
Sampath Kumar V S¹, Devaki B¹, Nityanand P Pai¹.*

¹ Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

1. Introduction

Analysing fluid transport phenomena in porous media is essential for many science and engineering applications. Fluid through a porous channel depends on Darcy’s law. Due to the property of porous media to allow and resist the flow, it is pictured as a vital topic in the study of fluid mechanics. Moreover, it helps in better understanding of the behaviour of the fluid in real-world situations. The applications of porous materials are usually found in filters and water treatment systems to remove impurities from the fluids. Also, this concept is used in geology to study the movement of fluids through rocks and soil. Hence, the fluid flow through porous media becomes one of the most fascinating fields for researchers [1-3]. Berman [4] studied the laminar flow in porous...
wall channels. Further, Yuan [5] continued the same work. The authors have dealt with the Newtonian fluid model in these papers.

Fluids are broadly classified into Newtonian and non-Newtonian fluids. The fluids that obey Newton’s law of viscosity are known as Newtonian fluids. These fluids are the ideal fluids that do not exist in reality. Nevertheless, these fluids help in the basic understanding of nature. However, most of the fluids in nature are non-Newtonian. The diverse physical structure of non-Newtonian fluids cannot be expressed by a single rheological equation [6-13]. From the current information regarding the non-Newtonian fluids, the fluids are classified by rate, differential, and integral type fluid models. Rate-type non-Newtonian fluid models describe the mechanism of stress relaxation and retardation. Amongst such models, Maxwell fluid is the simplest one [14].

The Maxwell fluids are fluids that exhibit both elastic and viscous properties. The upper-convected Maxwell (UCM) fluid type represents the combined effects of inertia and viscoelasticity. UCM fluids have a broad scope in various industries, such as pharmaceutical, chemical, and food processing. Due to its viscoelasticity, its applications are found in lubricants, suspension formulations, and coatings. Due to their ability to maintain stable emulsions and suspend particles, these fluids are used as emulsifiers and thickeners in the chemical industry. Further, in the pharmaceutical industry, to control drug release rates, they are used in drug delivery systems.

The UCM fluid model is mainly used to explore the relaxation time of the fluid [15]. Fetecau et al., [16] studied Stok’s second problem for Maxwell fluid flow. Vieru and Rauf [17] found an analytic solution for Stokes flow for Maxwell fluid, and further, the author [18] obtained solutions for Couette flows of Maxwell fluid using the Laplace transform technique. M L De Haro and others [19] analysed the Maxwell fluid flow in a rigid porous channel and gave some insight into the impact of elasticity on the dynamic permeability using the volume averaging method. Choi [20] investigated the Maxwell fluid flow in a porous channel through the power series method. Satish et al., [21] explored the required time for the steady state of Maxwell fluid, and they also found the dependency of pressure on viscosity. Syed et al., [22] examined the run-up fluid flow of the Maxwell model through the Laplace transformation method. Rana et al., [23] obtained a solution for the UCM fluid flow in a porous medium considering suction/injection and extended it into a three-dimensional setup using the series method. Many authors have contributed significantly to the study of the Maxwell fluid with different geometries [24–27].

The study of MHD and heat transfer characteristics of fluid flow spans a range of scientific and engineering domains, including the petroleum industry, nuclear reactor, earth science, and metallurgy, specifically in the manufacturing process of polymers, artificial fibers, and thin films and many more [28-33]. Swati Mukhopadhyay [34] analysed the heat transfer profile of Maxwell fluid numerically using the shooting method. Ali et al., [35] found an analytical and numerical solution for the effect of MHD and heat transfer in Maxwell fluid flow between two parallel plates. Zeeshan et al., [36] found the exact solution for the UCM fluid flow in a porous channel with a source/sink immersed in it using the Homotopy analysis technique. Hayat [37] found the solution for the MHD flow of UCM fluid using a semi-analytical method. Further, the author extended his work to a rotating frame and found exact solutions using the Fourier sine transform method [38]. Raftari and Yildrim [39] gave the homotopy perturbation solution for the MHD UCM fluid flow above porous stretching sheets. Ilyas Khan et al., [40] discussed some interesting results on the required time for the steady state of MHD Maxwell fluid in a porous half space. Anuj Kumar [41] presented an analytical solution and velocity profiles for electrically conducting UCM fluid in a porous medium.

