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The thermosolutal convection of non-Newtonian fluids under Soret and Dufour 
influences within an inclined square enclosure is explored. The active walls are subject 
to constant and uniform concentrations and temperatures. On the other hand, they 
are impermeable and adiabatic. A Carreau-Yasuda model is utilized to determine the 
fluid behavior. A special attention is paid to the impact of rheological parameters (𝑛, 
𝑎, 𝐸 and 𝑠), the thermal Rayleigh number 𝑅𝑎𝑇, Dufour number, 𝐷𝑓, Soret number, 𝑆𝑟, 

Lewis number, 𝐿𝑒, buoyancy ratio, 𝑁, and the inclination angel, 𝛾. The numerical 
findings are represented in terms thermal fields, iso-concentration, and viscosity 
apparent contours, and the influence of certain parameters on the variation of stream 
function, Nusselt and Sherwood numbers, and apparent viscosity is also inspected. The 
findings suggest that the rise of the time constant parameter, 𝐸, causes an increase in 
thermal and mass exchange for various power-law indices, 𝑛. The decrease of the of 
ratio of infinite-to zero-shear-rate viscosities, 𝑠, and parameter, 𝑎, enhances the both 
thermal and mass transfers. The rise of the orientation angel 𝛾 from 0° to 90° yields an 
increase in thermal and mass transfer, but without a specific pattern in the different 
parameters studied.  
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1. Introduction

The thermosolutal natural convection through enclosures with complex fluids is highly utilized in 
engineering or environmental applications such as; astrophysics, oceanography, and processing of 
food, geophysics, petrochemical, etc. [1-4]. The natural phenomenon of double diffusive convection 
was well documented and well mastered in the books [5-7]. Many authors inspected this 
phenomenon for Newtonian fluids, but with less focus on thermosolutal convection in complex fluids. 
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Performing a literature review up to date, several works on double diffusive convection resume 
interesting results. In square and rectangular enclosures, we can mention the work of Ohta et al., [8] 
for pseudo plastic fluids. Kim et al., [9] and Turan et al., [10] inspected the convection a square 
enclosure differentially heated from the vertical sides, while Pericleous [11] and Lamsaadi et al., [12] 
considered a cavity isothermally heated from the vertical sides. Lamsaadi et al., [12] performed a 
scaling analysis with a good agreement found with the computed findings and they derived a 

correlation for Nusselt number. Balmforth [13] study, the linear stability theory led to 𝑅𝑎𝑇𝐶
𝑠𝑢𝑝 = ∞, 

which meant that the system was unconditionally stable. These findings were the results of the 
unsuitability of the rheology model for very weak shear convective flow. Convective flow bifurcations 
from the rest state occurs at zero flow amplitude convection, therefore at zero shear-rate. Thus, any 
kind of bifurcation that occurs at zero shear-rate will not be detected by any power-law model that 
was suggested for high shear-rate. However, the results of the nonlinear model indicated the 
existence of a threshold for finite amplitude, and it was predicted numerically vs. the main 
parameters. The threshold of the subcritical convection could be physical as the flow at the onset of 
convection is of finite amplitude type. The study achieved by Benouared et al., [14] and Alloui and 
Vasseur [15] for Carreau-Yasuda fluids in a vertical cavity showed an important impact of the 
rheological parameters on the velocity, temperature and apparent viscosity variations within the 
enclosure. For inclined porous cavities, Kefayati et al., [16] reported that the increased Soret and 
Dufour parameters alter the thermal behavior of power-law fluids. Khechiba et al., [17] observed for 
Carreau-Yasuda fluids an important impact of the rheological parameters on the convective thermal 
exchange and flow behavior. Moreover, a significant influence was observed for the rheological 
parameters on the threshold for the onset of subcritical convective flow and Hopf bifurcation. Krishna 
and Reddy [18] utilized the Carreau-Yasuda model to examine the convection of power-law fluids 
through stumpy permeable porous medium. Wu et al., [19] examined the influence of rheological 
and physical parameters on the convection in a cylindrical enclosure. Khellaf and Lauriat [20] 
analyzed the impact of the apparent viscosity of a Carreau shear-thinning fluid on the onset of 
oscillatory flows. The inspection realized by Raisi [21] on the convection of a complex fluid in a cavity 
having a pair of baffles illustrated that the reduced flow index improves the natural convection within 
the enclosure. Shahmardan and Norouzi [22] reported in their study on the convection of a complex 
fluid in a duct with a cavity that the decreased flow behavior index yields an augmentation in the fully 
development length. The survey realized by Guha and Pradhan [23] on the thermal exchange for 
complex fluids on a horizontal plate claimed that the shear-thickening fluids have a significant 
thermal exchange against Newtonian and shear-thinning fluids. Kefayati [24] verified and proved the 
efficiency of the lattice Boltzmann method for solving the thermal exchange of molten polymers in 
cavities. For both square and rectangular cavities, Vinogradov et al., [25] observed the same 
hydrodynamic behavior for Newtonian and shear-thickening fluids, despite the clear difference in the 
thermal exchange rate for these fluids. Ben Khalifa et al., [26] reported that the onset of stationary 
convection of a dilatant fluid in cavities occurred at a critical Rayleigh number of zero. For a Carreau-
Yasuda fluid, Kefayati and Tang [27] remarked a gradual decrease in the rate of thermal and mass 
exchange with augmented power-law index within cubic cavities. Bihiche et al., [28] interested in the 
case of a horizontal rectangular enclosure. Other interesting works may be found in Refs. [29-31]. 
Lamsaadi et al., [32] reported that for a very high Rayleigh number, the Carreau and power-law 
models provide almost similar findings. 

This inspection focused on double-diffusive natural convection across an inclined square cavity 
filled with a Carreau-Yasuda fluid. Thermal and solutal boundary conditions of the Dirichlet type are 
set on the upper and bottom walls, while the other walls were assumed well insulated. An attempt 
is conducted to present further demonstration on the impact of different main parameters. 
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2. Mathematical Foundation 
 
The active walls of the studied enclosure are subjected to uniform temperature and 

concentration conditions, while the other walls are considered adiabatic. The enclosure, as show in 
Figure 1. 
 

  
                                                                      (a)                                                                               (b) 

Fig. 1. (a) Geometry of the physical problem; (b) Mesh generated. 

