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The impact of Joule heating for the three-dimensional stagnation point flow of non-
Newtonian liquid (namely Oldroyd-B) nanomaterial has been inspected. The influence 
of mixed convection and the magnetic force is also considered. The flow is induced by 
the bidirectional stretched surface which moves linearly. The partial differential 
equations for the developed model are altered into dimensionless statements first. The 
numerical simulations with the implementation of a finite difference scheme are used 
for the numerical description. The physical description of parameters is presented 
against the flow parameters. The results reveal that there is a reverse change in 
velocity observed for both the relaxation time constant and the retardation constant. 
Furthermore, the heat transfer rate decreases as the ratio parameter increases. The 
thickness of the boundary layer increases due to the retardation time and can also be 
regulated by the application of a magnetic field. An increase in the magnetic parameter 
leads to an enhancement in temperature and an increase in thermal boundary layer 
thickness. 
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1. Introduction 

 
The surveys concerning the impact of non-Newtonian fluids are a fascinating research field in 

applied engineering (fluid mechanics) and intended the attention of analysts in current century. 
Owing to the fundamental applications of non-Newtonian materials in various industries, petroleum 
industries, mechanical engineering, chemical processes, and bio-medical sciences, the understanding 
of such materials is quite necessary. In contrast to viscous fluids, the non-Newtonian fluids are 
complicated in nature. Some fluids like blood, paints, silicone oils, starch and molasses are 
characterized as non-Newtonian material. To study the behaviour and nature of non-Newtonian 
liquids, different nonlinear models are imposed by numerous researchers. Such fluids are habitually 
categorised in three groups, i.e., integral, differential and rate type. The considered fluid model is 
occurred in rate type materials. Some theoretical research regarding non-Newtonian model is 
classified in Ref. [1-5]. The considered model is one which efficaciously captures the interesting 
features of relaxation and retardation time. The results of viscous fluid and Maxwell model is 
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obtained from Oldroyd-B model under certain limitations. Due to such motivating features of 
Oldroyd-B fluid, many investigators used this fluid model to examine the flow characteristics along 
with different features.  

Khan et al., [6] scrutinized the impact of rotating non-Newtonian flow and heat and mass 
transport by a stretchable surface. Zhang et al., [7] presented the double diffusion flow of Oldroyd-B 
fluid over a thin film. Khan et al., [8] examined the thermal diffusion characteristics of magnetized 
Oldroyd-B fluid which has been assumed over a sheet with stretched and accelerate with sinusoidal 
nature. Nonlinear couple radiated flow of non-Newtonian material with additional impact of catalytic 
reactions and heat generation significances was led by Wang et al., [9]. Hafeez et al., [10] presented 
a mathematical model for rotating flow of Oldroyd-B fluid induced by a rotating disk. The flow 
behaviour of Oldroyd-B fluid under slip mechanisms i.e., Brownian and thermophoretic diffusions is 
inspected by Khan et al., [11] confined by an unsteady moving surface. 

Manjunatha, and Choudhari [12] revealed that Velocity slip, the angle of inclination, and the 
presence of porous walls play a significant role in influencing the flux within an elastic tube.  Salim et 
al., [13] claimed that the Homotopy Analysis Method proves to be a robust approach for solving the 
MHD Jeffery-Hamel flow in the presence of a high magnetic field. Its successful application 
demonstrates a noteworthy alignment between the analytical and numerical results. Soid et al., [14] 
deduced that microorganism profiles exhibit an increase as the aluminium alloy content in the upper 
branch increases. Conversely, they show a decrease when both the upper and lower branches have 
an increased titanium alloy content. Baker and Soid [15] presented the analysis of Heat Transfer Over 
an Exponentially Stretching/Shrinking Vertical Sheet in a Micropolar Fluid with a Buoyancy Effect and 
concluded that the velocity profile at the vertical plate increases with an increase in buoyancy force 
but decreases when micropolar effects are considered. 

Shamshuddin et al., [16] studied radiative Casson nanofluid flow via bidirectional stretching 
surface in the presence of bilateral reactions concluded that velocity of the nanofluid enhances with 
a higher stretching parameter and decreases with increasing Casson parameter, particularly in the 
horizontal x and y directions. Additionally, the skin friction coefficients decrease as the Casson 
parameter values increase, while maintaining specified magnetic parameter values. Ahmed et al., 
[17] provide the analysis that involves a biaxial extending sheet with anisotropic slip conditions and 
discusses entropy/Bejan analysis within the context of a three-dimensional boundary layer of a 
hybrid nanofluid.   

Shamshuddin et al., [18] used a semi-analytical Chebyshev collocation scheme (CCS) is used to 
provide solutions of bioconvective treatment applied to a reactive Casson hybrid nanofluid flow 
passing over an exponentially stretching sheet. Salawu et al., [19] presented the analysis of Entropy 
generation and current density of tangent hyperbolic of some hybridized electromagnetic nanofluid 
with thermal power application and established that minimizing thermal irreversibility is achieved by 
increasing the values of the electric field loading and magnetic field. However, entropy generation is 
promoted with variations in the Eckert number. Shamshuddin et al., [20] carried out the analysis of 
thermal Péclet number, vortex viscosity, and Reynolds number on two-dimensional flow of 
micropolar fluid through a channel due to mixed convection and deduced that microrotation velocity 
of a micropolar fluid exhibits both maximum and minimum values. The thermal and solutal properties 
of this micropolar fluid have a significant impact on heat and mass transport rates, particularly in the 
context of mixed convection and buoyancy parameter effects, which enhance local heat transfer at 
the surface. 

Cao et al., [21] conducted an analysis of a fractional Oldroyd-B fluid confined between two coaxial 
cylinders containing gold nanoparticles. Their findings suggest that when the system is subjected to 
a strong magnetic field, it leads to an increase in heat transfer while simultaneously reducing the 
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system's velocity profile. Asjad et al., [22] investigated Fractional Partial Differential Equations for 
MHD Casson Fluid Flow involving innovative ternary nanoparticles. They concluded that the model 
based on ternary nanoparticles is a more robust approach compared to hybrid and mono 
nanoparticles. Furthermore, they found that an increase in temperature and velocity can be achieved 
with larger values of fractional parameters. 