Electromagnetic radiation generated by the particles in matter when there is an internal energy state transition is known as thermal radiation. It plays a critical role in the operations of many natural and man-made systems. The radiation properties are one of the most crucial process parameters in
the thermal industry. The importance of thermal radiation emerges from the dependency on the heat flux quality of the final product in the polymer and the petroleum industry. Thermal radiation’s impact on the construction of nuclear power plants, satellites, and a variety of complicated conversion systems is indeed crucial [42-44]. Hayat et al., [45] described the exact solution for the impact of thermal radiation on MHD and heat transfer of Maxwell fluid in a porous medium using the homotopy analysis technique. Fazel and others [46] numerically analysed the impact of non-linear thermal radiation on MHD Maxwell fluid over a stretching sheet. Hosseinzadeh et al., [47] did a numerical investigation of the non-linear thermal radiation effects of Maxwell fluid in a porous medium with a heated plate.

The MHD radiative squeezing flow of Maxwell fluid between porous plates is observed to have quite extensive applications. Various engineering and industrial applications such as petroleum transport, chemical processing, and metal casting employ these kinds of flows. Moreover, the potential applications of these flows are found in environmental and biomedical engineering. Due to its versatility, this flow can be modified to suit specific applications. It has become a valuable tool in several fields because of its ability to control flow patterns and fluid dynamics. However, it is found from the literature that the knowledge of the thermal radiation of the UCM fluid flow in a porous channel is limited. Hence, the study of MHD squeezing flow of a UCM fluid under radiation between parallel plates of which the lower plate is porous and fixed where the injection takes place is of interest in this work. This work attempted to study the thermal radiation effect on MHD and the temperature profile of UCM fluid flow between two plates, where the lower plate is fixed and porous, and the upper plate is moving with uniform velocity towards or away from the lower plate.

Most of the real-world problems are non-linear in nature. Obtaining solutions to these non-linear differential equations using the known analytical techniques is not possible. Hence, to obtain an approximate solution, numerical methods find scope in fluid mechanics [48-54]. FDM is one of the popular numerical methods in analysing many areas of science and technology. The abilities of FDM are confined when it comes to handling non-linear differential equations and require significant modification to do so. As numerical methods are very sensitive to grid size, FDM is prone to numerical instability that leads to inaccuracy and non-convergence in results. To overcome these challenges, researchers came up with the idea of semi-analytical methods. One such semi-analytical technique with broad scope is the Homotopy Perturbation method (HPM).

HPM is one of the promising modern analytical techniques to obtain solutions for non-linear problems in applied science and engineering. Ji-Huan He introduced, developed, and refined the HPM [55–57]. HPM can systematically generate a sequence of closed-form solutions that eventually converge to the exact solution with a higher convergence rate. This method overcomes the limitations of the traditional perturbation method and is helpful in solving a wide range of linear and non-linear problems [58–60]. HPM is more robust and has a broader scope in handling problems. Hence, this method can be applied to solve different class of problems and applications due to its flexibility.

2. Mathematical Formulation

Figure 1 shows the schematic diagram of the problem in two-dimensional cartesian coordinate system. Let \(u^* \) and \(v^* \) be the velocity components along \(x^* \) and \(y^* \) direction. The fluid model here considered is an incompressible electrically conducting UCM fluid. The fluid flow is between two plates located at \(y^* = 0 \) and \(y^* = H \). The bottom plate is porous and stationary, and the upper plate is moving uniformly with a velocity \(V_w \). A uniform magnetic field \(B_0 \) is applied along the \(y^* \) axis. Let \(\tau \)
denote the extra stress tensor, \(\mu_0 \) denote the low shear viscosity, \(\lambda_1 \) be the relaxation time, and \(\gamma \) be the rate of strain tensor. Then the stress strain relationship of Maxwell fluid is given by
\[
\tau + \lambda_1 \dot{\tau} = \mu_0 \gamma.
\] (1)

The upper-convected time derivative of the stress tensor is defined as
\[
\dot{\tau} = \frac{\partial \tau}{\partial t} + V \nabla \tau - (\nabla \tau)^T.
\] (2)