 
The flow behavior is modeled using the Carreau-Yasuda model, where the fluid density, 𝜌, varies 

linearly with the temperature and solutal concentration as: 
 

 0 0 01 ( ) ( )T CT T C C          
                                         (1) 

 
where 𝜌0 is the fluid mixture density at reference temperature 𝑇′ and 𝑇0

′ and solute fraction, 𝐶′ =
𝐶0

′  and, 𝛽𝑇 and 𝛽𝐶 are the thermal and concentration expansion coefficients, respectively. The 
subscript 0 refers to the reference condition at the origin of the coordinate system.  

The governing equations are [33]: 
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where 𝑢′ and 𝑣′ are the velocity components, 𝑃′ is the pressure, 𝑡′ is the time, 𝜇    is the fluid viscosity, 
𝜏𝑖𝑗 is the deviator stress tensor, 𝑔 is the gravitational acceleration, and 𝛼 and 𝐷 are the thermal and 

solutal diffusivities, respectively. The properties 𝐷𝑇𝐶  and 𝐷𝑆𝑇  are respectively the Dufour and the 
Soret diffusion coefficients. Utilizing the Carreau-Yasuda model [34-37], the viscosity, 𝜇, is varying as: 
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where 𝜇0 and 𝜇∞ are the fluid mixture viscosities at of the fluid at zero and infinity shear rates, 

respectively, 𝐸′ is the time characteristic of the fluid,  is the second invariant of the shear rate 
tensor, 𝑎 is a dimensionless parameter describing the transition region, and n (less than unity for the 
pseudo-plastic fluid) is the power-law exponent characterizing the shear-thinning regime (degree of 
shear-thinning). Typically, for shear-thinning fluids: 0.2˂𝑛˂1 and 0.1˂𝐸′˂100𝑠. 

The following scales were used: 
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As noted, the dimension of the fluid layer has been utilized as a typical size in Rayleigh-Bénard 

convection. The governing equations that inform the method activeness are uttered in cost of 
vorticity, 𝛺, temperature, 𝑇, concentration, 𝐶 and stream function, 𝛹, are obtained as follows: 
 

2( ) ( )
Pr 2

u v

t x y x x y y


      
  
        

        
        

                                                                                 (9) 

2 2

f

T T T
T D C

t y x x y

     
    

    
                                                                                                                       (10) 

1 2 2( )r

C C C
Le C S T

t y x x y

      
     

    
                                                                                                                       (11) 

 
and the vorticity, 𝛺, is characterized specified that: 
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The source term YΩ, in Eq. (9), is given by: 
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The apparent viscosity, 𝜇, namely: 
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The power law index, n, characterize the fluid behavior and 
2/E E H  is a dimensionless 

characteristic time of the fluid. The corresponding dimensionless thermal boundary conditions 
applied on the walls of the system are [38]:                                                                                                                                            
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while the thermal and solutal boundary conditions: 
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In Eqs. (9)-(13), one notice the presence of thermal Rayleigh number 𝑅𝑎𝑇, the Lewis number 𝐿𝑒, the 
buoyancy ration 𝑁, the Prandtl number, 𝑃𝑟, and Dufour, 𝐷𝑓, and Soret, 𝑆𝑟, parameters they are 

expressed as:  
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The local and average Nusselt and Sherwood numbers (Nu, Num) and (Sh, Shm), respectively, are 

given as: 
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3. Computations 
 

A second order finite difference method with a uniform grid size was utilized to solve the main 
equations. The discretized vorticity, energy and the concentration Eqs. (9-11) were solved using the 
alternative direction implicit method (ADI). The following convergence criterion was verified: 
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In this study, uniform mesh size was used for both x and y direction show that the numerical values 
of 𝛹0, 𝑁𝑢, 𝑁𝑢𝑚, 𝑆ℎ, 𝑆ℎ𝑚 and 𝜇 determined at the enclosure center. Preliminary tests showed the 
grid of 150×150 to be adequate to simulate accurately the convective and the reduced computational 
time. These results are presented in Table 1 has a value for different mesh size (50×50; 75×75; 
100×100; 150×150; and 200×200). 
 

Table 1 
Grid sensitivity study for 𝑅𝑎𝑇 = 104, 𝑃𝑟 = 10, 𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝐸 = 0.1,                                                 
𝑠 = 10−2,  𝑎 = 2 and 𝑆𝑟 = 𝐷𝑓 = 0. 

𝑁𝑥 × 𝑁𝑦 50 × 50 75 × 75 100 × 100 150 × 150 200 × 200 

𝜓0 13.712 13.530 13.596 14.326 14.320 
𝑁𝑢 3.761 3.535 3.584 3.819 3.816 
𝑁𝑢𝑚 2.878 2.771 2.821 2.952 2.955 
𝑆ℎ 9.637 7.917 8.105 9.111 9.106 
𝑆ℎ𝑚 6.394 5.722 5.854 6.378 6.375 
𝜇 0.260 0.261 0.261 0.261 0.261 

 
The numerical code was validation by comparing the present results against the experiment [39] 

and Plows [40] for a Newtonian fluid (𝑛 = 1), γ = 0°, 𝑆𝑟 = 𝐷𝑓 = 0, 𝑁 = 0   and variation value of 𝑅𝑎𝑇. 

The results in Table 2 compare the averaged Rayleigh number values and a good agreement is 
remarked. 
 

      Table 2  
      Comparison of Rayleigh number for a high Prandtl number. 

𝑅𝑎𝑇 Experiment 
[39] 

Plows 
[40] 

Present study Present study vs. 
Experiment [39] 

Present study vs Plows 
[40] 

2000 1.13 1.20 1.19 6.0% 0.8% 
2500 … 1.46 1.33 … 9.3 
3000 1.60 1.65 1.53 4.4 7.5 
5000 2.03 2.09 2.07 1.9 0.9 
6000 2.15 2.23 2.19 1.8 1.8 
8000 2.35 2.43 2.39 1.6 1.6 
10000 2.50 2.60 2.58 3.1 0.7 
20000 2.93 3.09 3.01 2.6 2.6 

 
4. Findings and Analysis 
 

The results of thermosolutal convection occurring in an inclined square cavity for 𝑃𝑟 = 10 are 
presented here. The findings are carried for different amounts of the Carreau-Yasuda parameters, 
namely, n, E, a, and s, 𝑅𝑎𝑇, Soret number, 𝑆𝑟, Dufour number, 𝐷𝑓, buoyancy ratio, 𝑁, Lewis number, 