Yasir et al., [23] investigated the thermal and solutal transport rates, considering the Dufour and 
Soret effects in the flow of Oldroyd-B fluid around a stretching horizontal cylinder. Their study also 
considered the influence of thermophoresis particle deposition. They obtained a normalized form of 
the equations through similarity transformations and subsequently solved them analytically using 
the homotopy analysis approach in Mathematica. In other investigation, Yasir et al., [24] examined 
the flow of Oldroyd-B nanofluid within a non-inertial frame, taking inspiration from the Cattaneo-
Christov theory. They concluded that the thermal and solutal relaxation factors have a dampening 
effect on temperature and concentration distributions. Furthermore, due to the inclusion of elastic 
effects, they observed that the hydrodynamic boundary layer becomes thinner.  

Finite difference approach is adopted by the numerous researchers [25-27] because of its 
advantage of using a uniform/non-uniform step size is that it simplifies the discretization process. 
Derivative approximations and difference equations are generally easier to formulate and implement 
when the grid is uniform. Uniform step sizes are often chosen when the geometry of the problem or 
the behaviour of the physical phenomena being modelled is relatively simple and regular. Finite 
difference method plays a crucial role in numerical simulations, modelling physical phenomena, and 
solving differential equations in diverse fields, making it an indispensable tool for modern scientific 
and engineering endeavours and utilized by numerous researchers [28-32] to simulate the different 
flow models.  

In conclusion after the above-mentioned literature review, the motivation to study the 
magnetized flow of Oldroyd-B fluid over a bidirectional moving surface in the presence of Joule 
heating stems from its practical significance, its potential to advance various scientific fields, and its 
relevance in optimizing industrial processes. This research area promises to yield valuable insights 
and solutions that can have a far-reaching impact on both academia and industry. The flow is initiated 
by the uniform motion of a bidirectional stretched surface, and the resulting stagnation point pattern 
is modelled and investigated. A solution is obtained from transform ordinary differential equations 
using finite difference numerical techniques by discretizing the domain into a mesh of uniform grids. 
Finally, a comprehensive graphical analysis will be presented for the parameters under consideration. 
 
2. Mathematical Formulation 
 

Here, it is assumed that the flow of three-dimensional and one-directional magneto-
hydrodynamic Oldroyd-B fluid and the transfer of heat over an impermeable stretching sheet at 𝑧 =
0. Constant magnetic field of strength 𝐵0 is applied perpendicular to the direction of the flow. The 
temperature and velocity of stretching sheet is 𝑇𝑤(𝑥) = 𝑑𝑥, with 𝑑 >  0 and 𝑢𝑤(𝑥) = 𝑎𝑥, with 𝑎 >
0 respectively. The external velocity of stretching sheet 𝑢𝑒(𝑥) = 𝑐𝑥, with 𝑐 > 0 and attains uniform 
temperature 𝑇∞ far away from the sheet. The geometry of considered problem is displayed in Figure 
1.  
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Fig. 1. Bi- dimensional flow geometry 

 
The Cauchy stress tensor is provided in Eq. (1) which addressed as for Oldroyd-B model is taken 

from Sajid et al., [32] is  
 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝑆𝑖𝑗 (1) 

 

In which 𝛿𝑖𝑗 highlights are identity tensor components and  𝑆𝑖𝑗 shows components of extra stress 
tensor, where 𝑆 satisfies the following mathematical relation is provided in Eq. (2) given as; 

 

(1 + Λ1
𝐷

𝐷𝑡
) 𝑆𝑖𝑗 = 𝜇 (1 + Λ2

𝐷

𝐷𝑡
) 𝐴1

𝑖𝑗, (2) 

 

In the Eq. (2), Λ1is the relaxation time, 𝐴1
𝑖𝑗 be the Rivlin-Ericksen tensor and 𝐷 𝐷𝑡⁄  be the 

contravariant convective derivative. 
For contravariant vector, 

 
𝐷𝑏𝑖

𝐷𝑡
=

𝜕𝑏𝑖

𝜕𝑡
+ 𝑣𝑟𝑏𝑖

,𝑟 − 𝑣𝑖
,𝑟𝑏𝑟, (3) 

 
For contravariant tensor of rank 2 it gives 
 

𝐷𝑏𝑖𝑗

𝐷𝑡
=

𝜕𝑏𝑖𝑗

𝜕𝑡
+ 𝑣𝑟𝑏𝑖𝑗

,𝑟 − 𝑣𝑖
,𝑟𝑏𝑟𝑗 − 𝑣𝑗

,𝑟𝑏𝑖𝑟,  (4) 

 
Therefore ˊˊ, ˋˋ denotes the covariant derivative, for cartesion coordinates it converted as the 

usual partial derivative and  𝑣𝑖are the velocity components. 
 
By law of conservation of mass for incompressible fluids is provided in Eq. (5) given as; 
 

 𝑣𝑖
,𝑖 = 0, (Equation of continuity) (5) 

 
and law of conservation of momentum for present flow model is provided in Eq. (6) 
 

𝜌𝑎𝑖 = 𝜏𝑖𝑗
,𝑗 + 𝜌𝑏𝑖 + 𝜌𝑔𝛽(𝑇 − 𝑇∞), (Momentum equation) (6) 

 

Here 𝜌 is fluid density and 𝑎𝑖  is the acceleration vector defined is provided in Eq. (7) as; 
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𝑎𝑖 =
𝜕𝑎𝑖

𝜕𝑡
+ 𝑣𝑟𝑣𝑖

,𝑟, (7) 

 

By applying the operator (1 + Λ1
𝐷

𝐷𝑡
) on Eq. (6), we get 

 

𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑎𝑖 = (1 + Λ1

𝐷

𝐷𝑡
) 𝜏𝑖𝑗

,𝑗 + 𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑏𝑖 + 𝜌 (1 + Λ1

𝐷

𝐷𝑡
) 𝑔𝑖𝛽(𝑇 − 𝑇∞), (8) 