Fig. 1. Schematic diagram of the problem

Where \(t, V, \) and \(\nabla \mathbf{v} \) denotes the time, transpose vector, velocity vector, and fluid velocity gradient vector, respectively. The continuity and the momentum equations governing such type of flow are
\[
\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0.
\] (3)
\[
\begin{align*}
 u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} + \lambda \left[u^* \frac{\partial^2 u^*}{\partial x^*^2} + v^* \frac{\partial^2 v^*}{\partial y^*^2} + 2 u^* v^* \frac{\partial^2 u^*}{\partial x^* \partial y^*} \right] &= v \frac{\partial^2 u^*}{\partial x^* \partial y^*} - \frac{\sigma B_0}{\rho} u^*.
\end{align*}
\] (4)

Ignoring the ohmic and viscous dissipation, the energy equation can be written as
\[
\begin{align*}
 u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} &= \frac{k}{\rho C_p} \frac{\partial^2 T^*}{\partial y^*^2} - \frac{1}{\rho C_p} \frac{\partial q_r}{\partial y^*}.
\end{align*}
\] (5)

Where \(\rho, \sigma, v, T(x^*, y^*), k, C_p, \) and \(q_r \) are the fluid density, electrical conductivity of the fluid, kinematic viscosity, temperature at any point, thermal conductivity, specific heat, and radiation heat flux, respectively. The radiation heat flux \(q_r \) is defined using Rosseland approximation and is given by
\[
q_r = -\frac{4 \hat{\kappa} \frac{\partial T^4}{\partial y^*}}{3 \hat{k}}.
\] (6)

Where \(\hat{k} \) and \(\hat{\kappa} \) denote the mean absorption coefficient and the Stefan-Boltzmann constant. With the assumption of temperature difference within the flow is such that \(T^4 \) may be expanded in a Taylor series and expanding \(T^4 \) about \(T_\infty \) and ignoring the higher orders, we obtain
\[
T^4 = 4 T_\infty T^4 - 3 T_\infty^4.
\] (7)
Then the energy Eq. (5) becomes

\[u^* \frac{\partial T}{\partial x^*} + v^* \frac{\partial T}{\partial y^*} = \frac{k}{\rho C_p} \frac{\partial^2 T}{\partial y^*^2} + \frac{16 \sigma T^3}{3 \rho C_p k} \frac{\partial^2 T}{\partial y^*^2}. \] (8)

The boundary conditions:

At \(y^* = 0 \): \(u^*(x^*, y^*) = 0 \), \(v^*(x^*, y^*) = A. V_w, \ T = T_w \). (9)

At \(y^* = H \): \(u^*(x^*, y^*) = 0 \), \(v^*(x^*, y^*) = V_w, \ T = 0 \). (10)

Here \(A \) is a constant parameter and \(A < 0 \) corresponds to injection process. \(T_w \) is the temperature at the lower plate. The dimensionless variables are presented as follow,

\[x = \frac{x^*}{H}; \ y = \frac{y^*}{H}; \ u^* = -V_w x f'(y). \] (11)

From Eq. (3) and Eq. (4) we get

\[v^* = V_w f(y), \] (12)

and

\[\theta = \frac{T}{T_w}. \] (13)

Using the non-dimensional parameters in momentum and energy equations, we get

\[f'''' - M^2 f'' + R(f' f'' - f f''') + De(2 f' f'' + 2 f f''') - f^2 f''') = 0. \] (14)

\[(1 + \frac{4}{3} Rd) \theta'' - R Pr f \theta' = 0. \] (15)

With boundary conditions

\[f(0) = A, \ f'(0) = 0, \ f(1) = 1, \ f'(1) = 0, \ \theta(0) = 1, \ \theta(1) = 0. \] (16)

Where \(R, De, Rd, M \) and \(Pr \) represent the Reynolds number, Deborah number, Radiation parameter, magnetic parameter, and Prandtl number respectively are defined as

\[R = \frac{V_w H}{u}, \ De = \frac{\lambda V_w^2}{u}, \ M = \sqrt{\frac{\sigma B_o H}{\mu}}, \ Rd = \frac{4 \sigma T^3}{k k}, \ Pr = \frac{\mu C_p}{k}. \] (17)

Here, \(R > 0 \) and \(R < 0 \) represent the situation of upper plate moving away from the bottom plate and upper plate approaching the lower plate, respectively.