𝐿𝑒, and inclined angel, 𝛾. Numerical results are obtained in range of: 0.4 ≤ 𝑛 ≤ 1, 0 ≤ 𝐸 ≤ 100, 0 ≤
𝑠 ≤ 1, 0.1 ≤ 𝑎 ≤ 2, −0.6 ≤ 𝐷𝑓 ≤ 0.6, -1 ≤ 𝑆𝑟 ≤ 1, 1 ≤ 𝐿𝑒 ≤ 50 , −1 ≤ 𝑁 ≤ 1 and 0° ≤ 𝛾 ≤

90°. 
Figure 2 presents the streamlines, isotherms, iso-concentration and viscosity apparent contours 

for 𝑛 = 0.4, 0.6, and 1. The decreased 𝑛 yields intensifies the flow patterns and increases the thermal 
magnitudes and iso-concentration on the hot wall, which means an enhancement in the convection 
process. As well as the fluid velocity, the viscosity decreases with decreasing of power-law index 
considerably. 

Figure 3 displays the flow patterns, 𝜓, isotherms, 𝑇, isoconcentration, 𝑆, and apparent viscosity, 
𝜇, contours for different time constant parameter, 𝐸, (1, 0.6 and 0). The flow patterns are considered 
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single-cell, filling the entire cavity. A certain value of the stream lines in the enclosure center shows 
that the increased parameter 𝐸 enlarges the vortices.  

 

 
Fig. 2. Respective presentation of (a) streamlines; (b) isotherms; (c) is-concentration; (d) apparent 
viscosity, for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝐸 = 0.1, 𝑎 = 2, 𝑠 = 10−2, and 𝛾 = 0°. 

 

 
Fig. 3. Respective presentation of (a) streamlines; (b) isotherms; (c) is-concentration; (d) apparent 
viscosity, for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝑎 = 2, 𝑠 = 10−2, 𝛾 = 0° and different time 
constant parameter, 𝐸.  

Moreover, the pattern is seen in the isotherms as they tilt toward the hot wall and their gradient 
increase slightly. The comparison between the iso-concentration demonstrates the rise of the 
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parameter 𝐸 from 0 to 1 reason the gradient of the iso-concentration on the hot wall to increase 
considerably. This means an improved mass exchange due to the augmented 𝐸. As the parameter 𝐸 
increases, the viscosity decreases. In addition, the fluid becomes very viscous with decreased 
parameters 𝐸.  

Figure 4 depicts the hydrodynamics, thermal fields, iso-concentration, and apparent viscosity. 
The flow patterns reveal an improvement in the convection process with decreased parameter 𝑠. In 
addition, the contours show that the density of iso-concentration on the hot wall increase with 
decreasing parameter 𝑠, which means an enhanced mass transfer. Furthermore, as the parameter 𝑠 
decreases, the apparent viscosity is reduced (𝑠 = 1, Newtonian fluid). 

Figure 5 displays streamlines, isotherms, is concentration, and apparent viscosity in different 
values of parameter 𝑎. The motion of the streamlines confirms the model become the elliptical shape 
of the flow patterns change into a circular shape, which shows that the convection process increases 
considerably with decreasing parameter 𝑎. The contours show that the density of iso-concentration 
on the hot wall increase with decreasing parameter 𝑎. Hence, the patterns confirm that mass transfer 
improves with decreasing parameter a. In fact, the both thermal and solutal gradient on the hot wall 
is augment with the decreasing in parameter 𝑎, indication an increase in convective thermal and 
mass exchange rates. As the parameter 𝑎 decrease, the apparent viscosity part fills almost the entire 
cavity, with the exception of a few small surrendered section near with walls. In fact, the viscosity is 
augment with parameter 𝑎 decrease. 
 

 
Fig. 4. Respective presentation of (a) streamlines; (b) isotherms; (c) is-concentration; (d) apparent viscosity, 
for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝑎 = 2, 𝑠 = 10−2, 𝛾 = 0° and different time constant 
parameter, 𝐸. 
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Fig. 5. Respective presentation of (a) streamlines; (b) isotherms; (c) is-concentration; (d) apparent viscosity, 
for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝐸 = 0.1, 𝑠 = 10−2, 𝛾 = 0° and different parameter, 𝑎. 

 
Figure 6 displays the Soret number, 𝑆𝑟, effect on the streamlines, isotherms, is concentrations 

and viscosity apparent, contours. The streamlines do not vary noticeably with improved Soret 
number. The circulation of the thin core in flow patterns develops a little with the advancement of 
the Soret number. There is no significant alteration into isotherms with the component of the Soret 
number. While the Soret number is added to the concentration equation. The important effectuate 
of 𝑆𝑟 observed in the isoconcentration gradient augment near the hot wall as the Soret number 
decrease from 𝑆𝑟 = 0.6 to -0.6, which leads to the increase in convective mass transfer. No significant 
change in isotherms is noted. The site alteration of apparent viscosity is not significantly noted for 
different values of Soret number, this alteration is observed according to the parameter used in this 
mode. 

Figure 7 resumes the Dufour effect, 𝐷𝑓, on the streamlines, thermal fields, is-concentrations and 

viscosity apparent contours. The flow is single-celled and fills the whole cavity; a cell rotation 
clockwise is observed. The specific vortex is enlarged and the gradient of isotherms is gradually 
augmented on the hot wall according to the augmented Dufour parameter. Also, an increase in the 
convection process and buoyancy force is observed due to the increase of the temperature. 
Moreover, the apparent viscosity increases with increased Dufour parameter from 𝐷𝑓 = −0.6 to 0.6. 

However, no significant impact of Dufour parameter on iso-concentrations is observed, where the 
iso-concentrations move toward the hot wall slightly. 

The profiles of apparent viscosity, 𝜇, across the enclosure at mid-width location (𝑥 = 0) are 

plotted in Figures 8(a)-8(d) for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. According 

to Eq. (14), it is seen that 𝜇 = 1 when 𝑛 = 1, 𝐸 = 0 and 𝑠 = 1, respectively. Upon decreasing the 
amounts of 𝑛 and 𝑠 or increasing those of 𝐸 and 𝑎, the shear-thinning effect becomes considerable 
near the walls or at the cavity center, reducing thus the fluid viscosity and owing to high shear-rates. 
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Fig. 6. Soret impacts on the (a) streamlines; (b) thermal fields; (c) iso-concentration; (d) viscosity apparent, 
for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝐸 = 0.1, 𝑎 = 0, 𝑠 = 10−2, 𝛾 = 0°  and 𝐷𝑓 = 0. 