 
Using Eq. (1) in Eq. (8), we get 
 

𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑎𝑖 = (1 + Λ1

𝐷

𝐷𝑡
) (−𝛿𝑖𝑗𝑝,𝑗) + {(1 + Λ1

𝐷

𝐷𝑡
) 𝑆𝑖𝑗}

,𝑗
+ 𝜌 (1 + Λ1

𝐷

𝐷𝑡
) 𝑏𝑖 +

𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑔𝑖𝛽(𝑇 − 𝑇∞),  

(9) 

 
where in obtaining Eq. (9), it is assumed that by Harris [1] 
 

(
𝐷

𝐷𝑡
)

,𝑗 
= 0 (10) 

 
Using Eq. (2) in Eq. (9), we get 
 

𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑎𝑖 = (1 + Λ1

𝐷

𝐷𝑡
) (−𝛿𝑖𝑗𝑝,𝑗) + {𝜇 (1 + Λ2

𝐷

𝐷𝑡
) 𝐴1

𝑖𝑗

}
,𝑗

+  𝜌 (1 + Λ1
𝐷

𝐷𝑡
) 𝑏𝑖 +

(1 + Λ1
𝐷

𝐷𝑡
) 𝑔𝑖𝛽(𝑇 − 𝑇∞), 

(11) 

 
Again using Eq. (10), Eq. (11) becomes 
 

𝜌 (𝑎𝑖 + 𝛬1
𝐷𝑎𝑖

𝐷𝑡
) = − (𝛿𝑖𝑗𝑝,𝑗 + 𝛬1

𝐷𝛿𝑖𝑗𝑝,𝑗

𝐷𝑡
) + 𝜇 (𝐴1,𝑗

𝑖𝑗 + 𝛬2
𝐷𝐴1,𝑗

𝑖𝑗

𝐷𝑡
) + 𝜌 (𝑏𝑖 + 𝛬1

𝐷𝑏𝑖

𝐷𝑡
) +

[𝑔𝑖𝛽(𝑇 − 𝑇∞) + 𝛬1
𝐷

𝐷𝑡
(𝑔𝑖𝛽(𝑇 − 𝑇∞))], 

(12) 

 
For steady flow, the components of velocity are defined as 
 

𝜐1 = 𝑢(𝑥 , 𝑦, 𝑧),      𝜐2 = 𝜐(𝑥 , 𝑦, 𝑧 ),       𝜐3 = 𝑤(𝑥 , 𝑦, 𝑧 ). (13) 

 
Applying order of magnitude analysis, the boundary layer flow is governed by Eq. (12) and 
 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝜐

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −𝛬1 (𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝜐2 𝜕2𝑢

𝜕𝑦2 + 𝑤2 𝜕2𝑢

𝜕𝑧2 + 2𝑢𝜐
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑢

𝜕𝑦𝜕𝑧
+

2𝑢𝑤
𝜕2𝑢

𝜕𝑥𝜕𝑧
) + 𝑐2𝑥 + 𝜈

𝜕2𝑢

𝜕𝑧2 + 𝜈𝛬2 (𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑧2 + 𝑣
𝜕3𝑢

𝜕𝑦𝜕𝑧2 + 𝑤
𝜕3𝑢

𝜕𝑧3 −
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑧2 −
𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑧2 −
𝜕𝑢

𝜕𝑧

𝜕2𝑤

𝜕𝑧2 ) +

𝜎𝐵2
0

𝜌
[𝑐𝑥 − 𝑢 − 𝛬1𝑤

𝜕𝑢

𝜕𝑧
] + 𝑔𝛽 [(𝑇 − 𝑇∞ ) + 𝛬1 (𝑢

𝜕𝑇

𝜕𝑥
− (𝑇 − 𝑇∞ )

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
)], 

(14) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −𝛬1 (𝑢2 𝜕2𝑣

𝜕𝑥2 + 𝑣2 𝜕2𝑣

𝜕𝑦2 + 𝑤2 𝜕2𝑣

𝜕𝑧2 + 2𝑢𝑣
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧
+

2𝑢𝑤
𝜕2𝑣

𝜕𝑥𝜕𝑧
) + 𝑐2𝑥 + 𝜈

𝜕2𝑢

𝜕𝑧2 + 𝜈𝛬2 (𝑢
𝜕3𝑣

𝜕𝑥𝜕𝑧2 + 𝑣
𝜕3𝑣

𝜕𝑦𝜕𝑧2 + 𝑤
𝜕3𝑣

𝜕𝑧3 −
𝜕𝑣

𝜕𝑥

𝜕2𝑣

𝜕𝑧2 −
𝜕𝑣

𝜕𝑦

𝜕2𝑣

𝜕𝑧2 −
𝜕𝑣

𝜕𝑧

𝜕2𝑤

𝜕𝑧2 ) +

𝜎𝐵2
0

𝜌
(𝑐𝑥 − 𝑣 − 𝛬1𝑤

𝜕𝑣

𝜕𝑧
) + 𝑔𝛽 [𝛬1(𝑇 − 𝑇∞)

𝜕𝑣

𝜕𝑥
], 

(15) 
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The energy equation is 
 

𝑢
𝜕𝑇

𝜕𝑥
+  𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
 =  

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑧2 +  
𝜇

𝜌𝑐𝑝
(

𝜕𝑢

𝜕𝑧
)

2

,  (16) 

 
The boundary conditions of the flow problem are  
 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥, 𝑣 = 𝑣𝑤(𝑦) = 𝑏𝑦,   𝑤 = 0, 𝑇 = 𝑇𝑤(𝑥, 𝑦) = 𝑇∞ + 𝑑𝑥𝑦   at   𝑧 = 0, (17) 