3. Method of Solution

We obtain a system of non-linear ordinary differential equation (ODE) after applying similarity transformations. We adopt semi-analytical technique approach to get the solution and we use numerical technique to verify the obtained results. The system of non-linear ODEs along with the
boundary conditions are solved using homotopy perturbation method (HPM). Obtained results are compared numerically using classical finite difference method. To narrate the HPM solution for the system of non-linear differential equations, let us take

\[
\begin{align*}
D_1[f(\eta)] - f_1(\eta) &= 0, \quad (18) \\
D_2[\theta(\eta)] - f_2(\eta) &= 0. \quad (19)
\end{align*}
\]

Where \(D_1\) and \(D_2\) denotes the operators, \(f(\eta)\) and \(\theta(\eta)\) are unknown functions, \(\eta\) is the independent variable and \(f_1, f_2\) are known functions. \(D_1\) and \(D_2\) can be written as,

\[
\begin{align*}
D_1 &= L_1 + N_1, \\
D_2 &= L_2 + N_2.
\end{align*}
\]

Where \(L_1\) and \(N_1\) are the linear and non-linear parts of Eq. (18) and \(L_2\) and \(N_2\) are the linear and non-linear parts of Eq. (19). The homotopy equations are obtained by choosing proper linear and non-linear parts. The homotopy equations for Eq. (18) and Eq. (19) are

\[
\begin{align*}
H_1(\phi_1(\eta, q; q)) &= (1 - q)[L_1(\phi_1, q) - L_1(\nu_0(\eta))] + q[D_1(\phi_1, q) - f_1(\eta)] = 0, \quad (20) \\
H_2(\phi_2(\eta, q; q)) &= (1 - q)[L_2(\phi_2, q) - L_2(\nu_0(\eta))] + q[D_2(\phi_2, q) - f_2(\eta)] = 0. \quad (21)
\end{align*}
\]

Here the initial guess to the Eq. (18) and Eq. (19) is \(\nu_0\).

We assume the solution of Eq. (20) and Eq. (21) as

\[
\begin{align*}
\phi_1(\eta, q) &= \sum_{n=0}^{\infty} q^n f_n(\eta), \\
\phi_2(\eta, q) &= \sum_{n=0}^{\infty} q^n \theta_n(\eta). \quad (22) \quad (23)
\end{align*}
\]

The solution to the considered problem is Eq. (22) and Eq. (23) at \(q = 1\).

The zeroth, first, and second order solutions for the considered problem are as follows

\[
\begin{align*}
f_0 &= 2 A y^3 - 3 A y^2 + A - 2 y^3 + 3 y^2. \quad (24) \\
f_1 &= - \frac{1}{420} (A - 1) (y - 1)^2 y^2 (4 De (A^2 (50 y^5 - 125 y^4 + 42 y^3 + 104 y^2 - 86 y + 39) - A (100 y^5 - 250 y^4 + 84 y^3 + 124 y^2 - 88 y + 15) + 50 y^5 - 125 y^4 + 42 y^3 + 20 y^2 - 2 y - 24) + 3 (2 R (A (4 y^3 - 6 y^2 + 5 y - 19) - 4 y^3 + 6 y^2 - 5 y - 16) + 7 (2 y - 1) M^2)). \quad (25) \\
f_2 &= \frac{1}{8408400} (-1 + A)^2 y^2 [16 D e^2 (243387 + 24576 y + 24765 y^2 + 24954 y^3 - 191073 y^4 + 228678 y^5 + 69279 y^6 + 74330 y^7 - 298997 y^8 + 266250 y^9 - 12100 y^{10} + 2200 y^{11} - A (23937 + 48570 y - 167037 y^2 - 10272 y^3 + 259606 y^4 + 382760 y^5 - 871164 y^6 - 230344 y^7 + 1179244 y^8 - 1065000 y^9 + 48400 y^{10} - 88000 y^{11}) + A^2 (-148149 + 500324 y - 818168 y^2 + 265740 y^3 + 939238 y^4 - 1319050 y^5 + 663327 y^6 + 73547 y^7 - 282253 y^8 - 1065000 y^9 + 48400 y^{10} - 88000 y^{11}) - A^3 (-53694 + 482506 y...)]). \quad (26)
\end{align*}
\]
\[\theta_0 = 1 - y. \]
\[\theta_1 = \frac{3}{20(4Rd + 3)} (2A y^5 Pr R - 5A y^5 Pr R + 10A y^2 Pr R - 7A y Pr R - 2y^5 Pr R + 5y^4 Pr R - 3y Pr R). \]
\[\theta_2 = \frac{1}{92400(3 + 4Rd)} [2934DePrRy - 2862ADePrRy y - 3078A62DePrRy + 3006A3DePrRy - 99MPPrRy - 99M2PrRy + 99AM2PrRy + 3432PrR^2 y + 66APrR^2 y - 3498A^2PrR^2 y + 264Pr^2R^2 - 28248APrR^2 y - 41316A^2PrR^2 y + 3912DePrRRdy y - 3816ADePrRRd y - 4104A^2DePrRRd + 4008A^3DePrRRd - 132M^2PrRRd y + 4576PrR^2Rdy + 88APrR^2Rdy - \ldots]. \]