 

 
Fig. 7. Present the Dufour parameter effects, 𝐷𝑓, on (a) streamlines; (b) isotherms; (c) isoconcentration; 

(d) viscosity apparent, for 𝑅𝑎𝑇 = 104, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝑛 = 0.6, 𝐸 = 0.1, 𝑎 = 0, 𝑠 = 10−2, 𝛾 = 0° 
and 𝑆𝑟 = 0. 
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(a) (b) 

  
(c) (d) 

Fig. 8. Present the Apparent viscosity at 𝑥 = 0: (a) influence of 𝑛; (b) influence of time constant 

parameter, 𝐸; (c) influence of 𝑠; (d) influence of parameter, 𝑎, for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° 
and 𝑆𝑟 = 𝐷𝑓 = 0. 

 
Comparing the results to a Newtonian case, the shear-thinning behavior is seen to enhance the 

convective circulation. This observation is identic to the findings claimed by Lamsaadi et al., [12], 
Benouared et al., [14] and Alloui and Vasseur [29] in their works on pure thermal convection in 
horizontal and vertical cavities. 

Figure 9 shows the apparent viscosity versus shear rate. Figure 9(a) reveals an increase in the 
apparent viscosity with decreasing shear rate for different values of 𝑛. As shown by the computed 
results for 𝑛 = 1, the apparent viscosity occurred at 𝜇 = 1. From Figure 9(b), the increased 
parameter, 𝐸, induces a decrease in apparent viscosity. For 𝐸 = 0, it was found that the apparent 
viscosity occurred at 𝜇 = 1. Figure 9(c) shows that any increase of, 𝑠, yields an increase in apparent 
viscosity and 𝜇 = 1 for 𝑠 = 1. Figure 9(d) shows the effect of the parameter, 𝑎, on apparent viscosity. 
For 𝑎 varying from 0.2 to 2, the apparent viscosity increases with increasing, 𝑎. 
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(a) (b) 

  
(c) (d) 

Fig. 9. Apparent viscosity, 𝜇, vs. shear rate,  , for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 =
𝐷𝑓 = 0; impact of : (a) flow behavior index, 𝑛; (b) time constant parameter, 𝐸; (c) parameter, 𝑠; (c) 

parameter, 𝑎. 

 
The impact of flow behavior index, 𝑛, on the stream function, 𝜓0, apparent viscosity, 𝜇, Nusselt 

number, 𝑁𝑢, and Sherwood numbers, 𝑆ℎ, vs. Ra for 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0 is 

presented in Figure 10. For 𝑛 = 0.4 it is was found that both the stream function, the thermal and 
mass exchange rates, raised monotonically with augmented Rayleigh number 𝑅𝑎𝑇 and that the 
apparent viscosity decreased shows in Figure 10(a)-(c). Figure 10(a) shows for 𝑛 = 0.4 subcritical 
birufication is represented. The flow is defined by a passage from the rest state to a convection of 

delimited amplitude at 𝜓0 = 3.637. This passage occurs at a subcritical Rayleigh number 𝑅𝑎𝑇𝑐
𝑠𝑢𝑏 =

2270. Under the critical value, the result was purely conductive 𝜓0 = 0, 𝑁𝑢 = 𝑆ℎ = 1 and 𝜇 = 1. 

Arises station at a Rayleigh of supercritical 𝑅𝑎𝑇𝐶
𝑠𝑢𝑝, then the characterized regime is convective. For 

𝑛 < 1, the critical Rayleigh number (subcritical Rayleigh) is increased. For a given amount of 𝑅𝑎𝑇, the 
n value is decreased. In fact, that subcritical convection is highly influenced by the flow behavior 
index. In addition, the thermal and mass exchange rates are significantly enhanced. The apparent 
viscosity is significantly reduced with decreased 𝑛 (Figure 10b). 
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(a) (b) 

  
(c) (d) 

Fig. 10. Impact of 𝑅𝑎𝑇, 𝑛, on: (a) 𝜓0; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; and (d) 𝑆ℎ, for 𝐿𝑒 = 10, 𝑁 =
−0.5, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 
Figure 11 displays the effects of parameter, 𝑎, on stream function, apparent viscosity, Nusselt 

number and Sherwood numbers as variations versus power-law index, 𝑛, at 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 
𝑁 = −0.5, 𝐸 = 0.1, 𝑠 = 10−2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. Where the decrease in parameter, 𝑎, the 

stream function increase presented in Figure 11(a). The stream function is small for 𝑛 = 1 and 
increases with decreasing 𝑛. Figure 11(b) shows the changes in the apparent viscosity vs. the flow 
behavior index, 𝑛, for various amounts of the parameter, 𝑎, when the parameter, 𝑎 , increase the 
apparent viscosity augment. Then we consider the influence of decreasing n on the decrease in 
apparent viscosity from top (𝜇 = 1) at Newtonian fluids to bottom at shear thinning fluids. From 
Figures 11c and 11d, 𝑁𝑢 and 𝑆ℎ increase with the decreasing parameter, 𝑎. The convective thermal 
and mass exchange is improved by decreasing the parameter, 𝑎, while the behavior of Sherwood 
number becomes asymptotic. The apparent viscosity drops considerably as the parameter, 𝑎, 
decreases with decreasing 𝑛 from 1 to 0. It is interesting to note that both 𝑁𝑢 and 𝑆ℎ for Newtonian 
fluids are less and more than shear thinning fluids (pseudo-plastic 𝑛 < 1).     
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(a) (b) 

  
(c) (d) 

