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 An H-rotor vertical axis wind turbine (VAWTs) can operate independently in any wind 
direction, making it aerodynamically efficient and suitable to harness wind energy in 
low wind speed areas. The aerodynamic efficiency of VAWTs is highly dependent on 
the blade geometry, especially the blade tip. Tip vortices produced at the blade tips 
can negatively affect the VAWT’s aerodynamic efficiency. Adding endplates to the 
blade tips can minimize the effects of tip vortices on VAWTs. In this paper, several 
endplate designs are used to evaluate the effectiveness in improving the power 
coefficient, Cp of a VAWT at three different tip speed ratios (TSRs) using three-
dimensional computational fluid dynamics (3D CFD) simulation. The power coefficients 
of VAWTs with endplates are compared with the baseline model with the same 
geometrical parameters where the baseline VAWT model is based on the experimental 
model from the literature. Since the focus of this study is on the blade tip design, a 
simplified 3D VAWT model is used where the supporting shaft and arms of the VAWT 
are excluded to reduce the needed computational capacity. Among the various 
endplate designs used in this study, the semi-circular inward endplate (ED3) with a 
diameter equivalent to 1.2 blade chord length showed the best improvement in the Cp 
which is by 7.45%, and 5.79% for at the TSRs of 2.19 and 2.58, respectively. The 
pressure difference on both sides of the blade was also examined. The results revealed 
that the endplate can prevent the flow from bypassing the blade tip, hence, preventing 
the occurrence of tip vortices while improving the aerodynamic efficiency near the 
blade tip, ultimately, improving the overall Cp of a VAWT. 
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1. Introduction

The severity of global warming and climate change urge energy sectors to replace fossil fuels with 
renewable energies as energy sources. Wind energy is one of the clean energies due to its availability 
across the globe [1, 2]. Recently, in the efforts to increase wind energy generation, vertical-axis wind 
turbines (VAWTs) have gained widespread attention due to the omni-directional characteristic that 
makes them ideal for small-scale energy generation in urban environments [3-5].  Studies from 
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Nofirman et al., [6] revealed that VAWTs are more suitable to be used in urban application when 
multiple turbines are installed on a building. Researchers have also started to explore the possibility 
to recover wind energy from the exhaust air [7].  

The performance of a VAWT is affected by various factors, one of which is the tip vortex shedding 
effect. The effect of tip vortex shedding on the performance of a VAWT is confirmed by Li et al., [8] 
where the authors noticed that the discrepancy between the 2.5D CFD study and the experimental 
results grew wider as the cross-sectional torque coefficient analysis moved towards the blade tip. 
Studies revealed that tip vortices occur intensely at a distance of about two-chord length from the 
blade tip [9, 10]. Thus, the tangential force becomes unevenly distributed along the blade span due 
to the induced drag created by the tip vortices.  

Several attempts have been made by researchers to improve the VAWT efficiency by minimizing 
the impact of tip vortices on the turbine blade. One of the most effective methods is by adding 
endplates to the blade [9, 11-19]. An endplate is a thin piece of object that is attached to the end tip 
to minimize the end tip leakage vortex by preventing the air from the high-pressure side from 
bypassing. It has been applied in many applications. The most prominent application is on the aircraft 
where the endplate is used to minimize the strength of the trailing edge vortex and to reduce the 
induced drag in the aircraft wing [20]. For the application on an aircraft, it has been reported that the 
endplate increased the lift-drag ratio when the angle of attack is positive [21]. 

