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The existence of more than one diffusive component in fluid mixtures is observed in 
these situations: underground water flow, the mechanism of acid rain, the existence 
of contaminant in some certain mixture, etc. These diffusive components are occurred 
with the single temperature gradient (since all of the elements are dissolved into the 
same mixture) and 2 types of concentration gradients (since the dual diffusive 
components are dissolved in the same mixture). Besides, many industrial and 
engineering processes are utilizing the concept of convective fluid flow especially over 
a shrinking sheet. Therefore, a mathematical model for triple-diffusive flow over a 
nonlinear compressing sheet has been developed in this paper, and subjected to the 
Soret-Dufour effects. The model comprises of five initial equations namely continuity, 
momentum, energy, concentration of component 1 and concentration of component 
2 equations, together with boundary conditions. These initial equations are expressed 
as partial differential equations. However, the finalized equations are in the form of 
ordinary differential equations. Later, the bvp4c programme provided by the Matlab 
Software is used to solve the ordinary differential equations and the boundary 
conditions. Three distinct values of each governing parameter are fixed into the bvp4c 
function, to observe the behaviour of the physical parameters, namely as local Nusselt 
number and local Sherwood number. The main finding of the dual numerical solutions 
varies for increasing governing parameters until they intersect at the critical points. In 
conclusion, the governing parameters affects the heat and mass transfer of the fluid 
flow model model. 

Keywords: 

Local Nusselt number; local Sherwood 
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1. Introduction 
 

Newtonian fluid is seen from its property whose viscosity is unaffected by shear rate. As such, it 
has the simplest mathematical model in which the viscosity term is taken into calculation. Whilst the 
non-Newtonian fluids cover broader spectrum of fluids which make them more practical in industrial 
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applications, the underlying of Newtonian fluid is of great importance. Ludwig Prandtl proved in his 
study of Newtonian fluids that viscosity plays its role in the fluid boundary layer, while viscosity can 
be neglected in the region around or outside the fluid boundary [1]. Some of the early works can be 
found in Ref. [2-4]. 

The interest of fluid flow over an extending sheet has gained substantial attention in view of 
several industrial applications such as the extrusion of plastic sheets from a die, cooling of continuous 
strips, glass fibre production and etc. The boundary layer flow due to an extending sheet can be 
occurred to the various types of fluid (Newtonian or non-Newtonian fluid). Sakiadis [5] was the first 
to venture the study of extending sheet which later motivates others to further explore the same 
scope. Subsequently, the related studies are developed with the additional restrictions such as 
affected by joule heating and viscous dissipation [6], the mixed convection model [7], and bounded 
by a permeable medium [8]. The fluid types are Newtonian [6] and non-Newtonian Casson fluid [7,8]. 
On contrary, the effect of compressing sheet was considered by previous studies [9-11] for the 
ferrofluids [9], Newtonian fluid [10], and hybrid nanofluid [11]. 

All the above mentioned studies considered the motion of fluid on a flat surface. It is worth noting 
that motion of fluid flow can also be along inclined surfaces. The inclined extending model in the 
Newtonian [12] and non-Newtonian fluid have been reported [13,14] recently. The characteristics of 
these studies are as follow: The magnetohydrodynamics (MHD) Newtonian model [12], water-based 
nanofluid with gyrotactic micro-organism [13], and a electrification of particles in a dusty flow [14]. 

The imposition of radiation in the boundary layer fluid flow is very significant especially when the 
temperature difference between the sheet and the ambient is extremely high. This in turn results in 
various industrial applications such as combustion of fuels, gas turbine, nuclear power stations, 
operation of a furnace and etc. The radiating fluid flow over an inclined sheet has been described 
due to the specific characteristics such as when the MHD Williamson nanofluid is affected by a non-
uniform heat source/sink [15], when the convection model is unsteady and the interaction among 
the dissolved particles are taking into account [16], and the nanoparticles in the water are copper 
and alumina in the mixed convection nanofluid model [17]. 

All the above reported references do not incorporate mass and heat fluxes. Whenever there are 
composition and temperature gradients, energy and mass fluxes will be produced in the boundary 
layer fluid flow model. These are known to be Dufour and Soret effects, respectively and these 
features have been reported recently [18-20]. These publications described the effect of the heat 
source and first order chemical reaction in the Casson fluid [18], the boundary layer fluid flow when 
the boundary shape of the fluid is an inclined square enclosure [19], and the Casson fluid flow model 
is subjected to the thermal radiation and heat source/sink [20]. 

Triple diffusive in the fluid flow is formed when there are simultaneous differences in these three 
components: temperature, salinity, and the concentration of the certain particles submerged in the 
fluid. The triple diffusive model can be implemented in the industrial applications, such as in metal 
casting and alloy production, chemical engineering, hydrothermal vent system, etc. The recent 
studies regarding the triple diffusive flow are reported, based on the variations of heat source and 
temperature gradients [21-23], and magneto-convection system [24,25]. 

Motivated by the above mentioned works, this study is dedicated to the fluid flow over an inclined 
stretching sheet under several physical properties such as radiation and Soret-Dufour effects, and 
under the model of triple diffusive as reported by Archana et al., [26]. They reported the properties 
of triple diffusive convection in an incompressible nanoliquid and bounded by horizontal flat surface. 
Their model is innovated in this paper by changing the boundary surface to be inclined, and the 
original fluid from the previous model which is nanofluid is replaced by Newtonian fluid. The triple 
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diffusive mathematical model is developed in this paper and Archana et al., [26] since it can describe 
the properties of heat and mass diffusion, simultaneously.  
 
