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There have been many studies on the mechanisms of unsteady aerodynamics, such as 
leading-edge vortex (LEV) formation, wing-wake interaction, and spanwise flow. 
Spanwise flow can only be observed on three-dimensional wing models; however 
other phenomena such as LEV and wing-wake interaction can be captured using two-
dimensional airfoil models. This study focuses on two-dimensional elliptical airfoil 
because this profile can generate counter-rotating vortices used by insects to generate 
aerodynamic forces. This research aims to analyze the drag production of two-
dimensional elliptical airfoils flapping with bumblebee-inspired kinematics in 
asymmetrical normal-hovering mode at a typical Reynolds number range of Re =
𝑂(103). It is found that drag is generated during the downstroke while thrust during 
the upstroke. It is also found that the creation and shedding of counter-rotating 
vortices are closely related to the generation of thrust. The results also indicate that 
asymmetrical strokes can be used in normal hovering to minimize drag or produce 
thrust.  
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1. Introduction

There have been many studies on flapping wing flight on two-dimensional (2D) objects such as 
airfoil [1–4] and three-dimensional objects such as nature-inspired wings [5–9]. These past studies 
on flapping wing flight have led to the discovery of unsteady aerodynamic mechanisms such as 
leading-edge vortex (LEV), spanwise flow and wing-wake interaction. Leading-edge vortex is formed 
by the flow that separates at the wing’s leading edge and reattaches before leaving the trailing edge 
[5, 10]. Spanwise flow is a base-to-tip flow that limits the growth of leading-edge vorticity, and thus 
stabilizes LEV and delays its separation from the wing surface [5]. Wing-wake interaction causes the 
rapid change in aerodynamic forces after supination and pronation due to the interaction between 
wing and vortices shed during the previous flapping cycles [6, 11]. The unsteady aerodynamic 
mechanism explains why insects are able to fly, including bumblebees that are deemed unfit to fly 
based on the aerodynamics of stationary wings.   

Bumblebees can carry a heavy load with their small wings [12]. A trait that might relate to the 
unique vortex rings observed on the wings of bumblebees. The vortex ring on each wing of a 
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bumblebee is seen both in the experiments of real free-flying bumblebees [13] and also numerical 
simulations [14]. The ring vortices were formed due to the shedding of tip and root vortices. Ring 
vortices are the three-dimensional form of counter-rotating vortices found on two-dimensional 
airfoils. This work focuses on elliptical airfoil because counter-rotating vortices were observed in the 
experiments and simulations of this shape unlike other 2D profile like NACA0012 and flat plate [15–
17]. 

Wang [18] numerically studied an elliptical airfoil (2D) hovering under a figure-of-eight motion 
and captured counter-rotating vortices. It is concluded that counter-rotating vortices can be 
observed on two-dimensional airfoils. These vortices are not a tip vortex (TiV) product, which is a 
phenomenon exclusive to three-dimensional (3D) wings. Counter-rotating vortices were also 
observed by Poelma [19] in their study using a dynamically-scaled wing in mineral oil at Re of 256. In 
the numerical study at higher Reynolds numbers of 104 to 106done by Wei et al., [20] vortex dipoles 
were also seen in the flow visualization. 

Wang [21] highlighted the importance of drag in supporting the weight of insects that utilize 
inclined stroke planes such as dragonflies and hoverflies. Insects that use a normal-hovering mode 
(stroke plane angle = 𝛽 = 0°) can experience the same benefit of drag by deploying asymmetrical 
strokes. The current work analyzes the drag production of 2D elliptical airfoils that flap with 
bumblebee-inspired kinematics in asymmetrical normal-hovering mode. 

This paper is a continuation of our previous work on the lift of an elliptical airfoil at a Reynolds 
Number (Re) of 1000 [22]. Bumblebees typically fly in the Reynolds number range of thousands, Re =
𝑂(103)  [23, 24]. Therefore Re = 1000 is used in the earlier and current studies on elliptical airfoils 
flapping under bumblebee-inspired kinematics.  

Our earlier work [22] focuses on the lift of elliptical airfoils that flap with bumblebee-inspired 
kinematics. This work concludes that the high lift of bumblebee wings is produced during the 
formation and shedding of counter-rotating vortices. The amount of lift produced are more than 
sufficient to sustain the bumblebee’s weight and additional loads like pollen. Another important 
conclusion of this study is that a 2D elliptical airfoil can be used to study 3D bumblebee wings with 
sufficient accuracy. Therefore, the current study on drag uses a 2D elliptical airfoil to learn 3D 
bumblebee wings that are more complicated and time-consuming to simulate. The aim of this 
research is to find the relationship between the drag and vortices shed by an elliptical airfoil that 
flaps like a bumblebee.  
 
2. Validation  
 

The solver validation case is an elliptical airfoil in a normal-hovering mode (𝛽 = 0°) at Re =  
𝜋𝑓𝐴0𝑐

𝜈
 

of 157 [7]. The airfoil flaps with flapping kinematics comprise translational and rotational motions 
that are described by (1) and (2) respectively, with 𝐵 being pitching amplitude, 𝛼0 is starting angle of 
attack, and 𝑓 is flapping frequency (Table 1). The elliptical airfoil has a ratio of flapping amplitude to 

chord (=
𝐴0

𝑐⁄ ) of 2.5 and the ratio of airfoil thickness to chord = ( 𝑡
𝑐⁄ ) of 0.125. The validation 

results show a good agreement between the current solver and the reference data (Figure 1). The 
computational domain, the mesh details, and the analysis of the validation results have been 
thoroughly explained in [22]. 
 