Mishra et al., [14] used a three-bladed VAWT to evaluate the endplate size with 15 mm offset 
and 25 mm offset. The endplates are made from the NACA 0018 profile, which is the same profile as 
the blade, and it was tested for the tip speed ratio, TSR ranging between 0.25 to 0.8. The authors 
reported that the 15 mm offset endplate showed a better improvement in power efficiency. Similarly, 
Jiang et al., [22] evaluated five different sizes of endplate on a large-scale single-bladed VAWT at the 
TSR of 3. The endplate sizes were manipulated based on the edge distance between the endplate 
and the blade surface. It was concluded that the distance equivalent to 0.35 times the blade chord 
length, c, is the preferred distance. With this endplate size, the total torque of the blade was 
increased by 4.25%. However, it was reported by Gosselin et al., [9] that the large circular endplate 
is unable to improve the power performance although it is able to normalize the pressure distribution 
on the blade surface. On the other hand, Yamada et al., [17] investigated the endplates installation 
angles between -90°, -45°, + 45°, and + 90°. Amongst these installation angles, it was reported that 
the endplates positioned at -90° showed the best improvement in the VAWT power efficiency. 
However, none of these installation angles were able to improve the VAWT power efficiency when 
the operating conditions go below the TSR of 0.87. 

Although the endplate indeed improves the power performance of a VAWT, the effects of the 
endplate designs are not sufficiently studied. Therefore, the endplate profile effects need to be 
further investigated to determine its optimum design. 
 
2. VAWT Model and Operational Parameters  
 

The geometrical parameters of the H-rotor VAWT model in these studies were based on the rotor 
specifications used in the wind tunnel study of Li et al., [23]. The rotor blade is made from NACA 0021 
profile with a chord length, c of 0.265 m, a blade span of 1.2 m, and the blade is set to a +6° pitch 
angle. It is a two-bladed rotor with a rotor diameter, D of 2 m. The rotor solidity is 1.06, which is 
defined as Nc/D, where N is the number of blades, c is the chord length, and D is the rotor diameter. 
The geometrical model is shown in Figure 1(a).  
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According to Li et al., [23], the VAWT model was tested at three different tip speed ratios (𝑇𝑆𝑅 =
 ꞷ𝑅/𝑈∞), which are TSR = 1.38 (low tip speed ratio), 2.19 (optimum tip speed ratio), and 2.58 (high 
tip speed ratio).  
 
3. Simulation Model Introduction  
 

Since the 3D CFD simulation in this study is focused on the blade tip effect, the modeled 
mechanism of the rotor was simplified where the shaft and strut of the rotor were excluded. Besides, 
the symmetrical approach was adopted in these studies to further reduce the computational time 
because the upper rotor and the lower rotor are identical. The computational domain is partitioned 
into two regions, rotor and stator. As shown in Figure 1(b), the stator domain size was a rectangular 
tunnel with 10D (width) x 5D (height) x 25D (length) and the rotor domain size was a cylinder with a 
diameter of 1.5D and height of 1 m. The rotor has 10D upstream distance from the inlet and 15D 
downstream distance from the outlet. At the domain inlet, the experimental inlet velocity (𝑈∞) of 8 
m/s was set and the pressure outlet with a value of 0 Pa was used. The remaining four boundaries 
surrounding the stator were assigned as symmetry conditions. For the surfaces between the stator 
and the rotor, an interface boundary condition was employed to allow a smooth flow between these 
two domains. Lastly, a no-slip wall boundary condition was applied to the blade surfaces. 

The unstructured mesh approach was used for the entire computational domain. According to 
literature, the y+ (dimensionless wall distance) of less than 5 is commonly used in the 3D CFD 
simulation of VAWTs where it is sufficient to capture the viscous sub-layer boundary layer effect [24-
27]. Therefore, the first cell thickness on the blade walls was set to 3 x 10-5 m with 30 layers at a 
thickness growth rate of 1.2. 

The sliding mesh technique was applied to allow mass and momentum exchange among the cells 
between the stator domain and rotor domain. Besides, the mesh sizes on the surfaces between the 
stator domain and rotor domain were identical to ensure a smooth transition from one domain to 
another. To provide acceptable computational accuracy, the azimuthal time step of 1° was applied in 
the CFD simulations of this study, based on the CFD study of Wong et al., [24] validated with Li et al. 
[17]. 

The convergence of the simulation is based on the time history of the power coefficient, Cp over 
one revolution of the VAWT. When the Cp of the two successive revolutions shows a discrepancy 
lower than 1%, the solution is considered converged.  

