓 𝜃 ′ = 0.      (15) 

 
With boundary conditions 
 
𝑓(0) = 𝐴,      𝑓 ′ (0) = 0, 𝑓(1) = 1,       𝑓 ′ (1) = 0,     𝜃(0) = 1, 𝜃(1) = 0.      (16) 
 
Where 𝑅, 𝐷𝑒, 𝑅𝑑, 𝑀 and 𝑃𝑟 represent the Reynolds number, Deborah number, Radiation parameter, 
magnetic parameter, and Prandtl number respectively are defined as  

 

𝑅 =
𝑉𝑤 𝐻

𝜐
,      𝐷𝑒 =

𝜆 𝑉𝑤
2

𝜐
,     𝑀 = √

𝜎 𝐵0𝐻

𝜇
,     𝑅𝑑 =

4 �̂� 𝑇3
∞

𝑘 �̂�
,       𝑃𝑟 =

𝜇 𝐶𝑝

𝑘
 .      (17) 

 
Here, 𝑅 > 0 and 𝑅 < 0   represent the situation of upper plate moving away from the bottom plate 
and upper plate approaching the lower plate, respectively. 
 
3. Method of Solution 
 

 We obtain a system of non-linear ordinary differential equation (ODE) after applying similarity 
transformations. We adopt semi-analytical technique approach to get the solution and we use 
numerical technique to verify the obtained results. The system of non-linear ODEs along with the 
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boundary conditions are solved using homotopy perturbation method (HPM). Obtained results are 
compared numerically using classical finite difference method. To narrate the HPM solution for the 
system of non-linear differential equations, let us take 
 

  𝐷1[𝑓(𝜂)] − 𝑓1(𝜂) = 0,      (18) 
 𝐷2[𝜃(𝜂)] − 𝑓2(𝜂) = 0.      (19)     
 
Where 𝐷1 and 𝐷2 denotes the operators, 𝑓(𝜂) and 𝜃(η) are unknown functions, 𝜂 is the independent 
variable and 𝑓1, 𝑓2 are known functions.  𝐷1 and 𝐷2 can be written as, 
 
𝐷1 = 𝐿1 + 𝑁1, 
𝐷2 = 𝐿2 + 𝑁2. 
 
Where 𝐿1 and 𝑁1  are the linear and non-linear parts of Eq. (18) and 𝐿2 and 𝑁2 are the linear and 
non-linear parts of Eq. (19). The homotopy equations are obtained by choosing proper linear and 
non-linear parts. The homotopy equations for Eq. (18) and Eq. (19) are  

 

          𝐻1(𝜙1(𝜂, 𝑞; 𝑞)) = (1 − 𝑞)[𝐿1(𝜙1, 𝑞) − 𝐿1(𝑣0(𝜂))] + 𝑞[𝐷1(𝜙1, 𝑞) − 𝑓1(𝜂)] = 0,      (20) 

          𝐻2(𝜙2(𝜂, 𝑞; 𝑞)) = (1 − 𝑞)[𝐿2(𝜙2, 𝑞) − 𝐿2(𝑣0(𝜂))] + 𝑞[𝐷2(𝜙2, 𝑞) − 𝑓2(𝜂)] = 0.      (21) 

 
Here the initial guess to the Eq. (18) and Eq. (19) is 𝑣0. 
 
We assume the solution of Eq. (20) and Eq. (21) as     
 

 𝜙1(𝜂 , 𝑞) =  ∑ 𝑞𝑛∞
𝑛=0 𝑓𝑛(𝜂),      (22) 

𝜙2(𝜂 , 𝑞) =  ∑ 𝑞𝑛∞
𝑛=0 𝜃𝑛(𝜂).      (23) 

 

The solution to the considered problem is Eq. (22) and Eq. (23) at 𝑞 = 1. 

