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This paper investigated numerically a natural convection in a porous cavity saturated 
by nanofluide. The left and right wall of the cavity are maintained at the hot-cold 
temperature respectively, the other walls are adiabatic. The two-phase Buongiorno 
model has been adopted to take account Brownian and thermophoretic diffusion in 
order to demonstrate the spatial distribution of the local nanoparticles concentration. 
After following the temporal evolution of the different structures (0<τ<5), Numerical 
simulations are performed to explore the effect of density buoyancy (104<Ra<106), the 
permeability of the homogeneous porous medium (10-5<Da<10-2), on the 
hydrodynamic, thermal and mass behavior. An original motivation was also introduced 
in our work to examine the effect of linearly variable permeability along the opposite 
direction of the cavity by varying the initial Darcy number from (10-5<Da<10-2) and 
fixing the final Darcy number Daf =10-5. The dimensionless partial differential 
equations are solved using the finite element method.  The effects of the governing 
parameters on heat transfer are analyzed. Results indicate that the stationary regime 
is formed after the unsteady regime at dimensionless time τ = 0.3. The movement of 
nanofluide is strongly influenced by thermal buoyancy forces and depends on the 
Darcy number, heat transfer is accentuated for the homogenous medium compared to 
this one with variable permeability. It is found that the convective flow in a 
homogeneous porous medium is considerably affected by the variation of permeability 
and consequently the heat transfer is reduced.  

Keywords: 
Natural convection; anisotropic 
(variable) permeability; Buongiorno 
model 

1. Introduction

The research activity in recent year on heat transfer is growing exponentially, in order to improve 
heat exchanger’s energy efficiency in industry and develop efficient high- performance fluids 
composed of nanoparticles dispersed in the base fluid and which characterized by a high thermal 
conductivity and it is able to improve the heat transfer performance [1], the nanofluids are used in 
various applications for cooling systems, oil industry and in geothermal energy.  
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Several authors have concentrated their efforts to quantify the parameters influencing heat 
transfer rate and physical phenomena induced by the nanofluids [2-5]. The incorporation of 
nanoparticles in pure water modifies the structure flow for low values of the Rayleigh number Boutra 
et al., [6], this nanoparticles are distributed due to inertia and buoyancy forces, Lahlou et al., [7 - 9]. 
Bhuiyana et al., [10] have observed that the heat transfer enhancement is strongly depends on the 
type of nanofluids, while the choice of hybrid nanofluids has been discussed by Goudarzi at al., [11- 
17]. 

 Recently, the modeling of the free convection by using nanofluids in triangular and inclined 
square cavities, Sheremet et al., [18, 19]. Natural convection flow suspended micropolar Casson fluid 
over a solid sphere has been studied by Alkasasbeh while [20], Bouras et al., [21] have choose a 
horizontal annulus between an internal heated plane and an external cold half-elliptical for analyze 
the heat transfer rate. Alsabery et al., [22, 23] have revealed that the thermal conductivity and the 
size of the solid block in a partially heated and cooled cavity control perfectly the heat transfer. 

In addition, Bouafia et al., [24] have added the effect of Rayleigh and Darcy numbers, 
concentration of nanoparticles except for the wall thickness of the solid portion in a square porous 
cavity having solid wall of finite thickness. Also, the fluid flow intensity increased. While, it decreased 
when the walls thickness increased Hussein et al., [25]. 

To better describe the movement of nanoparticles; two parameters were introduced in the 
Buongiorno model, the Brownian motion and the thermophoresis parameter for nanofluids flow on 
a thin needle [26-28], this two-phase model was adopted by Hoghoughi et al., [29]. Mikhail et al., 
[30] added the dispersion effect and the mixed convection parameter was injected by Leony et al., 
[31]. The Brownian motion remains an imperative mechanism that contributes to the heat transfer 
enhancement Convectively, Zokri et al., [32]. The Buongiorno’s nanofluid model has been used by 
Dero et al., [33]. 