The selection of the turbulence model was based on the comparison of various RANS turbulence 
models conducted by Wong et al., [24]. From the comparison, the author concluded SST k-ꞷ provides 
the closest match with respect to the experimental data obtained by Li et al., [23]; this was also 
confirmed by other researchers [28, 29]. Therefore, SST k-ꞷ is used in this study. Moreover, a 
pressure-based solver with the SIMPLE scheme was selected, similar to the setting used by Wong et 
al., [30]. It is commonly employed in CFD simulations for VAWTs due to its low computational cost 
and result accuracy [31]. 
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(a) (b) 

Fig. 1. (a) Geometrical illustration of the VAWT (b) Computational domain 
 

4. Results  
 

The performance of the VAWT is compared by evaluating the Cp which is defined in Eq. (1).  
 

𝐶𝑝 =  
𝑃

0.5𝜌𝐴𝑈∞
3

 

 

 
(1) 

where, P represents the power generated, ρ is the air density, and A is the area of the VAWT. The 
comparison was done for three tip speed ratios (𝑇𝑆𝑅 =  ꞷ𝑅/𝑈∞), which are 1.38, 2.19, and 2.58. 
 
4.1 Simulation Validation 
 

The wind tunnel test data published by Li et al., [23] were used for validation. The Cp at one of 
the blades for these cases at various azimuthal angles (θ) for a complete cycle is shown in Figure 2. 
The peaks of the Cp obtained from the simulation are 0.382, 0.594, and 0.65 whereas the 
experimental data are 0.419, 0.517, and 0.613 for the TSRs of 1.38, 2.19, and 2.58, respectively. The 
small difference in the peak Cp between the simulation and experimental data is due to the 
geometrical simplification between the simulation model and the experimental model [32, 33].  

Figure 2 shows that the Cp trend from the simulation shows good agreement with the 
experimental data for all three TSRs, especially in the upwind region (45° ≤ θ ≤ 135°). Nevertheless, 
there are some differences in the region 225° ≤ θ ≤ -30° between the simulation results and the 
experimental data, as reported by Li et al., [8]. This is because the flow field at this region is complex 
due to blade-wake interaction [34]. The differences are more severe for the TSR of 1.38 where the 
CFD unable to detect the second peak as per the experimental measurements. This is because CFD 
simulation is unable to exactly evaluate the pressure distribution to the lower analysis accuracy in 
dynamic stall [8, 29]. Furthermore, the same trends were reported by other researchers who use the 
similar NACA airfoil series [33, 35-37]. Furthermore, the CFD data obtained were also compared with 
the CFD data reported by Wong et al., [30], revealing close similarity. Generally, the comparison 
indicates that the numerical settings and boundary conditions applied in this work are able to 
produce comparable results with the published data.  
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Fig. 2. Comparison of Cp for the single-bladed VAWT between the simulation data and the wind tunnel 
test data for a complete revolution at TSRs of 1.38, 2.19, and 2.58 

 

4.2 Effects of Endplate 
 

To investigate the effects of endplate on the performance of VAWT, the same geometry of VAWT 

that was used in the validation studies is applied. Four different endplate designs based on NACA 

0030 (ED1), circular profiles (ED2), semi-circular inward (ED3), and semi-circular outward (ED4) each 

with a thickness of 1 mm, were used. The endplate designs are shown in Figure 3. For comparison, 

the blade span is maintained. The evaluation was done at TSRs of 1.38, 2.19, and 2.58.  

The effects of the endplate on the Cp of VAWT are summarised in Table 1. The results showed 

that none of the endplate designs were able to improve the performance at the TSR of 1.38. Amongst 

those, ED2 yields the most dropped in performance, which is a reduction of 31.16 % when compared 

to the baseline. However, the power performance calculated by CFD at a low TSR should be treated 

with caution due to a large angle of attack (AOA) variation at a low TSR which results in dynamic stall, 

and it is difficult to be captured accurately in CFD [38, 39].  