𝑢 → 0, 𝑣 → 0,
𝜕𝑢

𝜕𝑧
→ 0,

𝜕𝑣

𝜕𝑧
→ 0, 𝑇 = 𝑇∞ 𝑎𝑠 𝑧 → ∞.  (18) 

 
where 𝑢, 𝑣 & 𝑤 are components of the velocity, 𝜈 is the kinematic viscosity, 𝛬1 is the relaxation time, 
 𝛬2 is the retardation time, 𝑔 is the gravitational acceleration, 𝛽 is the coefficient of thermal 
expansion, 𝑐𝑝 specific heat, 𝑘 Thermal diffusivity and 𝑇 is the temperature of the fluid. Now, applying 

similarity transformation for a stretching flow provided in Ref. [33] 
 

𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = 𝑎𝑦𝑔′(𝜂), 𝑤 = −(𝑎𝜈)1 2⁄ [𝑓(𝜂) + 𝑔(𝜂)], 𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜂 = √

𝑎

𝜈
𝑧  (19) 

 
The governing equations representing in Eq. (14) to Eq. (16) of the considered flow model are  
 

𝑓′′′ − 𝑓′2
+ (𝑓 + 𝑔)𝑓′′ +

𝑐2

𝑎2 + 𝜆1(2(𝑓 + 𝑔)𝑓′𝑓′′ − (𝑓 + 𝑔)2𝑓′′′ + 𝐴𝑟𝜃𝑔′) + 𝜆2 ((𝑓′′ +

𝑔′′)𝑓′′ − (𝑓 + 𝑔)𝑓𝑖𝑣) + 𝑀2 (
𝑐

𝑎
− 𝑓′ + 𝜆1(𝑓 + 𝑔)𝑓′′) + 𝐴𝑟(𝜃 − 𝜆1(𝑓 + 𝑔)𝜃′) = 0 ,  

(20) 

𝑔′′′ − 𝑔′2
+ (𝑓 + 𝑔)𝑔′′ +

𝑐2

𝑎2 + 𝜆1(2(𝑓 + 𝑔)𝑔′𝑔′′ − (𝑓 + 𝑔)2𝑔′′′) + 𝜆2 ((𝑓′′ + 𝑔′′)𝑔′′ −

(𝑓 + 𝑔)𝑔𝑖𝑣) + 𝑀2 (
𝑐

𝑎
− 𝑔′ + 𝜆1(𝑓 + 𝑔)𝑔′′) = 0.  

(21) 

𝜃′′ + 𝑃𝑟((𝑓 + 𝑔)𝜃′ − (𝑓′ + 𝑔′)𝜃) + 𝑃𝑟𝐸𝑐𝑓′′2 = 0, (22) 

 
And the boundary conditions resenting in Eq. (17) and Eq. (18) takes the form 
 

𝑓 = 0, 𝑓′ = 1,  𝑔 = 0,     𝑔′ =
𝑏

𝑎
, 𝜃 = 1 as 𝜂 → 0.  (23) 

𝑓′ =
𝑐

𝑎
, 𝑓′′ = 0, 𝑔′ =

𝑐

𝑎
,   𝑔′′ = 0,     𝜃 = 0 as 𝜂 → ∞.  (24) 

 
Note that, prime signifies derivative w.r.t to 𝜂,  𝜆1 = 𝛬1𝑎, 𝜆2 = 𝛬2𝑎 the fluid parameters, 𝐴𝑟 =

𝐺𝑟 𝑅𝑒2⁄  is the Archimedes number, 𝐺𝑟 = 𝑔𝛽𝑑 𝜈2⁄  is the Grashof number, 𝑅𝑒 = 𝑎 𝜈⁄  is the Reynolds 

number, 𝑀2 = 𝜎𝐵0
2 𝑎𝜌⁄  is the Hartmann number, 𝑃𝑟 = 𝜇𝑐𝑝/𝑘 is the Prandtl number and 𝐸𝑐 =

𝑎2𝑥/𝑑𝑦𝑐𝑝 is the Eckert number. 

 
3. Solution Methodology 
 

The numerical method of boundary layer problem consisting of Eq. (20) - Eq. (22) with Eq. (23) 
and Eq. (24) are multiple uniform gridded by using (FDM). By and large there are two courses of 
action to solve boundary flow problems. The first one is coordinate transformation e.g. 𝜉 =
1 (𝑛 + 1)⁄ is used to transform the semi-infinite physical domain 𝜂 𝜖 [0, ∞) to a finite calculation 
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domain  𝜉 𝜖 [0,1]. In the present problem, due to the boundary condition 𝑓′ =
𝑐

𝑎
    𝑎𝑠 𝜂 → ∞, which 

relent 𝑓′ → ∞ as  𝜂 → ∞,  in case of 𝑐 ≠ 0, a numerical approximation up to → ∞ is not possible. So, 
method of coordinate transformation is not used. The second is method of truncating of semi-infinite 
domain to obtained indefinite solution. In this method the semi-infinite domain  𝜂 𝜖 [0, ∞)  is 
replaced by finite domain 𝜂 𝜖 [0, 𝐿], the boundary condition at 𝜂 → ∞ carry out  𝑎𝑠 𝜂 = 𝐿. We choose 
𝐿 in such a manner that there is no change in solution when increase the value of 𝐿.We have in view 
to find the numerical solution of Eq. (20) - Eq. (22) which are non-linear equations. We cannot used 
finite difference method for a finite domain 𝜖[0, 𝐿]. . Let us describe an iterative procedure determine 

a sequence of functions 𝑓(0)(𝜂), 𝑓(1)(𝜂), 𝑓(2)(𝜂), 𝑓(3)(𝜂), 𝑓(4)(𝜂), . . .  and 𝑔(0)(𝜂), 𝑔(1)(𝜂), 𝑔(2)(𝜂), 

𝑔(3)(𝜂), 𝑔(4)(𝜂), … and  𝜃(0)(𝜂), 𝜃(1)(𝜂), 𝜃(2)(𝜂), 𝜃(3)(𝜂), 𝜃(4)(𝜂), . . . in the following manner. We 

choose 𝑓(0)(𝜂), 𝑔(0)(𝜂) and 𝜃(0)(𝜂) as an initial guess, then calculating the remaining successively 
term, from the following iterative formula 