Fig. 11. Effect of parameter, 𝑎, and 𝑛, on: (a) stream function; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, for 
𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝐸 = 0.1, 𝑠 = 10−2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 
Figure 12 displays the effect of time constant parameter, 𝐸, and flow behavior index, 𝑛, on stream 

function, apparent viscosity, Nusselt number and Sherwood numbers vs. 𝑛, at 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 
𝑁 = −0.5, 𝑎 = 2, 𝑠 = 10−2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. From Figure 12(a), the stream function 

changes and increases rapidly with augmented 𝐸 at 𝜓0 = 6.177. Figure 12(b) evaluates the influence 
of 𝐸 on apparent viscosity, where it increases with decreased 𝐸. The apparent viscosity increases for 
various amounts of 𝑛, as the 𝐸 parameter decreases. In addition, for 𝐸 = 0 the apparent viscosity is 
close to 1, which confirms the Newtonian behavior. The results demonstrate also a considerable 
decrease in the apparent viscosity with decreasing, 𝐸, from 100 to 0. The apparent viscosity increases 
for shear thinning fluids (pseudo plastic fluids) (𝑛 < 1) and it decreases with increasing 𝑛. 
Furthermore, 𝑁𝑢 and 𝑆ℎ increase with augmented 𝐸. So, the convection rates increase with the rise 
of 𝐸 parameter. Figures 12(c) and 12(d) summarize the effect of 𝑛 on 𝑁𝑢 and 𝑆ℎ for different 𝐸. The 
thermal and mass exchange rates increase with increasing 𝑛, from 1 to 0.2. The drop of 𝑛 augments 
𝑁𝑢 and 𝑆ℎ, which mentions that the decreased 𝑛 enhances the thermal and mass exchange. 𝑁𝑢 and 
𝑆ℎ numbers are sensitive to the amounts of 𝑛 and 𝐸. The augmentation in 𝑛 and the decrease in 
𝐸 yield an important rise in the convection rates. 
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(a) (b) 

  
(c) (d) 

Fig. 12. Effect of time constant parameter, 𝐸, and 𝑛, on: (a) 𝜓0; (b) 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 =
10, 𝑁 = −0.5, 𝑎 = 2, 𝑠 = 10−2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 
The influence of s and n on stream function, apparent viscosity, Nusselt number and Sherwood 

numbers for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝐸 = 0.1, 𝑎 = 2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0 shows in 

Figure 13. Figure 13(a) it shows that the stream function remains constant at 𝜓0 = 6.177 for 𝑠 = 1, 
then it increases gradually with decreased 𝑠. The stream function increases according to the 
decreased 𝑛. The apparent viscosity augments with the rise of s, reaching the top at 𝜇 = 1 for 𝑠 = 1. 
The viscosity decreases from top to bottom with 𝑛 values for various amounts of 𝑠. Figures 13(c) and 
13(d) exhibit the effect of the parameter 𝑠 on 𝑁𝑢 and 𝑆ℎ. The decreased s provokes an augmentation 
in 𝑁𝑢 and 𝑆ℎ. Therefore, it proves that the convection rates rise with decreased 𝑠, which clearly 
shows the influence of 𝑛, demonstrating thus that the important enhanced convection with 
decreasing 𝑛 (from Newtonian to shear-thinning fluids). 

Figure 14 shows the effect of Dufour number, 𝐷𝑓, and 𝑛, on the stream function, apparent 

viscosity, Nu and Sh for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 = 0. In Figure 14(a), the 
stream function increased with decreasing Dufour number, 𝐷𝑓, for 𝑛 < 1. In addition, the stream 

function decreases with decreased 𝐷𝑓 for 𝑛 = 1. From Figure 14(b), the influence of 𝐷𝑓 on the 

apparent viscosity is highlighted. The apparent viscosity increases with increased 𝐷𝑓. Also, the 

viscosity apparent is increased to the maximum value for 𝑛 = 1.  
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(a) (b) 

  
(c) (d) 

Fig. 13. Impact of 𝑠 and 𝑛, on: (a) 𝜓0; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, at 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 
𝑁 = −0.5, 𝐸 = 0.1, 𝑎 = 2, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 
However, for the small values of shear thinning fluids (𝑛 < 1), the viscosity is weak. Figures 14(c) 

and (d) show high Nu and Sh values with increasing 𝐷𝑓. As 𝑛, decreases, Sh increases with decreasing 

𝐷𝑓. The mass transfer increases with decreasing 𝑛. It is observation to notation that the both 𝑁𝑢 and 

𝑆ℎ numbers for 𝑛 < 1 are much than that of Newtonian fluids (𝑛 = 1). 
The effect of Soret number 𝑆𝑟 and n on the stream function, apparent viscosity, Nu and Sh is 

illustrated in Figure 15 at 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝐷𝑓 = 0. From Figure 15(a), the 

stream function slightly increases with increased Sr from -1 to 1. For high values of 𝑛,  𝜓0 gradually 
increases with decreasing 𝑛. In addition, the stream function increases with increased Sr for shear-
thinnig fluids and it decreases with increased Sr for Newtonan fluids (𝑛 = 1). Figure 15(b) plots the 
apparent viscosity profile for different valeus of Soret number, whre no significant change is observed 
with decreased Sr. It is also observed that decreasing 𝑛 from 1 to 0.4 decreases the apparent viscosity 
for all values of Soret number. Figures 15(c) and (d) resume the Sr influence on 𝑁𝑢 and 𝑆ℎ. The 
increased Sr yields an increase in Sh and a small decline in 𝑁𝑢. Moreover, Nu and Sh increase with 
decreased 𝑛 from 1 to 0.4. Also, the augementation in the thermal and mass exchange for shear-
thining fluids is in contrary to the Newtonian fluids. 

Figure 16 resumes the 𝐿𝑒 and n influence on the stream function, apparent viscosity, Nu and  Sh 
for 𝑅𝑎𝑇 = 10⁴, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. When Le is increased from 1 to 50, the stream 

function increases. The decreasing 𝑛 decreases the stream function for all values of 𝐿𝑒. The effect of 
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𝐿𝑒 on apparente viscosity is displayed in Figure 16(b), where the apparent viscosity increases slighthy 
with decreased 𝐿𝑒. Decresing the value of 𝑛, the apparent viscosity decreases in a monotonic way 
until a constant value for shear-thinnig fluids, 𝑛 = 0.4. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 14. Impact of 𝐷𝑓  and 𝑛, on: (a) stream function, 𝜓0; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, for 𝑅𝑎𝑇 =

10⁴, 𝐿𝑒 = 10, 𝑁 = −0.5, 𝛾 = 0° and 𝑆𝑟 = 0. 