4. Results and Discussion

This section discusses the injection case of MHD UCM flow and heat transfer characteristics between two plates by considering the effect of thermal radiation. In this model, the plate in the bottom is porous and stationary and the upper plate is set in motion (approaching or receding from the lower plate) with a uniform velocity \(V_w \). The effect of pertinent parameters such as Reynolds number, Deborah number, Radiation parameter, Magnetic parameter, and Prandtl number on fluid flow and temperature fields are illustrated using graphs (Figure 2 - Figure 15), and skin friction coefficient \(f'(0), f''(1) \) and heat transfer rates \((\theta'(0), \theta'(1)) \) are also computed and given in tables (Table 1 and Table 2).

The effect of \(R \), the parameter which characterizes the movement of the upper plate on the velocity field, is shown in Figure 2, and it is found to be increasing when the upper plate is approaching the bottom one \((R < 0) \) in the region \(0 \leq y \leq 0.5 \) and found to be decreasing in the \(0.5 \leq y \leq 1 \) region. In the case of the upper plate moving away from the bottom plate \((R > 0) \), an opposite behaviour is observed. It is observed that in both the cases, the velocity curve exhibits parabolic nature. Figure 3 and Figure 4 illustrate the impact of magnetic parameter \((M) \) on the velocity field for \(R = 2 \) and \(R = -2 \), respectively. It is observed that, in the core region the velocity is retarding for increment in \(M \). This indicates the fact of increment in \(M \) produces Lorentz force, which shrinks the boundary layer thickness. The effect of magnetic field causes a damping effect on the velocity by creating a drag force which opposes the motion there by suppressing the velocity.

In Figure 5 and Figure 6, it is observed that the impact of \(De \) on the velocity profiles for \(R = 5 \) and \(R = -5 \), resulting in a parabolic curve. The Maxwell parameter \(De \) is the ratio of relaxation time to the characteristic time of the deformation phenomena. Deborah number distinguishes how a particular material will behave over a given time frame and is related to the unsteadiness of the flow. Deborah number depends upon retardation time. Physically, a large \(\lambda_1 \) (retardation time) of any substance makes the fluid less viscous. Here \(De = 0 \) represents the velocity curve for the Newtonian case. Higher the \(De \) value stronger the elastic behaviour, and the flattening of the boundary layer. From Figure 5, it is noted that the velocity decreases for increment in \(De \) in the region \(0 \leq y \leq 0.65 \). An enhancement in the velocity is observed in \(0.65 \leq y \leq 1 \) region. For \(R = -5 \) case also the velocity is found to be decreasing in the range \(0 \leq y \leq 0.79 \) and increasing in the region \(0.79 \leq y \leq 1 \).

Figure 7 represents the temperature variation for different values of \(R \). When the upper plate is approaching the fixed bottom plate, the temperature increases for an increased value of \(R \). Whereas for the \(R > 0 \) case, an opposite trend is observed. A linear relation is noted for low Reynolds numbers in both cases. Figure 8 and Figure 9 depict the effect of \(M \) on \(\theta(y) \) for \(R = 2 \) and \(R = -2 \).
A linear relation can be noted from these graphs. From the figure, it is observed that the temperature decrement for increased values of M is due to the weaker Lorentz force. The impact of the parameter De on the temperature profile is illustrated in Figure 10 and Figure 11 for $R = 1$ and $R = -1$ cases, respectively. In Figure 10, it is observed that the temperature enhances as De increased, indicating that the higher relaxation time, results in higher temperature. From the figure, it is also observed the shear thickening behaviour of Maxwell fluid. Figure 11 illustrates $R = -1$ case, where an opposite trend is observed in the case of $R = 1$.