The importance of the application of nanofluide in porous medium received a great attention by 
many authors such heat exchangers [34], electronic cooling and solar system, according to the studies 
the use of both and nanofluide and porous media can enhance the efficiency of typical thermal 
systems, a mixed convection flow in a boundary layer saturated by a nanofluid and lodged in a porous 
medium have been studied by Abu Bakar et al., [35]. , Douha et al., [36] have proved that an increase 
in the heat transfer coefficients is observed with the raise of the porous layer permeability. 

The behavior of saturated nanoliquids with different sizes in a porous medium has been studied 
by Lakshmi et al., [37], however Bourantas et al., [38] are interested to the effect of the porous 
medium in on the nanofluidic system and this effect has been taken account in the Buongiorno 
model, Sheremet and Pop [39]. We refer to the study of Sheikhzadeh, and Nazari [40]. 

Heat exchange by natural convection in porous medium remains a very attractive field for many 
researchers, generally this medium is an aquifer (geological formation) that govern the underground 
flow which is composed of multiple different layers with the permeability varies in the direction flow. 
The literature about the studies of heat and mass transfer induced by natural convection in an 
anisotropic porous media are limited compared to those of the isotropic medium [41 -44]. Porous 
anisotropic medium in natural convection with the Darcy-Brinkman formulation has been studied par 
by Bennacer et al., [45], they observed that a mass transfer maximum was obtained for a critical 
anisotropic permeability ratio, this ratio affects the convective flow along a vertical plate in a porous 
medium with isotropic permeability Degan [46]. Homogeneous porous media saturated by a binary 
fluid was chosen by Makhloufi et al., [47-51] to reveal the influence of anisotropic permeability rate 
on the decrease of heat transfers and the existence of a fully and the moderately convective flow. 
Ould-Amer et al., [52] have showed that convective flow is intensive in the first layer (of higher 
permeability) in a porous medium composed of three homogeneous layers saturated by a single fluid, 
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on the other hand Chamkha, et al., [53] confirm that with the aid of a nanofluid enhances heat 
transfer even at a low permeable porous media, this enhancement can be also fulfilled by hybrid 
nanofluids for flow with anisotropic permeability at high Rayleigh number Bibi et al., [54, 55]. 

In particular, the theory of underground hydraulics is based on Darcy's law, this medium are 
highly heterogeneous, and uncertain, because it is impossible to measure their characteristics 
deterministically and they can be anisotropic [56]. 

Previous studies have focused on the application of Darcy's law for underground flow in any 
direction in space. The porous medium are considered homogeneous in the benchmark cavity. In the 
present investigation the porous medium is homogeneous with variable permeability. In fact, this 
law is quasi- linear, with permeability decreasing along the negative vertical direction. 
 
2. Geometric Description 

 
Laminar natural convection in square porous cavity saturated by nanofluids is numerically 

simulated using the finite element method, the height of the cavity is denoted by H. The problem is 
considered bidimensional, the left and right wall is maintained at constant temperature Th and Tc 
(Th > Tc ) respectively, the other walls are adiabatic. 

    The thermophysical properties of water and nanofluids are at 25oc (see Table 1). The 
configuration of the cavity and the flow is shown in Figure.1 
 

Table 1 
Thermophysical properties of water 
Physical property Water 

Cp (J/kg) 4179 
ρ (kg /m3) 997.1 
K (W/m k) 0.613 
Β (k-1) 21e-5 
μ (kg/m s) 8.55e-4 

 

 
Fig. 1. Physical problem studied 

 
3. Mathematic Model 
 

The two -dimensional equations governing the stationary flow of nanofluids in natural convection 
inside a square cavity using Buongiorno mathematical model are described as follows. 
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For an incompressible flow, the density of the fluid is constant as a function of the spatial position 
(ρ = constant), the mass equation simply becomes: 
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To generalize the phenomenon, a set of dimensionless variables has been introduced. It is defined 
as follows: 
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By introducing these dimensionless variables into the dimensional equations, we obtain:  
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New parameters appear in the dimensionless equations Prandtl number, Darcy number, Rayleigh 
number, buoyancy ratio, Brownian motion, thermophoresis and Lewis number.  
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3.1 Boundary Condition 
 

The proposed problem is provided with boundary condition in the dimensionless form of the 
cavity walls:  