 

𝑓′′′(𝑛+1) − 𝑓′(𝑛)
𝑓′(𝑛+1) + 𝑓(𝑛)𝑓′′(𝑛+1)

+ 𝑔(𝑛)𝑓′′(𝑛+1)
+

𝑐2

𝑎2 + 𝜆1 (2𝑓(𝑛)𝑓′(𝑛)
𝑓′′(𝑛+1)

+

2𝑔(𝑛)𝑓′(𝑛)
𝑓′′(𝑛+1)

− 𝑓(𝑛)2𝑓′′′(𝑛+1)
− 𝑔(𝑛)2𝑓′′′(𝑛+1)

− 2𝑓(𝑛)𝑔(𝑛)𝑓′′′(𝑛+1)
) +

𝜆2 (𝑓′′(𝑛)𝑓′′(𝑛+1) + 𝑓′′(𝑛+1)𝑔′′(𝑛+1) − 𝑓(𝑛)𝑓𝑖𝑣(𝑛+1)
− 𝑔(𝑛)𝑓𝑖𝑣(𝑛+1)

) + 𝑀2 (
𝑐

𝑎
− 𝑓′(𝑛+1)

+

𝜆1𝑓(𝑛)𝑓′′(𝑛+1)
+ 𝜆1𝑔(𝑛)𝑓′′(𝑛+1)

) + 𝐴𝑟 (𝜃(𝑛) − 𝜆1𝑓(𝑛)𝜃′(𝑛+1)
− 𝜆1𝑔(𝑛)𝜃′(𝑛+1)

) = 0,  

(25) 

𝑔′′′(𝑛+1) − 𝑔′(𝑛)
𝑔ˋ(𝑛+1) + 𝑓(𝑛)𝑔′′(𝑛+1)

+ 𝑔(𝑛)𝑔′′(𝑛+1)
+

𝑐2

𝑎2 + 𝜆1 (2𝑓(𝑛)𝑔′(𝑛)
𝑔′′(𝑛+1)

+

2𝑔(𝑛)𝑔′(𝑛)
𝑔′′(𝑛+1)

− 𝑓(𝑛)2𝑔′′′(𝑛+1)
− 𝑔(𝑛)2𝑔′′′(𝑛+1)

− 2𝑓(𝑛)𝑔(𝑛)𝑔′′′(𝑛+1)
) +

𝜆2 (𝑓′′(𝑛+1)𝑔′′(𝑛+1) + 𝑔′′(𝑛)𝑔′′(𝑛+1) − 𝑓(𝑛)𝑔𝑖𝑣(𝑛+1)
− 𝑔(𝑛)𝑔𝑖𝑣(𝑛+1)

) + 𝑀2 (
𝑐

𝑎
− 𝑔′(𝑛+1)

+

𝜆1𝑓(𝑛)𝑔′′(𝑛+1)
+ 𝜆1𝑔(𝑛)𝑔′′(𝑛+1)

) = 0,  

(26) 

𝜃′′(𝑛+1) + 𝑃𝑟 (𝑓(𝑛)𝜃′(𝑛+1)
+ 𝑔(𝑛)𝜃′(𝑛+1) − 𝑓′(𝑛+1)𝜃(𝑛) − 𝑔′(𝑛+1)𝜃(𝑛)) +

𝑃𝑟𝐸𝑐𝑓′′(𝑛)𝑓′′(𝑛+1) = 0. 
(27) 

 
With the boundary conditions 
 

𝑓(𝑛) = 0, 𝑓′(𝑛+1)
= 1, 𝑔(𝑛) = 0, 𝑔′(𝑛+1)

=
𝑏

𝑎
, 𝜃(𝑛) = 1 as 𝜂 → 0  (28) 

𝑓(𝑛+1) =
𝑐

𝑎
, 𝑓′′(𝑛+1)

= 0, 𝑔(𝑛+1) =
𝑐

𝑎
, 𝑔′′(𝑛+1)

= 0 𝜃(𝑛) = 1 as 𝜂 → 𝐿  (29) 

 
Which make over three linear differential equations for each iteration step 𝑛 + 1 and might be 
numerically solved by applying finite difference method. It has easy to evince that if the indices 
(𝑛) & (𝑛 + 1) are withdrawn, the differential Eq. (25) - Eq. (27) in contact with the original 
differential equations Eq. (20) - Eq. (22) with boundary condition if (𝐿 →  ∞). Applying central 
difference formulas of derivatives, Eq. (25) - Eq. (29) its becomes.  
 

[
𝑓𝑖+2−2𝑓𝑖+1+2𝑓𝑖−1−𝑓𝑖−2

2ℎ3
]

(𝑛+1)

− [
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛)

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛+1)

+ 𝑓𝑖
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2
]

(𝑛+1)

+

𝑔𝑖
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

+
𝑐2

𝑎2 + 𝜆1 (2𝑓𝑖
(𝑛)

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

+

2𝑔𝑖
(𝑛)

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2
]

(𝑛+1)

− 𝑓𝑖
(𝑛)2 [

𝑓𝑖+2−2𝑓𝑖+1+2𝑓𝑖−1−𝑓𝑖−2

2ℎ3
]

(𝑛+1)

−

(30) 
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𝑔𝑖
(𝑛)2

[
𝑓𝑖+2−2𝑓𝑖+1+2𝑓𝑖−1−𝑓𝑖−2

2ℎ3 ]
(𝑛+1)

− 2𝑓𝑖
(𝑛)

𝑔𝑖
(𝑛)

[
𝑓𝑖+2−2𝑓𝑖+1+2𝑓𝑖−1−𝑓𝑖−2

2ℎ3 ]
(𝑛+1)

) +

𝜆2 ([
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

+ [
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

−

𝑓𝑖
(𝑛)

[
𝑓𝑖+2−4𝑓𝑖+1+6𝑓𝑖−4𝑓𝑖−1+𝑓𝑖−2

ℎ4 ]
(𝑛+1)

− 𝑔𝑖
(𝑛)