 
The zeroth, first, and second order solutions for the considered problem are as follows 
 
𝑓0 =  2 𝐴 𝑦3  −  3 𝐴 𝑦2  +  𝐴 − 2 𝑦3  +  3𝑦2.      (24) 
 

𝑓1 =  −
1

420
 (𝐴 − 1) (𝑦 − 1)2 𝑦2 (4 𝐷𝑒 (𝐴2(50𝑦5 − 125 𝑦4 + 42𝑦3  +  104𝑦2 −  86𝑦 

          +39)−𝐴 (100𝑦5 −  250 𝑦4  + 84𝑦3 +  124 𝑦2  − 88 𝑦 + 15 )  +  50 𝑦5 −  125 𝑦4        
          + 42𝑦3  + 20 𝑦2 − 2 𝑦 − 24 )  +  3( 2 𝑅 (𝐴(4𝑦3 − 6𝑦2  +  5𝑦 − 19) − 4𝑦3  +  6 𝑦2 
          −5𝑦 − 16 ) +  7 (2 𝑦 − 1)𝑀2)).      (25) 
 

𝑓2 =  
1

8408400
 (−1 + 𝐴)2𝑦2 [16𝐷𝑒2(243387 + 24576𝑦 + 24765𝑦2 + 24954𝑦3 − 191073𝑦4 +

228678𝑦5 + 69279𝑦6 + 74330𝑦7 − 298997𝑦8 + 266250𝑦9 − 12100𝑦10 + 2200𝑦11 +
𝐴(23937 + 48570𝑦 − 167037𝑦2 − 10272𝑦3 + 259606𝑦4 + 382760𝑦5 − 871164𝑦6 −
230344𝑦7 + 1179244𝑦8 − 1065000𝑦9 + 484000𝑦10 − 88000𝑦11) + 𝐴4(−148149 +
500324𝑦 − 818168𝑦2 + 265740𝑦3 + 939238𝑦4 − 1319050𝑦5 + 663327𝑦6 + 7354𝑦7 −
282253𝑦8 − 1065000𝑦9 + 484000𝑦10 − 88000𝑦11) − 𝐴3(−53694 + 482506𝑦. . . ). . . )].    (26) 
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𝜃0 =  1 –  𝑦.    (27) 
 

𝜃1 =  
3

20(4𝑅𝑑 +3 )
 (2 𝐴 𝑦5 𝑃𝑟 𝑅 – 5 𝐴 𝑦5𝑃𝑟 𝑅 +  10 𝐴 𝑦2 𝑃𝑟 𝑅 − 7 𝐴 𝑦 𝑃𝑟 𝑅 −   2𝑦5 𝑃𝑟 𝑅 +

          5𝑦4 𝑃𝑟 𝑅 − 3 𝑦 𝑃𝑟 𝑅 ).    (28) 
 

𝜃2 =  
1

92400(3+4𝑅𝑑)
 [2934𝐷𝑒𝑃𝑟𝑅𝑦 − 2862𝐴𝐷𝑒𝑃𝑟𝑅 𝑦 − 3078𝐴62𝐷𝑒𝑃𝑟𝑅𝑦 +  3006𝐴3𝐷𝑒𝑃𝑟𝑅𝑦 −

 99𝑀𝑃𝑟𝑅𝑦  − 99𝑀2𝑃𝑟𝑅𝑦 +  99𝐴𝑀2𝑃𝑟𝑅𝑦    +  3432𝑃𝑟𝑅2𝑦 + 66𝐴𝑃𝑟𝑅2𝑦 −  3498𝐴2𝑃𝑟𝑅2𝑦 +
 264𝑃𝑟2𝑅2  − 28248𝐴𝑃𝑟𝑅2𝑦 −  41316𝐴2𝑃𝑟2𝑅2 𝑦 + 3912𝐷𝑒𝑃𝑟𝑅𝑅𝑑𝑦  −  3816𝐴𝐷𝑒𝑃𝑟𝑅𝑅𝑑 𝑦 −
4104𝐴2𝐷𝑒𝑃𝑟𝑅𝑅𝑑𝑦 +  4008𝐴3𝐷𝑒𝑃𝑟𝑅𝑅𝑑 − 132𝑀2𝑃𝑟𝑅𝑅𝑑𝑦 +  132𝐴𝑀2𝑃𝑟𝑅𝑅𝑑 𝑦 +
4576𝑃𝑟𝑅2𝑅𝑑𝑦   +  88𝐴𝑃𝑟𝑅2𝑅𝑑𝑦 − . . . ].       (29) 
 
4. Results and Discussion 
 

This section discusses the injection case of MHD UCM flow and heat transfer characteristics 
between two plates by considering the effect of thermal radiation. In this model, the plate in the 
bottom is porous and stationary and the upper plate is set in motion (approaching or receding from 
the lower plate) with a uniform velocity 𝑉𝑤. The effect of pertinent parameters such as Reynolds 
number, Deborah number, Radiation parameter, Magnetic parameter, and Prandtl number on fluid 
flow and temperature fields are illustrated using graphs (Figure 2 - Figure 15), and skin friction 
coefficient (𝑓 ′′(0), 𝑓 ′′(1)) and heat transfer rates (𝜃 ′(0), 𝜃 ′(1)) are also computed and given in 
tables (Table 1 and Table 2). 