 
At τ = 0 we have in the whole domain   1,0,0  VU and 1 for 0   

 

-On the left wall: 1,0,0  VU and 0 XNXN TB   

 

-On the right wall: 0,0,0  VU and 0 XNXN TB   

 

- On the top wall: 0,0,0  YYVYU  and 0 Y  

 

- On the bottom wall: 0,0,0  YYVYU   and 0 Y  

 
3.2 The Average Nusselt Number 
 

The heat transfer is characterizes by dimensionless parameter which is Nusselt number 
comparing heat transfer rate by convection and conduction. The local and average Nusselt number 
on the heated wall is given by: 
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Where cL  the total chord length of the hot wall. 

 
4. Numerical Method 
 

The finite element method based on the Galerkin discretization scheme was used to solve the 
differential equations with boundary conditions. A triangular mesh appears more adequate (see 
Figure 2). The convergence criterion is of the order of 1e-6 for each variable. The analysis of the 
different properties values (stream function, temperature, concentration and average Nusselt 
number) are obtained for several meshes with a total number of elements of 51438 (see Table 2). 
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Fig. 2. Computation domain mesh 

 
Table 2 
Mesh grid analysis for the present configuration 
Elements Time Temperature Concentration Stream function Nusselt 

7728 
15298 
25154 
51438 
86560 

285 s 
561 s 
945 s 
8188 s 
11341 s 

0.500246 
0.500247 
0.500246 
0.500248 
0.500248 

1.001061 
0.998697 
1.000351 
0.999748 
0.999840 

-4.076689 
-4.077702 
-4.078194 
-4.078669 
-4.078874 

2.515511 
2.515782 
2.515860 
2.516023 
2.516102 

 
5. Results and Discussion 
 

An analysis of the different parameters was performed to understand the physical phenomenon, 
numerical calculations were obtained by fixing the height of the cavity (H = 2m), the Prandtl number 
of the base fluid (Pr = 5. 82), the Rayleigh number (Ra =105), the Darcy number (Da = 10-2), the Lewis 
number (Le = 1), the ratio of buoyancy forces, the Brownian motion and the thermophoresis 
parameter (Nr = Nb = Nt= 0.1). On the other hand, we varied the(104 ≤ Ra ≤ 106), (10−5 ≤ Da ≤
10−2), initial Darcy number (10−5 ≤ Dai ≤ 10−2) and final Darcy number Daf = 10-5. The flow is 
supposed to be laminar and incompressible.  
 
5.1 Temporal Evolution of the Mass and The Heat Structures   
 

In order to better describe the variables of dynamic and thermal fields, the unsteady regime was 
chosen in our configuration by given the distribution of the streamlines, isotherms and iso-
concentrations with dimensionless time 0 ≤ τ ≤ 0.30. We reveal the following results in Figure3.  

At the initial time τ = 0, a weak streamline is observed, isotherms and nanoparticles are 
distributed uniformly in the cavity, the buoyancy force does not stimulate the nanofluids flow. We 
result that the heat exchange is insignificant.  

From the dimensionless time τ = 0.01 to 0.05 a recirculation cell is formed near the left hot wall 
in the clockwise direction and continue to increase in intensity. In fact, a heat flux is created by the 
nanofluids flow moving away from the left hot wall towards the right cold wall. 

At the moment τ = 0.01, the isotherms begin to extend near the left wall, where the temperature 
gradient becomes important and the iso-concentrations deform from this moment. 

From τ = 0.05, the isotherms close the left vertical wall in addition an important accumulation of 
iso-concentrations is noticed at the bottom of the cavity near the left hot wall. We can interpret this 
alteration by a high concentration of nanoparticles due to the buoyancy forces which are submissive 
to an important temperature gradient. 
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Fig. 3. Temporal evolution of Streamlines, isotherms and iso-concentrations for different instants at Ra = 
105, Da =10-3, NB = NT = Nr = Le = 0.1. 