 

  
(a) (b) 
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(c) (d) 

Fig. 15. Effect of Soret number, 𝑆𝑟, and 𝑛, on: (a) 𝜓0; (b) 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝑁 =
−0.5, 𝛾 = 0° and 𝐷𝑓 = 0. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 16. Effect of 𝐿𝑒 and n on: (a) 𝜓0; (b) apparent viscosity; 𝜇, (c) 𝑁𝑢; (d) 𝑆ℎ, for 𝑅𝑎𝑇 = 10⁴, 𝑁 =
−0.5, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 

Figures 16(c) and (d) show the variation of Nu and Sh vs. n. Indeed, the increasing Le causes a 
consdierable rise in 𝑁𝑢 and 𝑆ℎ. As a result, the pattern confirms that thermal and mass exchange is 
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improved with the rise of Le, for various 𝑛. The convection intensity is lower for Newtonian fluids and 
in contrast to psuodoplastic fluids. 

The impact of bouyancy ratio, 𝑁, on the stream function, apparent viscosity, Nu and Sh is given 
in Figure 17 for 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. As 𝑁 increases, the stream function 

is increased. In addition, with increase n, the stream function is small for Newtonian fluids and it 
increases for large values of 𝑛 in shear-thinning fluids. Figure 17(b) illustrates the influence of 𝑁 on 
apparent viscosity, where a slight variation in the apparent viscosity is remarked vs. 𝑁. The apparent 
viscocity 𝜇 = 1 for Newtonian fluids, then it decreases rapidly to constant values for shear-thinning 
fluids 𝑛 = 0.4. Figures. 17(c) and (d) show that Nu and Sh increase with 𝑁. When 𝑛 decreases from 
1 to 0.4, Nu and Sh tend towards an asymptotic value wich is a function of 𝑁 from -1 to 1. This is due 
to the increase of the volume forces in the momentun equation. Morevere, the augementation of 
buoyancy ratio enhances the thermal and mass exchange. The mass exchange reaches a maximun 
asymptotic value faster than the thermal exchange. This is a direct consequence of the Lewis number 
(𝐿𝑒 = 10) in the mass exchange. As 𝑛 decreases from Newtonian fluids (𝑛 = 1) to shear-thinning 
fluids (𝑛 = 0.4), the thermal and mass exchange increase for all valeus of 𝑁. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 17. Effect of bouyancy ratio, 𝑁, on: (a) 𝜓0; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; (d) 𝑆ℎ, for 𝑅𝑎𝑇 = 10⁴, 
𝐿𝑒 = 10, 𝛾 = 0° and 𝑆𝑟 = 𝐷𝑓 = 0. 

 

The change of 𝜓0, 𝜇, 𝑁𝑢 and 𝑆ℎ with the flow behavior index, 𝑛, for various cases of 𝛾 (0° to 90°) 
at 𝑅𝑎𝑇 = 10⁴, 𝐿𝑒 = 10 and 𝑆𝑟 = 𝐷𝑓 = 0 is shows in Figures 18(a)-(d). The results demonstrate that 
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the highest values of 𝑁𝑢, and 𝑆ℎ are found when 𝛾 = 60°. Decreasing the flow behavior index, 𝑛, 
enhances both the thermal and mass exchange. It clear from Figures 18(c) and (d) that for a given 
value of 𝑛, an increase in the inclination angle increases significantly both 𝑁𝑢 and 𝑆ℎ. Figure 18(b) 
shows a decrease in viscosity with increased 𝛾°. From Figures 18(c) and (d), it is proven that at 0.4 ≤
𝑛 ≤ 0.6, Nu at 𝛾 = 60° is more than that at 𝛾 = 90°. However, at 0.6 ≤ 𝑛 ≤ 1, Nu at 𝛾 = 30° is more 
than that at 𝛾 = 90°. Nu increases significantly at 𝛾 = 0°. Sh augments with increasing 𝛾 from 0° to 
90° and it is considrably enhanced. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 18. Effect of inclined angel, 𝛾, on: (a) 𝜓0; (b) apparent viscosity, 𝜇; (c) 𝑁𝑢; and (d) 𝑆ℎ, for 𝑅𝑎𝑇 = 10⁴, 
𝐿𝑒 = 10 and 𝑆𝑟 = 𝐷𝑓 = 0. 

 

5. Conclusions 
 
The thermosolutal convection in an inclined cavity filled with non-Newtonian fluids was 

numerically examined. The effect of the Carreau-Yasuda rheological parameters, Rayliegh number, 
𝑅𝑎𝑇 ,Lewis number, 𝐿𝑒, buoyancy ratio, 𝑁, Dufour and Soret numbers and inclination angle, 𝛾, on 
the thermal and mass exchange was demonstrated. The main conclusion of the present investigation 
can be summarized as follows: 

i. The thermal and mass exchange augments with decreasing 𝑠 and 𝑎 parameters and rising for 
the time constant parameter 𝐸, and 𝑎, and causes the apparent viscosity to drop slightly as 
the power-law index, 𝑛, decrease from Newtonian fluids to shear-thinning fluids. 
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ii. The decreased 𝑅𝑎𝑇 improves both the thermal and mass exchange and apparent viscosity for 
different power-low index, 𝑛. 

iii. The decrease 𝑛 promotes the convection in the cavity and significantly increases the thermal 
and mass exchange. Thus, the decreases 𝑛 favours the subercritical convection finit 
amplitude.  

iv. The thermal exchange increases for rising Soret and Dufour parameters. The mass transfer is 
enhanced with increased Sr and Df. 

v. The apparent viscosity drops with increasing Soret and Dufour numbers. 
vi. The increase in the Lewis number augments the thermal and mass exchange for various values 

of power-law index, 𝑛. 
vii. The rise of buoyancy ratio increases considerably both the thermal and mass exchange. But 

the increase is not uniform for different power-low indices. 
viii. The increase of buoyancy ratio yields a decrease in viscosity with decreased n. 

ix. The maximum Nu and Sh increase with increased inclination angle for 60° to 90°, i.e., the 
convection process is enhanced at 60°. 

 
Acknowledgement 
Authors would like to thank Universiti Teknologi Malaysia for the funding from Takasago TTES 
R.K130000.7343.4B732. 
 