As for the TSRs of 2.19 and 2.58, ED2, ED3, and ED4 all showed improvement in the Cp. Amongst 

these three designs, ED3 delivers the most promising results, which improve the Cp by 7.45% at the 

TSR of 2.19 and 5.79% at the TSR of 2.58. On the other hand, ED2 only shows significant improvement 

at the TSR of 2.58, where the Cp is improved by 7.21%. Whereas ED4 showed insignificant 

improvement at the TSRs of 2.19 and 2.58, which is merely 1.75% and 0.42% respectively. On the 

contrary, ED1 worsens the Cp at the TSRs of 2.19 and 2.58 when compared with the blade without an 

endplate. 

To further understand the performance of VAWT with endplate, the instantaneous Cp over one 

revolution of a blade for each case is analysed. The summary of Cp for blade 1 is tabulated in Table 2 

and the instantaneous Cp is shown in Figures 4 (a), 4 (b), and 4 (c) which represent the operating 

conditions with the TSRs of 1.38, 2.19, and 2.58, respectively. A positive value of instantaneous Cp 

represents the blade producing useful energy whereas a negative value of instantaneous Cp 

represents the blade consuming the energy which gives a negative impact on the overall Cp.  As can 

be seen from the graphs, the blade with endplates shows higher amplitude, which means endplates 

increase not only the positive power but also the negative power at some azimuthal angles.  

As shown in Figure 4 (a), useful energy is only produced in the region between 20° ≤ θ ≤ 126° for 

the TSR of 1.38. When endplates are added, additional drag is added which makes the blades 
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consume extra energy to move in the non-energy producing region. This explains that endplates are 

unable to improve the Cp at the TSR of 1.38.  

On the other hand, the positive Cp region for the TSRs of 2.19 and 2.58 is much wider and the 

negative Cp region is much narrower compared to the TSR of 1.38. This is because the AOA is smaller 

at higher TSRs, hence delaying the occurrence of dynamic stall, allowing lift to be produced for a 

wider region [34]. At the TSR of 2.19, although ED2 improved the peak Cp by 13.89% compared to 

ED3 which only improved the peak Cp by 12.60%, ED2 showed a higher average negative region than 

ED3. Thus, ED3 delivers better improvement overall. Whereas for TSR 2.58, ED2 improved the peak 

Cp by 14.43% compared to ED3 which only improved the peak Cp by 11.83%. However, the average 

gain for ED2 in the positive region is more than ED3, hence, it managed to counter the loss in the 

negative region, making ED2 stand out in the overall performance. 

The pressure distribution for a blade at 90° where the VAWT is operating at the TSR of 2.58 is 

illustrated in Figure 5. The pressure distribution on both sides of the blade surfaces represents the 

amount of lift generated on each section. As noticed, endplates help in redistributing the flow 

condition along the blade span. In Figure 5(a) where the endplate is not attached to the blade tip, 

the surface pressure near the blade was distorted due to the presence of blade tip vortices. ED2 

showed the greatest pressure redistribution which explained that ED2 yields the highest Cp in Figure 

4(c). The increase in positive power is due to the successful suppression of tip vortices which 

increases the power generation near the blade tip. Therefore, the induced drag was reduced, and 

the blade aerodynamic performance was improved [38, 40]. 

Between ED3 and ED4, the pressure distribution contours revealed that the endplate should be 

facing inward in order to effectively minimize the blade tip loss. The pressure distribution contour on 

the low-pressure side for ED4 (Figure 5 (f)) is almost identical to the blade without an endplate (Figure 

5 (a)). This explained that ED4 did not show a significant improvement in the Cp compared to the 

blade without an endplate. 

Although Figure 5 (b) shows that ED1 did help in redistributing the pressure near the blade tip, it 

did not show improvement in the overall Cp. The energy recovered from the blade tip loss was lesser 

than the additional drag created by ED1. This can be interpreted from the positive region Cp in Table 

2. Indeed, the energy generation in the positive region when ED1 is added is lower than the blade 

without an endplate. Furthermore, ED1 also consumed extra energy where the negative region Cp is 

higher. To optimally suppress tip vortices, the lateral distance from the low-pressure side of an 

endplate must be large enough to prevent the flow from crossing over [15]. However, the lateral 

distance of ED1 is relatively smaller than ED2 and ED3. Therefore, the selection of an endplate is 

crucial to ensure that the loss of power due to the additional drag created by the endplate is not 

more than the additional positive power recovered. 
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(a) No endplate  
(b) Endplate design 1 (ED1)  

endplate profile = NACA 0030 

 
(c) Endplate design 2 (ED2)  

endplate profile = circular 

 