 
Between a time interval τ = (0.25, 0.30), the recirculation cell occupies the middle of the cavity 

and keeps the same shape. It is observed that the isotherms do not change shape, even for iso-
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concentrations which become tight next to the right cold wall. Therefore, it is concluded that the flow 
becomes stable and the heat transfer reaches it’s a maximum. The dimensionless time necessary to 
reach different variables dynamic and thermal field is about τ = 0.30.A steady state regime are formed 
after an unsteady flow. This is reflected in the flow stability and the dominance of convection heat 
transfer. 

 
5.2 Calculation of the Average and Local Nusselt Number 
 

The evolution of the average and local Nusselt number as a function of the dimensionless time τ 
(a) and along the hot wall with Y (b) is shown in Figure 4. 
 

              
(a)                                                                                                         (b) 

Fig. 4. Variations of unsteady average Nusselt number with τ (a), local Nusselt number with Y (b) 

 
We notice in Figure 4 (a) that at the initial dimensionless time τ = 0, There is a strong decrease in 

of temporal average Nusselt number due to the low gradient temperature, after it’s does not change 
in value regardless of the increase time factor at τ =0.3 et becomes stable, which means that the 
dynamic and thermal field tend to reach the steady state therefore, we concluded that the steady 
state is established. 

In the figure 4 (b) the evolution of the local Nusselt number along the hot wall for various 
dimensionless time is shown, at the dimensionless time 0.01≤ τ ≤ 0, 30. When the time goes from τ = 
0, 05 to 0.30, we observe obvious that the local Nusselt number increases with the dimensionless 
time. At time τ = 0.30, we notice that high values of the local 

Nusselt number are obtained at the hot wall a y = 0, we conclude that the heat transfer is more 
intense (Nuloc = 9.5), after Nuloc decreases rapidly at the top hot wall with a value of 2.8. We consider 
that the convective heat transfer is more significant due to the incorporation of nanoparticles in the 
base fluid. As a result, the convective heat transfer decreases until it reaches the values of the steady 
state. 
 
5.3 Stationary Flow of Natural Convection in a Homogeneous Porous Cavity Saturated by a Nanofluid 
5.3.1 Buoyancy effect 
 

The impact of the Rayleigh number on the distribution of the streamlines, isotherms and iso-
concentrations is shown in Figure 5. For the streamlines, we observed a single circulation cell which 
intensifies with increasing Rayleigh number (104≤ Ra ≤ 106), the convective flow induced by the 
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thermal buoyancy forces is very intense. At value of Rayleigh number Ra=104, the isotherms and iso-
concentrations are almost parallel to the vertical wall and its change shape when the Rayleigh 
number increases (Ra=105). 
 

Fig. 5. Streamlines, isotherms and iso-concentrations for various Rayleigh number at Da =10-3 , NB = 
NT = Nr = Le = 0.1. 

 
At Ra=105, the gradient of iso-concentrations becomes important near the cold right wall and at 

the bottom cavity. For a high value of the Rayleigh number Ra=106, the space between the isotherms 
is reduced, from this value we conclude that the heat transfer is significant. A stratification zone is 
detected at the bottom cavity near the left wall, which indicates that the nanoparticles are extremely 
concentrated in this region, we can observe that the iso-concentrations are reduced in value. The 
convective flow is strongly influenced by thermal buoyancy forces which contribute to enhance heat 
transfer. 
 
5.3.2 Effect of the homogenous porous medium with isotropic permeability 
 

The influence of Darcy number on the streamlines, isotherms and iso-concentrations is 
demonstrated in the Figure 6. We observe that the circulation cell decreases in size when the Darcy 
number decreases (Da = 10-5). The flow is weakened for low value of the permeability. As a result, 
the flow is conductive. At high value of the Darcy number (Da=10-2), the stream function increases 
from 0.07 to 8.62, which indicates that the flow circulation in the cavity is accentuated due to the 
increase in permeability which causes Nanofluids flow. 
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Fig.6. Streamlines, isotherms and iso-concentrations for various Darcy number at Ra =105, NB = NT = 
Nr = Le = 0.1 

 
The isotherms and iso-concentrations are parallel to the vertical walls at value of Da =10−5, which 

indicate that the heat transfer is dominated by pure conduction. The temperature and concentration 
fields are sensitive to the variation of the Darcy number between Da=10-4 and 10-2. At a maximum 
value of Darcy number (Da =10−2), the temperature and concentration gradients developed are 
important near the left hot wall and at the bottom cavity respectively. It is clear that the nanofluids 
through the pores without difficulty. 
 