 The effect of R, the parameter which characterizes the movement of the upper plate on the 
velocity field, is shown in Figure 2, and it is found to be increasing when the upper plate is 
approaching the bottom one (𝑅 <  0) in the region 0 ≤  𝑦 ≤  0.5 and found to be decreasing in 
the 0.5 ≤  𝑦 ≤  1 region. In the case of the upper plate moving away from the bottom plate (𝑅 >
 0), an opposite behaviour is observed. It is observed that in both the cases, the velocity curve exhibits 
parabolic nature. Figure 3 and Figure 4 illustrate the impact of magnetic parameter (𝑀) on the 
velocity field for 𝑅 =  2 and 𝑅 =  −2, respectively. It is observed that, in the core region the velocity 
is retarding for increment in 𝑀. This indicates the fact of increment in M produces Lorentz force, 
which shrinks the boundary layer thickness. The effect of magnetic field causes a damping effect on 
the velocity by creating a drag force which opposes the motion there by supressing the velocity. 

In Figure 5 and Figure 6, it is observed that the impact of 𝐷𝑒 on the velocity profiles for 𝑅 =  5 
and 𝑅 =  −5, resulting in a parabolic curve. The Maxwell parameter 𝐷𝑒 is the ratio of relaxation time 
to the characteristic time of the deformation phenomena. Deborah number distinguishes how a 
particular material will behave over a given time frame and is related to the unsteadiness of the flow. 
Deborah number depends upon retardation time. Physically, a large 𝜆1 (retardation time) of any 
substance makes the fluid less viscous. Here 𝐷𝑒 =  0 represents the velocity curve for the Newtonian 
case. Higher the 𝐷𝑒 value stronger the elastic behaviour, and the flattening of the boundary layer. 
From Figure 5, it is noted that the velocity decreases for increment in 𝐷𝑒 in the region 0 ≤  𝑦 ≤
 0.65. An enhancement in the velocity is observed in 0.65 ≤  𝑦 ≤  1 region. For 𝑅 =  −5 case also 
the velocity is found to be decreasing in the range 0 ≤  𝑦 ≤  0.79 and increasing in the region 
0.79 ≤  𝑦 ≤  1.  

Figure 7 represents the temperature variation for different values of 𝑅. When the upper plate is 
approaching the fixed bottom plate, the temperature increases for an increased value of 𝑅. Whereas 
for the 𝑅 >  0 case, an opposite trend is observed. A linear relation is noted for low Reynolds 
numbers in both cases. Figure 8 and Figure 9 depict the effect of 𝑀 on 𝜃(𝑦) for 𝑅 =  2 and 𝑅 =  −2. 
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A linear relation can be noted from these graphs. From the figure, it is observed that the temperature 
decrement for increased values of 𝑀 is due to the weaker Lorentz force. The impact of the parameter 
𝐷𝑒 on the temperature profile is illustrated in Figure 10 and Figure 11 for 𝑅 =  1 and 𝑅 =  −1 cases, 
respectively. In Figure 10, it is observed that the temperature enhances as 𝐷𝑒 increased, indicating 
that the higher relaxation time, results in higher temperature. From the figure, it is also observed the 
shear thickening behaviour of Maxwell fluid. Figure 11 illustrates 𝑅 =  −1 case, where an opposite 
trend is observed in the case of 𝑅 =  1.  

Figure 12 and Figure 13 demonstrate the variation of 𝑃𝑟 on the temperature field for 𝑅 =  2 and 
𝑅 =  −2, respectively. The Prandtl number (𝑃𝑟) is a ratio of momentum diffusivity to thermal 
diffusivity. As temperature rises, the velocity boundary layer becomes larger than that of the thermal 
boundary layer. This implies that as 𝑃𝑟 increases, the thermal boundary layer decreases. Physically, 
a larger value of 𝑃𝑟 results in less thermal capacity. Therefore, in Figure 12, the temperature was 
found to be increasing for increment in 𝑃𝑟. An opposite trend is noted for the squeezing case. Figure 
14 and Figure 15 depict the effect of radiation parameter 𝑅𝑑 on the temperature profile for the cases 
𝑅 =  2 and 𝑅 =  −2. A linear relation is observed in both cases. The mean absorption coefficient is 
found to be reducing for higher thermal radiation parameter 𝑅𝑑, which is responsible for enhanced 
heat transfer. As a result, the temperature distribution increases for increased values of 𝑅𝑑 in Figure 
14. An opposite behaviour is observed in 𝑅 =  −2 case. 