References  
[1] Beghein, C., F. Haghighat, and F. Allard. "Numerical study of double-diffusive natural convection in a square 

cavity." International Journal of Heat and Mass Transfer 35, no. 4 (1992): 833-846. https://doi.org/10.1016/0017-
9310(92)90251-M 

[2] Nield, D.A.; Bejan, A. "Convection in Porous Media." 2nd ed., Springer Verlag, New York, 1999. 
[3] Benhadji, K., and P. Vasseur. "Double diffusive convection in a shallow porous cavity filled with a non-Newtonian 

fluid." International communications in heat and mass transfer 28, no. 6 (2001): 763-772. 
https://doi.org/10.1016/S0735-1933(01)00280-9  

[4] Lamsaadi, M., M. Naimi, and M. Hasnaoui. "Natural convection of non-Newtonian power law fluids in a shallow 
horizontal rectangular cavity uniformly heated from below." Heat and Mass Transfer 41, no. 3 (2005): 239-249. 
https://doi.org/10.1007/s00231-004-0530-8  

[5] Nield, D.A.; Bejan, A. "Convection in Porous Media, 4th ed., Springer-Verlag, 2013. 
[6] Ingham, D.B.; Pop, I. "Transport Phenomena in Porous Media, Pergamon, 1998. 
[7] Pop, I.; Ingham, D.B. "Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and 

Porous Media." Pergamon, Oxford, 2001.    
[8] Ohta, Mitsuhiro, Masayuki Ohta, Makoto Akiyoshi, and Eiji Obata. "A numerical study on natural convective heat 

transfer of pseudoplastic fluids in a square cavity." Numerical Heat Transfer: Part A: Applications 41, no. 4 (2002): 
357-372. https://doi.org/10.1080/104077802317261218  

[9] Kim, Gi Bin, Jae Min Hyun, and Ho Sang Kwak. "Transient buoyant convection of a power-law non-Newtonian fluid 
in an enclosure." International journal of heat and mass transfer 46, no. 19 (2003): 3605-3617. 
https://doi.org/10.1016/S0017-9310(03)00149-2 

[10] Pericleous, K.A. "Heat transfer in differentially heated non-Newtonian cavities." Int. J. Num. Methods Heat Fluid 
Flow 1994, 4(3), 229-248. https://doi.org/10.1108/EUM0000000004040     

[11] Turan, O.; Sachdeva, A.; Chakraborty, N.; Poole, R.J. "Laminar natural convection of power-law fluids in a square 
enclosure with differentially heated walls subjected to constant temperatures." J. Non-Newtonian Fluid Mech. 
2011, 166, 1049-1063. https://doi.org/10.1016/j.jnnfm.2011.06.003 

[12] Lamsaadi, M., M. Naimi, M. Hasnaoui, and M. Mamou. "Natural convection in a vertical rectangular cavity filled 
with a non-Newtonian power law fluid and subjected to a horizontal temperature gradient." Numerical Heat 
Transfer, Part A: Applications 49, no. 10 (2006): 969-990. https://doi.org/10.1080/10407780500324988 

[13] Balmforth, Neil J., and Alison C. Rust. "Weakly nonlinear viscoplastic convection." Journal of Non-Newtonian Fluid 
Mechanics 158, no. 1-3 (2009): 36-45. https://doi.org/10.1016/j.jnnfm.2008.07.012 

https://doi.org/10.1016/0017-9310(92)90251-M
https://doi.org/10.1016/0017-9310(92)90251-M
https://doi.org/10.1016/S0735-1933(01)00280-9
https://doi.org/10.1007/s00231-004-0530-8
https://doi.org/10.1080/104077802317261218
https://doi.org/10.1016/S0017-9310(03)00149-2
https://doi.org/10.1108/EUM0000000004040
https://doi.org/10.1016/j.jnnfm.2011.06.003
https://doi.org/10.1080/10407780500324988
https://doi.org/10.1016/j.jnnfm.2008.07.012


CFD Letters 

Volume 14, Issue 3 (2022) 96-118 

117 
 

[14] Benouared, Ouahiba, Mahmoud Mamou, and Noureddine Ait Messaoudene. "Numerical nonlinear analysis of 
subcritical Rayleigh-Bénard convection in a horizontal confined enclosure filled with non-Newtonian fluids." Physics 
of Fluids 26, no. 7 (2014): 073101. https://doi.org/10.1063/1.4890829 

[15] Alloui, Z., and P. Vasseur. "Natural convection of Carreau–Yasuda non-Newtonian fluids in a vertical cavity heated 
from the sides." International Journal of Heat and Mass Transfer 84 (2015): 912-924. 
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.092  

[16] Kefayati, G.H.R. "Simulation of double diffusive natural convection and entropy generation of power-law fluids in 
an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer)." 
International Journal of Heat and Mass Transfer 2016, 94, 539-581. 
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.044 

[17] Khechiba, Khaled, Mahmoud Mamou, Madjid Hachemi, Nassim Delenda, and Redha Rebhi. "Effect of Carreau-
Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-
thinning fluid." Physics of Fluids 29, no. 6 (2017): 063101. https://doi.org/10.1063/1.4986794  

[18] Krishna, M. Veera, and G. Subba Reddy. "MHD forced convective flow of non-Newtonian fluid through stumpy 
permeable porous medium." Materials Today: Proceedings 5, no. 1 (2018): 175-183. 
https://doi.org/10.1016/j.matpr.2017.11.069  

[19] Wu, Ping-Yao, Ta-Jo Liu, and Hsu-Ming Chang. "Natural convection of non-Newtonian liquids in a cylindrical 
enclosure." Numerical Heat Transfer 25, no. 3 (1994): 363-371. https://doi.org/10.1080/10407789408955954 

[20] Khellaf, K., and G. Lauriat. "Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating 
concentric vertical cylinders." Journal of non-newtonian fluid mechanics 89, no. 1-2 (2000): 45-61. 
https://doi.org/10.1016/S0377-0257(99)00030-0 

[21] Raisi, Afrasiab. "The influence of a pair constant temperature baffles on power-law fluids natural convection in a 
square enclosure." Modares Mechanical Engineering 15, no. 11 (2016): 215-224.  

[22] Shahmardan, Mohammad Mohsen, Mahmood Norouzi, and Amir Naqhikhani. "Numerical Simulation of Non-
Newtonian fluid flows through a channel with a cavity." Modares Mechanical Engineering 14, no. 6 (2014): 35-40.  