5.4 Natural Convection in a Porous Cavity: Variable Permeability Effect 

 
Aquifers present the variation in permeability along underground flow direction. In our 

configuration we represent a linear mathematical relationship which relates the Darcy number as a 
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function of the depth of the cavity, leading to the deep layers which are characterized by a low 
permeability. Darcy's law is valid for Kx = Ky where Kx, Ky is the permeability along the horizontal x 
and vertical y axis: 

 
𝐷𝑎 =  (𝐷𝑎𝑖 − 𝐷𝑎𝑓) ∗ 𝑦 + 𝐷𝑎𝑓   (b) 
 

Our domain is limited by [0, H]. Initial Darcy number Dai (10-5, 10-2) and final Darcy number Daf 

=10-5. 
 
5.4.1 Homogenous porous medium with variable permeability  
         

The same circulation cell was observed in Figure 7 for a low value of initial Darcy number (Dai 
=10−5), If we increase the (10-5≤ Dai ≤10-4), the cell grows in intensity. The isotherms are parallel to 
the walls for a value of the Dai = 10-5, from the variation of (10-4≤ Dai ≤10-2), its change shape which 
means that the heat the heat transfer is dominated by convection when permeability is higher. The 
distribution of iso-concentrations is identical to the isotherms for each variation of the Dai (10-5≤ Dai 
≤10-3), except for the value of (Dai = 10-2) we observe a difference in the distribution of nanoparticles. 
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Fig. 7. Streamlines, isotherms and iso-concentrations for various initial Darcy number in porous 
medium with variable permeability at Ra =105, NB = NT = Nr = Le = 0.1 and Daf = 10-5 

 

5.5 Calculation of the Average and Local Nusselt Number 
 

The variation of the average and local Nusselt number is showen in Figure 8. with Rayleigh 
number (104≤ Ra ≤106), Darcy number (10-5≤ Da ≤10-2), initial Darcy number (10-5≤ Dai ≤10-2) and 
fixing Daf =10-5. 
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(e)                                                                                                    (f) 

Fig. 8. Variations of steady average Nusselt number with τ (a), local Nusselt number with Y (b) for 
different Ra, Da and Dai. 

 
We notice in Figure 8 (a) that the average Nusselt number is an increasing function of the Rayleigh 

number Ra. This increase is due to the buoyancy forces that favors a maximum heat transfer for Ra 
which reaches a value of 106. 

In Figure 8 (b), we observe at Ra = 104   that the local Nusselt number decreases slightly along the 
left hot wall due to the existence of the nanoparticles in the base fluid. The local Nusselt number 
increases considerably along the hot wall with the increase of the Rayleigh number from 105 to 106, 
in this interval the maximal value of Nuloc is due to the important temperature gradient which 
motivates the convective heat transfer. 

The existence of nanoparticles in the base fluid increases the local rate of heat transfer [57]. In the 
figure 8 (c) the average Nusselt number (Nuavg) increases with the Darcy number (Da=10-2), due to 
the high permeability which augments the convective heat transfer. The low values of the Darcy 
number (Da=10-5) is reflected by the conductive flow.  
       We observe in Figure 8 (d), the variation of the local Nusselt number along the hot wall as a 
function of the Darcy number (Da), we notice that for the low value of Da =10-5 the local Nusselt is 
equal to unit, the conduction dominates the flow. The high values of Nu loc from Da = 10-4 to 10-3 
indicate that the heat exchange carried out by convection for high values of Darcy number. This 
increase is significant at Da = 10-2. We explained these phenomena due to the high permeability. 
      We notice in figure 8 (e) that the average Nusselt number at Dai =10-5, equal to unit, when Dai = 
10-4, there is an almost negligible increase, the average Nusselt number increase proportionally with 
Da from 10-4 to 10-2. At Dai =10-2, a high permeability favors movement of nanofluids through the 
porous medium. 