[
𝑓𝑖+2−4𝑓𝑖+1+6𝑓𝑖−4𝑓𝑖−1+𝑓𝑖−2

ℎ4 ]
(𝑛+1)

) +

𝑀2 (
𝑐

𝑎
− [

𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛+1)

+ 𝜆1𝑓𝑖
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

+ 𝜆1𝑔𝑖
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

) +

𝐴𝑟 (𝜃𝑖
(𝑛)

− 𝜆1𝑓𝑖
(𝑛)

[
𝜃𝑖+1−𝜃𝑖−1

2ℎ
]

(𝑛+1)

−𝜆1𝑔𝑖
(𝑛)

[
𝜃𝑖+1−𝜃𝑖−1

2ℎ
]

(𝑛+1)

) = 0,   

[
𝑔𝑖+2−2𝑔𝑖+1+2𝑔𝑖−1−𝑔𝑖−2

2ℎ3
]

(𝑛+1)

− [
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛)

[
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛+1)

+ 𝑓𝑖
(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2
]

(𝑛+1)

+

𝑔𝑖
(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

+
𝑐2

𝑎2 + 𝜆1 (2𝑓𝑖
(𝑛)

[
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

+

2𝑔𝑖
(𝑛)

[
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

− 𝑓𝑖
(𝑛)2

[
𝑔𝑖+2−2𝑔𝑖+1+2𝑔𝑖−1−𝑔𝑖−2

2ℎ3 ]
(𝑛+1)

−

𝑔𝑖
(𝑛)2 [

𝑔𝑖+2−2𝑔𝑖+1+2𝑔𝑖−1−𝑔𝑖−2

2ℎ3
]

(𝑛+1)

− 2𝑓𝑖
(𝑛)

𝑔𝑖
(𝑛)

[
𝑔𝑖+2−2𝑔𝑖+1+2𝑔𝑖−1−𝑔𝑖−2

2ℎ3
]

(𝑛+1)

) +

𝜆2 ([
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

+ [
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

−

𝑓𝑖
(𝑛)

[
𝑔𝑖+2−4𝑔𝑖+1+6𝑔𝑖−4𝑔𝑖−1+𝑔𝑖−2

ℎ4 ]
(𝑛+1)

− 𝑔𝑖
(𝑛)

[
𝑔𝑖+2−4𝑔𝑖+1+6𝑔𝑖−4𝑔𝑖−1+𝑔𝑖−2

ℎ4 ]
(𝑛+1)

) +

𝑀2 (
𝑐

𝑎
− [

𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛+1)

+ 𝜆1𝑓𝑖
(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

+ 𝜆1𝑔𝑖
(𝑛)

[
𝑔𝑖+1−2𝑔𝑖+𝑔𝑖−1

ℎ2 ]
(𝑛+1)

) = 0,  

(31) 

[
𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

ℎ2 ]
(𝑛+1)

+ 𝑃𝑟 (𝑓𝑖
(𝑛)

[
𝜃𝑖+1−𝜃𝑖−1

2ℎ
]

(𝑛+1)

+ 𝑔𝑖
(𝑛)

[
𝜃𝑖+1−𝜃𝑖−1

2ℎ
]

(𝑛+1)

−

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛+1)

𝜃𝑖
(𝑛)

− [
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛+1)

𝜃𝑖
(𝑛)

) +

𝑃𝑟𝐸𝑐 [
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛)

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

= 0,  

(32) 

 
where 𝑖 = 1,2,3, … , 𝑀 

 

 
Boundary conditions becomes 
 

𝑓𝑖
(𝑛)

= 0,

[
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛+1)

=
𝑏

𝑎
,

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛+1)

= 1,

𝑔𝑖
(𝑛)

= 0,
𝜃𝑖

(𝑛)
= 1, as 𝜂 → 0}  (33) 

[
𝑓𝑖+1−𝑓𝑖−1

2ℎ
]

(𝑛+1)

=
𝑐

𝑎
,

[
𝑔𝑖+1−𝑔𝑖−1

2ℎ
]

(𝑛+1)

=
𝑐

𝑎
,

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

= 0,

[
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ]
(𝑛+1)

= 0,
𝜃𝑖

(𝑛)
= 0 as 𝜂 → 𝑀.}  (34) 

 
The iterative scheme starts with the simulation with the following initial guess, 
 

𝑓𝑗
(𝑛)

=
(1 2⁄ )[(𝑐 𝑎⁄ ) − 1]𝜂𝑗

2

𝜂𝑀
+ 𝜂𝑗 , 𝑔𝑗

(𝑛)
=

(1 2⁄ )[(𝑐 𝑎⁄ ) − 1]𝜂𝑗
2

𝜂𝑀
+ 𝜂𝑗 , 𝜃𝑗

(𝑛)
=

𝜂𝑀 − 𝜂𝑗

𝜂𝑀

 (35) 

 
Which fulfil the boundary conditions. Now, an algebraic system of equations is solved by Gaussian 
elimination method at cross section (𝑦𝜖[0, 𝐿]). 
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4. Results and Discussion 
 

In the recent exploration, our aim is to explicate the characteristics of mixed convection 
stagnation point flow of MHD of an Oldroyd-B fluid and study the physical behavior of the flow and 
transfer of heat. The numerical course of action described in the preceding portion for solving the 
governing equation of the problem is pretended by using our own built code in MATLAB & FORTRAN. 