[𝑥(𝑡), 𝑦(𝑡)] =
𝐴0

2
(1 + cos 2𝜋𝑓𝑡)(cos 𝛽, sin 𝛽) 

(1) 
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𝛼(𝑡) = 𝛼0 + 𝐵 sin(2𝜋𝑓𝑡 + 𝜑) (2) 
 
Table 1 
Geometry and flow condition of the validation case 
Variable Description Value 

𝐴0 Flapping/translation 
amplitude 

0.04175 m 

𝑓 Frequency 1 Hz 
𝐵 Pitching amplitude 45° 
𝛽 Stroke-plane angle 0° 
ϕ Phase angle 0° 
𝛼0 Starting angle-of-attack 90° 
𝑐 Airfoil chord 0.01670 m 
𝜈 Kinematic viscosity 1.4e-05 (m2s−1) (air) 

 

 
Fig. 1. Validation results [22] 

 
3. Numerical Modeling of Elliptical Airfoil 
 

The elliptical airfoil has the same ratio of translation amplitude to chord (=
𝐴0

𝑐⁄ ) and the ratio 

of thickness to chord = ( 𝑡
𝑐⁄ ) as the validation model. The kinematics of the elliptical airfoil is 

described in detail in an earlier work [14], with the parameters listed in Table 2. The computational 
domain consists of 35,442 mixed tetrahedral and triangular cells Figure 2. 
 

Table 2 
Kinematics of bumblebee-inspired elliptical airfoil 
Variable Description Value 

𝑐 Airfoil chord 0.01670 m 
𝐴0 Flapping/translation amplitude 0.04175 m 
𝑓 Frequency 1 Hz 
𝜑 Phase angle 0° 
𝛽 Stroke-plane angle 0° 
𝛼𝐷 Angle-of-attack during downstroke 58.8° 
𝛼𝑈 Angle-of-attack during upstroke 49.3° 
𝜈 Kinematic viscosity 2.19e-06 m2s−1 
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Fig. 2. Computational domain 

 
4. Drag and Thrust at Reynolds Number 1000 
 

A repetitive time history of forces is achieved after 12 flapping cycles/wingbeats (Figure 3). The 
time-averaged drag coefficient (𝐶𝑑

̅̅ ̅) of the 12th cycle is 0.0470. The time history of drag/thrust and 
the time instances of interests are shown in Figure 3. A positive value of 𝐶𝑑 means drag, while a 
negative one means thrust. 
 

 
Fig. 3. Time history of the drag coefficient. From left 
to right are lines marking t/T of 0.04, 0.52, 0.78, and 
0.82 

 
At 0.04 of a cycle, counter-rotating vortices can be seen with a counter-clockwise LEV attached 

to the airfoil while a clockwise TEV from the previous cycle has been shed (Figure 4). This LEV creates 
a low-pressure region (blue area) on the upper surface; in combination with the higher pressure 
(yellow-orange area) on the lower surface, this results in the global maximum of thrust (𝐶𝑑 =
−1.5106).  
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𝑡

𝑇
= 0.82 

Fig. 4. Flow visualization. Left: contour of static pressure and Right: flow path-lines 

 
At 0.52, a new LEV has grown on the upper surface. This LEV creates a low-pressure region on the 

corresponding surface, hence the high drag coefficient value (a global maximum of drag, 𝐶𝑑 =
1.8580). The counter-rotating vortices are visible with the TEV has detached from the airfoil and 
rotates in a counter-clockwise direction, and the LEV rotates in the opposite direction. This TEV 
provides extra circulation under the airfoil and "pushes" the flow downward, creating a high lift and 
a high drag at the time instance. 

At 0.78, the airfoil flips, and its TE is exposed to the downward push of the shed TEV. This push 
creates a higher pressure around the TE, resulting in a force in the x-axis, or thrust is generated (a 
local maximum, 𝐶𝑑 = −0.8354). At 0.82, a new TEV is formed and creates a low-pressure region. 
This region reduces the amount of thrust generated by the airfoil (𝐶𝑑 = −0.4717).  

At 0.9, the counter-rotating vortices are visible with a counter-clockwise LEV and a clockwise TEV. 
The airfoil produces negative drag (= thrust) with 𝐶𝑑 = −0.7518 (Figure 5). The two vortices create 
a large suction on the left surface of the airfoil that results in a high thrust force. These counter-
rotating vortices continue to develop until the end of the cycle. (𝐶𝑑 = −1.4967). 
 

 
Fig. 5. Vortex dipoles at t/T=0.9; a) contour of static pressure and b) flow path-lines 
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5. Conclusions 
 

A numerical analysis on the drag production of an elliptical airfoil at a low Re of 1000 has been 
performed. The force history shows that drag is produced mainly during the downstroke, while thrust 
is generated during the upstroke. It is found that the formation of counter-rotating vortices is closely 
related to the generation of thrust. The flow visualization shows that thrust is generated when 
counter-rotating vortices are attached to or shed by the airfoil. The time-averaged drag is 0.0470, 
which is low and represents the hovering mode of the airfoil. This low drag also implies that the insect 
can utilize asymmetrical strokes in normal hovering to minimize drag or produce thrust. In 
combination with the high lift (𝐶𝑙̅ = 0.6366) produced during the development and shedding of 
counter-rotating vortices, the low drag results in a high lift-to-drag ratio of 13.5447. The high value 
of the lift-to-drag ratio shows the efficiency of bumblebee-inspired kinematics in normal-hovering 
mode. 
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