Table 1 shows the variation of heat transfer rates for different values of 𝑅 and 𝑅𝑑. When the 
radiation parameter 𝑅𝑑 is increased, the heat transfer rate decreases in both cases. From the table, 
it is clear that in the case of the upper plate moving away from the lower plate, the heat transfer rate 
𝜃′(0) was enhanced and 𝜃′(1) suppressed. An opposite trend is observed for 𝑅 <  0 case. Table 2 
gives the skin friction coefficient values at the lower (𝑓′′(0)) and upper plate (𝑓′′(1)) for the injection 
case. We observe that, when the upper plate moves away from the bottom plate, the skin friction at 
the lower and upper plates decreases, whereas it is enhanced in the case of plates moving closer. It 
is noted that as there is an increment in 𝑀, 𝑓′′(0) is increasing, and 𝑓′′(1) is decreasing. The values 
of 𝑓′′(0) and 𝑓′′(1) are suppressed for increased values of 𝐷𝑒. 

 

 

 

 

Fig. 2. 𝑓 ′(𝑦) for different 𝑅 when 𝑀 = 1, 𝐷𝑒 = 0.3  Fig. 3. 𝑓 ′(𝑦) for different 𝑀 when R= 2, 𝐷𝑒 =
0.1 
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Fig. 4. 𝑓 ′(𝑦) for different 𝑀 when R= −2, 𝐷𝑒 =
0.1 
 

 Fig. 5. 𝑓 ′(𝑦) for different 𝐷𝑒 when R=
2, 𝑀 = 0.5 

 

 

 

Fig. 6. 𝑓 ′(𝑦) for different 𝐷𝑒 when R=-2, 𝑀 = 0.5  Fig. 7. 𝜃(𝑦) for different 𝑅 when 𝑀 = 0.5, 𝑅𝑑 =
0.1, 𝐷𝑒 = 0.1, 𝑃𝑟 = 0.5 

 

 

 

 
Fig. 8. 𝜃(𝑦) for different  𝑀 when 𝑅 = 2, 𝑅𝑑 =
0.1, 𝐷𝑒 = 0.1, 𝑃𝑟 = 0.5 

 Fig. 9. 𝜃(𝑦) for different  𝑀 when 𝑅 = −2, 𝑅𝑑 =
0.1, 𝐷𝑒 = 0.1, 𝑃𝑟 = 0.5 
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Fig. 10. 𝜃(𝑦) for different  𝐷𝑒 when 𝑅 = 2, 𝑅𝑑 =
0.2, 𝑀 = 0.5, 𝑃𝑟 = 0.4 
 

 Fig. 11. 𝜃(𝑦) for different  𝐷𝑒 when 𝑅 = −2, 𝑅𝑑 =

0.2, 𝑀 = 0.5, 𝑃𝑟 = 0.4 

 

 

 
Fig. 12. 𝜃(𝑦) for different  𝑃𝑟 when 𝑅 = 2, 𝑅𝑑 =
0.2, 𝑀 = 0.5, 𝐷𝑒 = 0.2 

 Fig. 13. 𝜃(𝑦) for different  𝑃𝑟 when 𝑅 = −2, 𝑅𝑑 =

0.2, 𝑀 = 0.5, 𝐷𝑒 = 0.2   

 

 

 

 
Fig. 14. 𝜃(𝑦) for different  𝑅𝑑 when 𝑅 = 1, 𝑃𝑟 =
0.4, 𝑀 = 0.5, 𝐷𝑒 = 0.2  

 Fig. 15.  𝜃(𝑦) for different  𝑅𝑑 when 𝑅 = −1, 𝑃𝑟 =
0.4, 𝑀 = 0.5, 𝐷𝑒 = 0.2   
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Table 1 
Injection: heat transfer rate for A = −0.5, De = 0.1 

𝑅 𝑅𝑑 𝜃′(0) 𝜃′(1) 