The profiles of velocity 𝑓′(𝜂), 𝑔′(𝜂), and temperature 𝜃′(𝜂) are plotted in graphs to examine the 
influences of involving parameters, for example, dimensionless retardation/relaxation times (𝜆1, 𝜆2 
), Hartman number 𝑀, the correspondences b/w external rate flow and stretching ratio 𝑎 ⁄ 𝑐, the 
Archimedes number 𝐴𝑟, Prandtl number 𝑃𝑟 and the Eckert number 𝐸𝑐. The physical behavior of 
temperature distribution 𝜃(𝜂) when several values of Eckert number 𝐸𝑐 is considered keeping 𝑃𝑟 =
0.7, 𝐴𝑟 = 0.1 , 𝑐/𝑎 = 0.2, 𝑀 = 0.2, 𝜆1 = 0.2, 𝜆2 = 0.2 is shown in Table 1. Figure 2(a)-(c), describes 
the behavior of velocity profile 𝑓′(𝜂), 𝑔′(𝜂) of an Oldroyd-B fluid and temperature distribution 𝜃(𝜂) 
by taking different values of relaxation time 0.0, 0.5, 1.0, 2.0. The relaxation time for an Oldroyd-B 
fluid is a crucial parameter that characterizes the viscoelastic behavior of this fluid. Oldroyd-B fluids 
are often used to model viscoelastic materials like polymer melts or solutions. The relaxation time 
characterizes the viscoelastic behavior of these fluids and represents how quickly they return to their 
original state after being subjected to a sudden change in stress or deformation. These figures 
concert the opposite behavior of momentum boundary layer and thermal boundary layer 
thicknesses. The velocity profile 𝑓′(𝜂) and 𝑔′(𝜂) both behave alike when relaxation time gradually 
grows down. Momentum boundary layer thickness is decreasing because of the relaxation time. On 
the other hand, temperature distribution gradually grows as relaxation time 𝜆1 is going to be 
increased. 

 

 
(a) 

  

(b) (c) 
Fig. 2. Graphs of (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) and (c) Temperature distribution 
𝜃(𝜂)verses 𝜂  for different values of 𝜆1 
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Figure 3(a)-(c) explains the boundary layer and momentum layer thickness behavior for the 
different values of retardation time 𝜆2when relaxation time 𝜆1 = 0.2, 𝑐 𝑎⁄ = 0.2, 𝐴𝑟 = 0.1, 𝑃𝑟 =
0.7, 𝑀 = 0.5, 𝐸𝑐 = 0.1. It is noticed that 𝜆2 has different behaviour as compared to that of 𝜆1. 
Velocity and momentum boundary layer thickness is increased as the retardation time is raised. The 
momentum boundary layer thickness is maximum at 2.0 while the thermal boundary layer thickness 
minimum at 2.0. It has been observed that the temperature profile become weaker as well as larger 
retardation time 𝜆2. 
 

 
(a) 

 
 

(b) (c) 
Fig. 3. Graphs of (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) and (c) Temperature distribution 
𝜃(𝜂) verses 𝜂  for different values of 𝜆2 

 
In Figure 4(a)-(c), the dimensionless parameters 𝑃𝑟 = 0.7, 𝐸𝑐 = 0.1, 𝐴𝑟  = 0.1 and relaxation 

time 𝜆1 and retardation time 𝜆2 are kept constant. It is noticed that the various values of 𝑐 𝑎⁄  assign 
change in the temperature distribution 𝜃(𝜂). In momentum boundary layer thickness normally, if 

𝑐 𝑎 = 1⁄ , specifying the velocity 𝑓′(𝜂)and 𝑔′(𝜂) at a wall is the same as that the value aside from the 
wall, a deviation of the velocity from 𝑓′(𝜂) = 1 &𝑔′(𝜂) = 1 happens only inside the boundary layer 
close to the wall. It has been also noticed that the large value of stretching ratio 𝑐 𝑎⁄  affects the 
thermal boundary layer thickness. 
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(a) 

  
(b) (c) 

Fig. 4. Graphs of (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) and (c) Temperature distribution 
𝜃(𝜂) verses 𝜂  for different values of 𝑐/𝑎 

 
In Figure 5(a)-(b) when 𝑐 𝑎 = 0.2⁄  explained the result of Hartmann number 𝑀 on velocity 

field 𝑓′(𝜂)  & 𝑔′(𝜂). It is observed that the thickness of the momentum boundary layer is minimized 
as the value of 𝑀 is enhanced. This is because of magnetic field proffers a force which is known as 
the Lorentz force. As Lorentz force is a resistive force which produces a resistance in fluid motion. In 
Figure 5 (c), present the performance of the temperature profile affects by the different value of 𝑀 
when other parameters Prandt  𝑃𝑟 =  0.7, Eckert number 𝐸𝑐 =  0.1 Archimedesnumber𝐴𝑟 =
 0.1, 𝑎/𝑐 =  0.2, 𝜆1 = 0.2, 𝜆2 = 0.2 are being kept fixed. It is ceased that Thermal boundary layer 
thickness becomes thicker with the enhancement of 𝑀.  

 

 
(a) 
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(b) (c) 

Fig. 5. Graphs of (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) and (c) Temperature distribution 
𝜃(𝜂) verses 𝜂  for different values of 𝑀 

 
Figure 6(a)-(c) are represented to see the influence of Archimedes number 𝐴𝑟on velocity profile 

𝑓′(𝜂)  with respect to 𝜂. It shows that the temperature profile of Oldroyd-B fluid inclines by taking 
different values of Archimedes number = 0.0 −  0.9. It is observed that velocity 𝑓′(𝜂) goes down 

with an increment in the value of Archimedes number while 𝑔ˊ(𝜂) goes up as 𝐴𝑟 is enhanced. The 
thermal boundary layer thickness achieved the maximum value at 𝐴𝑟 = 0.9.  
 

 
(a) 

  
(b) (c) 

Fig. 6. Graphs of (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) and (c) Temperature distribution 
𝜃(𝜂) verses 𝜂  for different values of 𝐴𝑟 

 
Figure 7 & Figure 8 illustrated the influences of dimensionless relaxation/retardation 

times (𝜆1, 𝜆2) on the velocity components 𝑓′(𝜂) &  𝑔′(𝜂)  for several values of 𝑐 𝑎⁄ . In Figure 7(a)-(b) 
is quite clear that by increasing the value of relaxation time 𝜆1increases 𝑓′(𝜂)& 𝑔′(𝜂) the when 
𝑐/𝑎 > 1 , then the behavior of velocity 𝑓′(𝜂) and 𝑔′(𝜂) and 𝜆1 is opposite i.e. velocity increases 
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when an increase in relaxation time 𝜆1. When 𝜆1 increases in both cases 𝑐/𝑎 > 1 & 𝑐/𝑎 < 1, the 
boundary layer thickness is increased. Moreover, Figure 8(a)-(b) shows that the retardation time 𝜆2 
has an adverse effect on velocity 𝑓′(𝜂) & 𝑔′(𝜂) w.r.t relaxation time 𝜆1.  
 