Figure 8 (f) presents the variation of Nuloc with y for various values of 𝐷𝑎i, it is observed that Nu 

loc is equal to unit at low value of initial Darcy number Dai = 10-5., we constate that Nuloc  is very high 
(Nuloc = 6) for high value of Dai varies from 10−4 to 10−2. We notice that the value of Nuavg (4.8) at Da 
=10-2 is higher compared to Dai = 10-2 (Nuavg = 4.3), and for the local Nusselt number respectively 
(Nuloc =2.95, 6). 
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5.6 Comparison between Isotropic Medium and Homogeneous Medium with Variable Permeability 
 

The numerical results are obtained for the case of an isotropic homogeneous porous medium 
with a constant permeability are compared with those of the homogeneous porous medium with 
variable permeability, with the variation of Da and Dai=10-5 à 10-2. According to the values obtained 
from the different variables for the Darcy number Da and initial Darcy number Dai, we sign that the 
dynamic and thermal field variables don’t change except for Da, Dai = 10-2, the absolute maximum 
value of the stream functions decreases from 8.62 to 7.08 for the Da and Dai respectively. 

The heat and masse transfer is more improved for the Darcy number Da compared to the intial 
Darcy number Dai. The flow intensity is weakened due to the low values of variable permeability and 
therefore the heat transfer is reduced. According to Figure 9, we notice that the average Nusselt 
number equal to unit from Da = Dai = 10 -5 to 10-4 for the two mediums, which explains that the heat 
transfer is dominate by pure conduction, for the high values of the average Nu the heat transfer is 
convective. From Da = 10-4 to 10-3the two curves move away in order to approach again at 10-2 we 
observe that the average Nusselt number of homogeneous porous medium with isotropic 
permeability is higher than this one of the homogeneous porous medium with variable permeability. 
The difference in the decrease of the average Nusselt number is about 13 .95%. 
      The effects of the variable permeability in the homogenous porous medium on the convection     
heat transfer are progressively inhibited. When Da is large Da >10-2 (absence of inertia forces), we 
approach the pure fluid medium [46]. 
      When the Darcy number is very low (low porosity) Da ≤ 10-5, the permeability variation has a 
strong influence on the heat transfer which is reduced. When Da increases, the variable permeability 
effect is insignificant on heat transfer which is maximum due to the high permeability. It can be 
concluded that permeability have an impact on heat transfer.   
 

 
                                                                           Darcy number                         Da               Dai 

Fig. 9. Evolution of the average Nusselt number according to 
the Darcy and intial Darcy number 
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6. Numerical validation  
 

The validation of the reference geometry is used by de Sheikhzadeh, S. Nazari was done under 
the same conditions, the equations used were similar and we can conclude that the same results are 
obtained for the iso-concentrations cases (see Figure 10). 
 

 
Fig. 10. Numerical comparison results of average Nusselt 
number with Sheikhzadeh, S. Nazari ------ and a present 
work------ 

 
7. Conclusions 
 

Laminar natural convection in porous square cavity filled with nanofluids was investigated. The 
Buongiorno’s model are used to simulate nanofluids flow and porous medium, the dimensionless 
equations were solved numerically by using the Galerkin finite element method. The results obtained 
are found in agreement with those of Nazari's publication. From the present study, we reveal that: 

 
i. The dimensionless time necessary to reach different variables dynamic and thermal field 

is about τ = 0.30, which is reflected by the flow stability and the dominance of convection 
heat transfer, it is strongly influenced by thermal buoyancy forces which contribute to 
enhance heat transfer.  

ii. The flow intensity is weakened due to the low values of permeability and consequently 
the heat transfer is reduced while the high value permeability facilitates the nanofluids 
movement. 

iii. The convective heat transfer is more significant due to the incorporation of nanoparticles 
in the base fluid. The decreases of average Nusselt number value is about 13 .95%. From 
this, we conclude that the heat and masse transfer is more improved for the 
homogeneous porous medium compared to the homogeneous porous medium with 
variable permeability. 
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