Figure 12 and Figure 13 demonstrate the variation of Pr on the temperature field for $R = 2$ and $R = -2$, respectively. The Prandtl number (Pr) is a ratio of momentum diffusivity to thermal diffusivity. As temperature rises, the velocity boundary layer becomes larger than that of the thermal boundary layer. This implies that as Pr increases, the thermal boundary layer decreases. Physically, a larger value of Pr results in less thermal capacity. Therefore, in Figure 12, the temperature was found to be increasing for increment in Pr. An opposite trend is noted for the squeezing case. Figure 14 and Figure 15 depict the effect of radiation parameter Rd on the temperature profile for the cases $R = 2$ and $R = -2$. A linear relation is observed in both cases. The mean absorption coefficient is found to be reducing for higher thermal radiation parameter Rd, which is responsible for enhanced heat transfer. As a result, the temperature distribution increases for increased values of Rd in Figure 14. An opposite behaviour is observed in $R = -2$ case.

Table 1 shows the variation of heat transfer rates for different values of R and Rd. When the radiation parameter Rd is increased, the heat transfer rate decreases in both cases. From the table, it is clear that in the case of the upper plate moving away from the lower plate, the heat transfer rate $\theta'(0)$ was enhanced and $\theta'(1)$ suppressed. An opposite trend is observed for $R < 0$ case. Table 2 gives the skin friction coefficient values at the lower ($f''(0)$) and upper plate ($f''(1)$) for the injection case. We observe that, when the upper plate moves away from the bottom plate, the skin friction at the lower and upper plates decreases, whereas it is enhanced in the case of plates moving closer. It is noted that as there is an increment in M, $f''(0)$ is increasing, and $f''(1)$ is decreasing. The values of $f''(0)$ and $f''(1)$ are suppressed for increased values of De.

![Fig. 2. $f'(y)$ for different R when $M = 1, De = 0.3$](image1)

![Fig. 3. $f'(y)$ for different M when $R = 2, De = 0.1$](image2)
Fig. 4. $f'(y)$ for different M when $R = -2, De = 0.1$

Fig. 5. $f'(y)$ for different De when $R = 2, M = 0.5$

Fig. 6. $f'(y)$ for different De when $R = -2, M = 0.5$

Fig. 7. $\theta(y)$ for different R when $M = 0.5, Rd = 0.1, De = 0.1, Pr = 0.5$

Fig. 8. $\theta(y)$ for different M when $R = 2, Rd = 0.1, De = 0.1, Pr = 0.5$

Fig. 9. $\theta(y)$ for different M when $R = -2, Rd = 0.1, De = 0.1, Pr = 0.5$
Fig. 10. $\theta(y)$ for different De when $R = 2, Rd = 0.2, M = 0.5, Pr = 0.4$

Fig. 11. $\theta(y)$ for different De when $R = -2, Rd = 0.2, M = 0.5, Pr = 0.4$

Fig. 12. $\theta(y)$ for different Pr when $R = 2, Rd = 0.2, M = 0.5, De = 0.2$

Fig. 13. $\theta(y)$ for different Pr when $R = -2, Rd = 0.2, M = 0.5, De = 0.2$

Fig. 14. $\theta(y)$ for different Rd when $R = 1, Pr = 0.4, M = 0.5, De = 0.2$

Fig. 15. $\theta(y)$ for different Rd when $R = -1, Pr = 0.4, M = 0.5, De = 0.2$
Table 1
Injection: heat transfer rate for $A = -0.5$, $De = 0.1$

<table>
<thead>
<tr>
<th>R</th>
<th>Rd</th>
<th>$\theta'(0)$</th>
<th>$\theta'(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPM</td>
<td>FDM</td>
<td>HPM</td>
<td>FDM</td>
</tr>
<tr>
<td>-5</td>
<td>0.1</td>
<td>-0.980829</td>
<td>-0.988605</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-0.98431</td>
<td>-0.98362</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-0.98072</td>
<td>-0.98003</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-0.96977</td>
<td>-0.96787</td>
</tr>
<tr>
<td>-5</td>
<td>0.3</td>
<td>-0.99165</td>
<td>-0.99060</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-0.98725</td>
<td>-0.98652</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-0.98464</td>
<td>-0.983578</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-0.9757</td>
<td>-0.97460</td>
</tr>
<tr>
<td>-5</td>
<td>0.6</td>
<td>-0.99317</td>
<td>-0.99206</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-0.98973</td>
<td>-0.98860</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-0.98724</td>
<td>-0.98613</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-0.97967</td>
<td>-0.97853</td>
</tr>
</tbody>
</table>