 
 

(a) (b) 
Fig. 7. Influence of 𝜆1. on (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) verses 𝜂  for various values of  
𝑐

𝑎
 

 

  
(a) (b) 

Fig. 8. Influence of 𝜆2. on (a) Velocity profile 𝑓 ˊ(𝜂) (b) Velocity profile 𝑔ˊ(𝜂) verses 𝜂  for various values of  
𝑐

𝑎
 

 

Figure 9 illustrates the temperature distribution 𝜃(𝜂) in the presence of the Prandtl number. It 
confesses that the temperature of Oldroyd-B fluid stagnates by taking the different values of the 
Prandtl number between 0.7 and 7.0. It is concluded easily that both the thickness of the boundary 
layer and that of temperature are lessened because of increment in the respective value of Prandtl 
number. It is concluded that the maximum value of the temperature profile is attained at 0.7 when 
other parameters are constant. Prandtl number controls the momentum and thickness of the 
thermal boundary layer in the transfer of heat. When the Prandtl number is small, it shows that the 
thermal boundary layer thickness is large as compared velocity boundary layer thickness.  

The physical behavior of temperature distribution θ(η) when several values of Eckert number 𝐸𝑐 
is considered keeping 𝑃𝑟 = 0.7, 𝐴𝑟 = 0.1 , 𝑐/𝑎 = 0.2, 𝑀 = 0.2, 𝜆1 = 0.2, 𝜆2 = 0.2 is shown in 
Figure 10. The analysis reveals an intriguing relationship between the temperature of Oldroyd-B fluid 
and the Eckert number (𝐸𝑐). As the Eckert number increases, the temperature of the fluid also rises. 
This indicates that there is a direct proportionality between the energy dissipation at the surface 
(represented by the Eckert number) and the resultant increase in fluid temperature. Furthermore, 
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the graphical representation of the data demonstrates a specific trend: the thermal boundary layer 
thickness exhibits a minimum value when the Eckert number is at its lowest, which is 0.0. This 
observation suggests that when there is no energy dissipation at the surface (𝐸𝑐 =  0.0), the thermal 
boundary layer is at its thinnest. Conversely, as the Eckert number value increases, there is a 
noticeable enhancement in the thermal boundary layer thickness. This implies that greater energy 
dissipation at the surface leads to a thicker thermal boundary layer. The Eckert number, therefore, 
serves as a critical parameter influencing both temperature and thermal boundary layer 
characteristics in the context of Oldroyd-B fluid dynamics. 

 

  
Fig. 9. Graphs of temperature distribution 𝜃(𝜂)verses 
𝜂  for different values of 𝑃𝑟 

Fig. 10. Graphs of temperature distribution 
𝜃(𝜂) verses 𝜂  for different values of 𝐸𝑐 

 
Table 1 
Numerical values of −𝜃(0)for different values of 𝑃𝑟, 𝐴𝑟 and 𝐸𝑐 
𝑃𝑟 𝐴𝑟 𝐸𝑐 = 0.1 𝐸𝑐 = 0.5 𝐸𝑐 = 1.0 
0.7 1.0 1.0275 0.9313 0.8098 
1.5  1.5395 1.3647 1.1428 
3.0  2.2015 1.9116 1.5413 
5.0  2.8435 2.4319 1.9036 
7.0  3.3525 2.8392 2.1780 
10.0  3.9774 3.3344 2.5025 
100.0  10.566 8.4053 5.5371 
0.5 0.0 0.8753 0.8100 0.7285 
 0.2 0.8717 0.8049 0.7213 
 0.5 0.8664 0.7973 0.7107 
 1.0 0.8576 0.7846 0.6927 
 2.0 0.8404 0.7592 0.6560 
 3.0 0.8237 0.7336 0.6183 
 5.0 0.7921 0.6820 0.5383 

 
5. Conclusions 
 

The study delves into the behaviour of fluid, specifically Oldroyd-B fluid, in a three-dimensional 
space, examining its interaction with a magnetic field and mixed convection during stagnation point 
flow. Initially, the fundamental governing equations are introduced to describe this complex fluid 
dynamics scenario. Subsequently, the focus shifts to analysing the transfer of heat and the flow 
characteristics over a stretching sheet oriented in the 𝑥𝑦 −direction at the stagnation point. To 
facilitate the analysis, a crucial step involves employing similarity transformations, which enable the 
conversion of the partial differential equations (PDEs) governing the fluid dynamics into ordinary 
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differential equations (ODEs). This transformation simplifies the mathematical treatment of the 
problem, making it more amenable to numerical methods. The numerical solution is obtained using 
the finite difference method, coupled with an iterative technique, which allows for the practical 
computation of the problem's intricate details. The results are then presented graphically, utilizing 
graphs to illustrate the influence of various dimensionless parameters on the system's behaviour. 
Several key findings emerge from this analysis: 

 
i. It is observed that the thickness of the boundary layer increases with the retardation time.  

ii. The momentum and thermal boundary layer thicknesses decrease as the stretching ratio 
increases.  

iii. The magnetic field plays a crucial role in controlling the boundary layer thickness.  
iv. Heat transfer is inversely related to the Eckert number; as the Eckert number increases, heat 

transfer is reduced.  
v. An increase in the Prandtl number leads to a decrement in the temperature profile (η).  

 
This comprehensive analysis of fluid dynamics, heat transfer, and magnetic field effects over a 

stretching sheet yields valuable insights into the behaviour of Oldroyd-B fluid. The findings have 
practical implications for various engineering and scientific applications where understanding 
boundary layer characteristics and heat transfer processes is crucial. 
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