  HPM FDM HPM FDM 

-5 0.1  -0.980829  -0.988605  -0.840872 -0.835683 

-1  -0.98431  -0.98362  -0.84048  -0.84041 

1  -0.98072  -0.98003  -0.84439  -0.843925 

5  -0.96977  -0.96787  -0.85552  -0.85489 

-5 0.3 -0.99165  -0.99060  -0.86543  -0.86464s 

-1  -0.98725  -0.98652  -0.86936  -0.86857 

1  -0.98464  -0.983578  -0.872282  -0.871501 

5  -0.9757  -0.97460  -0.88153  -0.88077 

-5 0.6 -0.99317  -0.99206  -0.88584  -0.88496 

-1  -0.98973  -0.98860  -0.88920  -0.88833 

1  -0.98724  -0.98613  -0.89171  -0.89084 

5  -0.97967  -0.97853  -0.89996  -0.89876 

 
Table 2 
Injection: skin friction coefficient for A = −0.5 

𝑅 𝐷𝑒 𝑀 = 1 

  𝑓 ′′(0) 𝑓 ′′(1) 

  HPM FDM HPM FDM 
-5 0.1 10.13780  10.12750  -7.63383  -7.62759 
-1  9.38681  9.34772  -8.82480  -8.78904 
1  8.83570  8.79854  -9.84952  -9.80362 

5  7.11056  7.05162  -13.67460  -13.49480 

-5 0.3 10.15610  9.73890  -7.69700  -7.48223 

-1  9.36468  8.96130  -9.01940  -8.70534 

1  8.76743  8.39115  -10.31480 -9.79176 

5  6.84428  6.55710  -15.15890  -14.00460 

-5 0.6 10.76070  9.77131  -7.12739  -6.59100 

-1  10.18460  9.21907  -8.06629  -7.40394 

1  8.61747  8.38207  -11.72620  -11.22110 

5  6.28049  5.73695  -19.89120  -15.42500 

  𝑀 = 3 

-5 0.1 10.93940  10.89130  -8.57775  -8.58607 

-1  10.42870  10.38050  -10.00330  -9.95771 

1  10.06930  10.02120 -11.07330  -11.01550 

5  9.02554  8.98036  -14.52200  -14.41870 

-5 0.3 10.95580  10.77620  -8.65544  -8.71970 

-1  10.25460  10.23550  -10.32390  -10.30340 

1  10.01260  9.86512  -12.03990  -11.58060 

5  8.87193  8.70601  -16.20890  -15.70890 

-5 0.6 10.97090 10.40860  -9.40676  -8.92957 

-1  10.34850  10.40860  -11.79360  -8.92957 

1  10.34850  10.05230 -11.79360  -11.35160 

5  8.52781 8.09945  -21.45070  -18.97440 
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5. Conclusions 
 
The current research work aims to provide the significance of MHD and radiation effects on 

UCM Maxwell fluid flow between moving plates. Following observations are made from the above 
study: 

 
i. Increase in magnetic effect supresses the velocity field in the core region for both 𝑅 >

0 and 𝑅 < 0. 
ii. As the plates move towards each other, velocity is found to be increasing in the range 

0 ≤  𝑦 ≤  0.55 and decreasing in the range 0.55 ≤  𝑦 ≤  1, whereas an opposite 
trend is observed in case of plates moving away from each other. 

iii. When the plates are moving apart from each other, an increment in Deborah number 
results decrease in velocity till the point of inflection 𝑦 = 0.6 and an increment is 
observed after the point of inflection. Trend is found to be in opposite for the case 
plates moving close to each other. 

iv. Temperature field is observed to be decreasing with increase in magnetic field for both 
𝑅 >  0 and 𝑅 <  0. 

v. Increase in 𝐷𝑒 and 𝑅𝑑 resulted in an increment in the temperature fields for 𝑅 >  0, 
whereas an opposite behaviour is noted for 𝑅 <  0. 

vi. As the plates move away, increase in Prandtl number suppresses the temperature filed 
profile and the trend is found to be in opposite nature for 𝑅 <  0 case. 

vii. The effect of various physical parameters on skin friction and heat transfer rates are 
also calculated. The results are compared with numerical values obtained using finite 
difference method and found to be in good agreement. 

viii. Increase in Reynolds number supresses the skin friction coefficient on the lower plate, 
whereas the magnitude increases on the upper plate. 

ix. Increase in magnetic parameter resulted in increase in the magnitude of coefficient of 
skin friction on both upper and lower plates. 

x. As the radiation parameter increases, the magnitude of heat transfer rate increases for 
both plates moving towards and away from each other.  
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