Table 2
Injection: skin friction coefficient for $A = -0.5$

<table>
<thead>
<tr>
<th>R</th>
<th>De</th>
<th>$M = 1$</th>
<th>$M = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(0)$</td>
<td>$f''(1)$</td>
<td>$f''(0)$</td>
<td>$f''(1)$</td>
</tr>
<tr>
<td>HPM</td>
<td>FDM</td>
<td>HPM</td>
<td>FDM</td>
</tr>
<tr>
<td>-5</td>
<td>0.1</td>
<td>10.13780</td>
<td>10.12750</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>9.38681</td>
<td>9.34772</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.83570</td>
<td>8.79854</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7.11056</td>
<td>7.05162</td>
</tr>
<tr>
<td>-5</td>
<td>0.3</td>
<td>10.15610</td>
<td>9.73890</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>9.36468</td>
<td>8.96130</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.76743</td>
<td>8.39115</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6.84428</td>
<td>6.55710</td>
</tr>
<tr>
<td>-5</td>
<td>0.6</td>
<td>10.76070</td>
<td>9.77131</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>10.18460</td>
<td>9.21907</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.61747</td>
<td>8.38207</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6.28049</td>
<td>5.73695</td>
</tr>
<tr>
<td>-5</td>
<td>0.3</td>
<td>10.93940</td>
<td>10.89130</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>10.42870</td>
<td>10.38050</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10.06930</td>
<td>10.02120</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9.02554</td>
<td>8.98036</td>
</tr>
<tr>
<td>-5</td>
<td>0.6</td>
<td>10.95580</td>
<td>10.77620</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>10.25460</td>
<td>10.23550</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10.01260</td>
<td>9.86512</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.87193</td>
<td>8.70601</td>
</tr>
<tr>
<td>-5</td>
<td>0.6</td>
<td>10.97090</td>
<td>10.40860</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>10.34850</td>
<td>10.40860</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10.34850</td>
<td>10.05230</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.52781</td>
<td>8.09945</td>
</tr>
</tbody>
</table>
5. Conclusions

The current research work aims to provide the significance of MHD and radiation effects on UCM Maxwell fluid flow between moving plates. Following observations are made from the above study:

i. Increase in magnetic effect suppresses the velocity field in the core region for both $R > 0$ and $R < 0$.

ii. As the plates move towards each other, velocity is found to be increasing in the range $0 \leq y \leq 0.55$ and decreasing in the range $0.55 \leq y \leq 1$, whereas an opposite trend is observed in case of plates moving away from each other.

iii. When the plates are moving apart from each other, an increment in Deborah number results decrease in velocity till the point of inflection $y = 0.6$ and an increment is observed after the point of inflection. Trend is found to be in opposite for the case plates moving close to each other.

iv. Temperature field is observed to be decreasing with increase in magnetic field for both $R > 0$ and $R < 0$.

v. Increase in De and Rd resulted in an increment in the temperature fields for $R > 0$, whereas an opposite behaviour is noted for $R < 0$.

vi. As the plates move away, increase in Prandtl number suppresses the temperature filed profile and the trend is found to be in opposite nature for $R < 0$ case.

vii. The effect of various physical parameters on skin friction and heat transfer rates are also calculated. The results are compared with numerical values obtained using finite difference method and found to be in good agreement.

viii. Increase in Reynold's number supresses the skin friction coefficient on the lower plate, whereas the magnitude increases on the upper plate.

ix. Increase in magnetic parameter resulted in increase in the magnitude of coefficient of skin friction on both upper and lower plates.

x. As the radiation parameter increases, the magnitude of heat transfer rate increases for both plates moving towards and away from each other.

Acknowledgement

This research was not funded by any grant. Authors thank the Manipal Academy of Higher Education, Manipal for their constant support throughout the research.

References