 
(d) Endplate design 3 (ED3)  

endplate profile = semi-circular inward 
 

 
(e) Endplate design 3 (ED4)  

endplate profile = semi-circular outward 
Fig. 3. Various blade tip designs 

 
Table 1 
Summary of the total Cp with four endplate designs, ED1, ED2, ED3, and ED4.  

Blade design TSR 

1.38 2.19 2.58 

Total Cp Improvement Total Cp Improvement Total Cp Improvement 

Baseline - no endplate 0.11455 - 0.31736 - 0.30315 - 

ED1 0.09188 -19.79 % 0.29603 -6.72 % 0.29262 -3.47 % 

ED2 0.07886 -31.16 % 0.32183 +1.41 % 0.32501 +7.21 % 

ED3 0.10159 -11.31 % 0.34102 +7.45 % 0.32070 +5.79 % 

ED4 0.10950 -4.41 % 0.32292 +1.75 % 0.30440 +0.42 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



CFD Letters 

Volume 14, Issue 6 (2022) 90-101 

97 
 

 
Table 2 
Summary of the blade 1 Cp with four endplate designs, ED1, ED2, ED3, and ED4.  

Blade design 

TSR 

1.38 2.19 2.58 

Positive 
region Cp 

Negative 
region Cp 

Average 
blade 1 Cp 

Positive 
region Cp 

Negative 
region Cp 

Average 
blade 1 Cp 

Positive 
region Cp 

Negative 
region Cp 

Average 
blade 1 Cp 

Baseline - no endplate  0.06608 -0.01067  0.05694 0.18608   -0.04301 0.15879 0.17996  -0.06175  0.15117 

ED1 0.05475   -0.01751 0.04614  0.17513  -0.06038 0.14708 0.17605   -0.09620 0.14362 

ED2  0.04689  -0.019696 0.03894  0.19051  -0.06160 0.16048 0.19702   -0.08975 0.16286 

ED3  0.05971 -0.01245  0.05111  0.19934  -0.04541 0.17019 0.19145   -0.07251 0.16 

ED4 0.06436   -0.01615 0.05477  0.19011  -0.04889 0.16165 0.18284   -0.07395 0.15225 

 

  
(a) (b) 

 
(c) 

Fig. 4. Comparison of Cp for the single-bladed VAWT with different endplate 
designs for a complete revolution at the TSRs of (a) 1.38, (b) 2.19, (c) 2.58 
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 No endplate ED1 ED2 ED3 ED4 

 
 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(f) 

 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Fig. 5. Comparison of pressure distribution on the blade at the azimuthal angle of 90° at the TSR of 2.58. Images 
(a) to (f) show the low-pressure side, whereas images (g) to (k) show the high-pressure side.  
 

5. Conclusion  
 

In this paper, the effects of four different endplate designs were investigated via 3D CFD 
simulations. From the investigation, the most suitable endplate design was identified. Based on the 
results presented in this paper, it was found that ED3 is suitable to apply at the TSRs of 2.19 and 2.58 
where it showed improvement to the tested conditions. The findings obtained supported that the 
increase in Cp for a VAWT with endplates is due to the success in minimizing the formation of tip 
vortices.  Essentially, the endplate should have sufficient lateral distance at the low-pressure side of 
the blade to effectively prevent the flow from crossing over to the opposite side to form tip vortices. 
Nevertheless, further studies are required to understand the relationship between the additional 
drag created by the endplate and the induced drag that can be recovered by the endplate in order to 
determine the optimum endplate size. However, the tested endplate designs were unable to show 
improvement in the VAWT power performance at the TSR of 1.38. Further evaluation will require a 
higher-order turbulence model to capture the dynamic stall in order to obtain a more accurate 
prediction.  
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