[23] Guha, Abhijit, and Kaustav Pradhan. "Natural convection of non-Newtonian power-law fluids on a horizontal 
plate." International Journal of Heat and Mass Transfer 70 (2014): 930-938. 
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.001 

[24] Kefayati, GH R. "Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity 
using FDLBM." Journal of Molecular Liquids 195 (2014): 165-174. https://doi.org/10.1016/j.molliq.2014.02.031 

[25] Vinogradov, Igor, Lyes Khezzar, and D. Siginer. "Heat transfer of non-Newtonian dilatant power law fluids in square 
and rectangular cavities." Journal of Applied Fluid Mechanics 4, no. 3 (2011): 37-42.. 
https://doi.org/10.36884/jafm.4.03.11932 

[26] Khelifa, N. Ben, Z. Alloui, H. Beji, and P. Vasseur. "Natural convection in a horizontal porous cavity filled with a non-
Newtonian binary fluid of power-law type." Journal of Non-Newtonian Fluid Mechanics 169 (2012): 15-25. 
https://doi.org/10.1016/j.jnnfm.2011.11.002  

[27] Kefayati, GH R., and H. Tang. "Three-dimensional Lattice Boltzmann simulation on thermosolutal convection and 
entropy generation of Carreau-Yasuda fluids." International Journal of Heat and Mass Transfer 131 (2019): 346-
364. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.076 

[28] Bihiche, K., M. Lamsaadi, and M. Hasnaoui. "Multiple steady state solutions for double-diffusive convection in a 
shallow horizontal rectangular cavity uniformly heated and salted from the side and filled with non-Newtonian 
power-law fluids." Journal of Non-Newtonian Fluid Mechanics 283 (2020): 104349. 
https://doi.org/10.1016/j.jnnfm.2020.104349   

[29] Alloui, Z., R. Ouzani, and P. Vasseur. "Thermocapillary-buoyancy convection of a power-law fluid layer heated from 
below." Journal of Non-Newtonian Fluid Mechanics 282 (2020): 104332. 
https://doi.org/10.1016/j.jnnfm.2020.104332  

[30] Tizakast, Youssef, Mourad Kaddiri, and Mohamed Lamsaadi. "Double-diffusive mixed convection in rectangular 
cavities filled with non-Newtonian fluids." International Journal of Mechanical Sciences 208 (2021): 106667. 
https://doi.org/10.1016/j.ijmecsci.2021.106667 

[31] Rebhi, Redha, Mahmoud Mamou, and Noureddine Hadidi. "Bistability bifurcation phenomenon induced by non-
Newtonian fluids rheology and thermosolutal convection in Rayleigh–Bénard convection." Physics of Fluids 33, no. 
7 (2021): 073104. https://doi.org/10.1063/5.0051058 

[32] Makayssi, T., M. Lamsaadi, and M. Kaddiri. "Natural double-diffusive convection for the Carreau shear-thinning 
fluid in a square cavity submitted to horizontal temperature and concentration gradients." Journal of Non-
Newtonian Fluid Mechanics 297 (2021): 104649. https://doi.org/10.1016/j.jnnfm.2021.104649   

https://doi.org/10.1063/1.4890829
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.092
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.044
https://doi.org/10.1063/1.4986794
https://doi.org/10.1016/j.matpr.2017.11.069
https://doi.org/10.1080/10407789408955954
https://doi.org/10.1016/S0377-0257(99)00030-0
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.001
https://doi.org/10.1016/j.molliq.2014.02.031
https://doi.org/10.36884/jafm.4.03.11932
https://doi.org/10.1016/j.jnnfm.2011.11.002
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.076
https://doi.org/10.1016/j.jnnfm.2020.104349
https://doi.org/10.1016/j.jnnfm.2020.104332
https://doi.org/10.1016/j.ijmecsci.2021.106667
https://doi.org/10.1063/5.0051058
https://doi.org/10.1016/j.jnnfm.2021.104649


CFD Letters 

Volume 14, Issue 3 (2022) 96-118 

118 
 

[33] Gray, Donald D., and Aldo Giorgini. "The validity of the Boussinesq approximation for liquids and 
gases." International Journal of Heat and Mass Transfer 19, no. 5 (1976): 545-551. https://doi.org/10.1016/0017-
9310(76)90168-X  

[34] Yasuda, K. Y., R. C. Armstrong, and R. E. Cohen. "Shear flow properties of concentrated solutions of linear and star 
branched polystyrenes." Rheologica Acta 20, no. 2 (1981): 163-178. https://doi.org/10.1007/BF01513059   

[35] Bird, B.R.; Armstrong, R.C.; Hassager, O. "Dynamic of polymeric liquids." John Wiley and Sons Inc., New York, 1978. 
[36] Escudier, M. P., I. W. Gouldson, A. S. Pereira, F. T. Pinho, and R. J. Poole. "On the reproducibility of the rheology of 

shear-thinning liquids." Journal of Non-Newtonian Fluid Mechanics 97, no. 2-3 (2001): 99-124. 
https://doi.org/10.1016/S0377-0257(00)00178-6   

[37] Allouche, Mohamed Hatem, Valéry Botton, Daniel Henry, Séverine Millet, R. Usha, and H. Ben Hadid. "Experimental 
determination of the viscosity at very low shear rate for shear thinning fluids by electrocapillarity." Journal of Non-
Newtonian Fluid Mechanics 215 (2015): 60-69. https://doi.org/10.1016/j.jnnfm.2014.11.003 

[38] Escudier, M. P., R. J. Poole, F. Presti, C. Dales, C. Nouar, C. Desaubry, L. Graham, and L. Pullum. "Observations of 
asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids." Journal of 
non-newtonian fluid mechanics 127, no. 2-3 (2005): 143-155. https://doi.org/10.1016/j.jnnfm.2005.02.006 

[39] Schneck, Paul, and George Veronis. "Comparison of some recent experimental and numerical results in Benard 
convection." The Physics of Fluids 10, no. 5 (1967): 927-930. https://doi.org/10.1063/1.1762243 

[40] Plows, William H. "Some Numerical Results for Two‐Dimensional Steady Laminar Bénard Convection." The Physics 
of Fluids 11, no. 8 (1968): 1593-1599. https://doi.org/10.1063/1.1692166  

https://doi.org/10.1016/0017-9310(76)90168-X
https://doi.org/10.1016/0017-9310(76)90168-X
https://doi.org/10.1007/BF01513059
https://doi.org/10.1016/S0377-0257(00)00178-6
https://doi.org/10.1016/j.jnnfm.2014.11.003
https://doi.org/10.1016/j.jnnfm.2005.02.006
https://doi.org/10.1063/1.1762243
https://doi.org/10.1063/1.1692166