2. Methodology  
2.1 Flow Model 
 

The diagram of the fluid model is presented in Figure 1, and characteristics of the fluid flow model 
are as below: 

 
i. The dimension in this model is two-dimensional Cartesian coordinates 

ii. The Newtonian fluid (water) acts as a based fluid which contain 2 different components: 
Sodium chloride (NaCl) and sucrose with respecting concentrations 𝐶1 and 𝐶2.  

iii. The temperature and concentration at the sheet are denoted by  𝑇𝑤,  𝐶1𝑤 and 𝐶2𝑤, where 
the location at the sheet for the temperature and concentration variations is denoted as 
subscript 𝑤. The subscript 1 in the concentration 𝐶1𝑤 is referred to the concentration of the 
first component, whereas the subscript 2 in 𝐶2𝑤 defines the concentration of the second 
component.  

iv. Otherwise, the ambient temperature and solutal concentrations are represented by 𝑇∞,  
𝐶1∞ and 𝐶2∞. The subscript ∞ in for these symbols (𝑇∞,  𝐶1∞ and 𝐶2∞)  is indicated by  the 
location of the fluid point far from the sheet. The subscript 1 in 𝐶1∞ is indicated as the 
concentration of the first component, whereas the subscript 2 in 𝐶2∞  defines the 
concentration of the second component.  

v. The fluid is bounded by a compressing sheet, where this sheet is projected by a certain angle 
α from a reference axis.  

vi. The velocity in horizontal and vertical axes is denoted by 𝑝  and 𝑞 . The velocity of the 
compressing sheet is represented by 𝑝𝑤 whereas the wall mass suction is indicated by 𝑞𝑤< 
0. 

 
2.2 Continuity Equation 
 

The continuity equation is shown as below: 
𝑝𝑥 = −𝑞𝑦 (1) 

 

The velocity components 𝑝 and 𝑞 are represented based from the stream function𝜓 = 𝛼𝑅𝑎𝑥
1 4⁄ , 

where  𝑝 = 𝜓𝑦 and 𝑞 = −𝜓𝑥. The boundary layer thickness is denoted as 𝜂. 

 

𝜓 = 𝛼𝑅𝑎𝑥
1 4⁄  

𝑅𝑎𝑥 =
𝑔(1 − 𝐶∞)𝛽𝑇(𝑇𝑤 − 𝑇∞)𝑥3

𝜈𝛼
 

𝜂 = 𝑅𝑎𝑥
1 4⁄ 𝑦

𝑥
 

(2) 

 



CFD Letters 

Volume 16, Issue 11 (2024) 133-145 

136 
 

 
Fig. 1. The graphical representation of the fluid flow model 

 
Substitute Eq. (2) into Eq. (1), then Eq. (1) is satisfied.  
 
2.3 Momentum Equation 
 

The momentum equation for this model is 

 
Where 𝜌𝑓   is the fluid density, 𝜇 is the fluid viscosity coefficient,  𝛽𝑇  is the coefficient of thermal 

expansion, 𝛽𝐶 is the coefficient of volumetric solutal expansion of component 1 and component 2 
respectively, and 𝑔 is the gravitational acceleration. 

The following similarity variables are introduced to transform the partial differential equations 
into ordinary differential equations. 

 
𝑇 = 𝑇∞[1 + (𝜃𝑤 − 1)𝜃(𝜂)], 

𝜃(𝜂)=
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                 𝜙1(𝜂)=

𝐶1−𝐶1∞

𝐶1𝑤−𝐶1∞
,                 𝜙2(𝜂)=

𝐶2−𝐶2∞

𝐶2𝑤−𝐶2∞
                

(4) 

 
Substituting Eq. (2) and Eq. (4) into Eq. (3), then Eq. (3) is transformed as: 

 

  𝑓𝜂𝜂𝜂 +
1

4𝑃𝑟
(3𝑓𝑓𝜂𝜂 − 2(𝑓𝜂)

2
) − (𝜃 + 𝑁𝐶1𝜑1 + 𝑁𝐶2𝜑2) cos 𝛼 = 0               (5) 

 

𝜌𝑓(𝑝𝑝𝑥 + 𝑞𝑝𝑦) = 𝜇𝑝𝑦𝑦 

− {(1 − 𝐶∞)𝜌𝑓∞ [
𝛽𝑇(𝑇 − 𝑇∞) + 𝛽𝐶1(𝐶1 − 𝐶1∞)

+𝛽𝐶2(𝐶2 − 𝐶2∞)
] cos 𝛼} 𝑔 

(3) 
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Here, 𝑃𝑟 is the Prandtl number and 𝑁𝐶  is the buoyancy ratio parameter where the subscripts 1 
and 2 refer to the NaCI and sucrose. 𝑃𝑟 is defined as the ratio of momentum diffusivity to thermal 
diffusivity, whereas 𝑁𝐶  indicates the relative strength of the natural convection to the forced 
convection. 
 
2.4 Energy Equation 
 
The representation of the energy equation is shown by Eq. (6): 
 

𝑝𝑇𝑥 + 𝑞𝑇𝑦 = 𝑎𝑇𝑦𝑦 + 𝜏 [
𝐷𝑇

𝑇∞
(𝑇𝑦)

2
] −

1

(𝜌𝑐)𝑓
(𝑞𝑟)𝑦 + 𝐷𝑇𝐶1(𝐶1)𝑦𝑦 + 𝐷𝑇𝐶2(𝐶2)𝑦𝑦     (6) 

 
Where 𝑎 = 𝑘 (𝜌𝑐)𝑓⁄  is the thermal diffusivity of the fluid, 𝑘  is the thermal conductivity, 𝑐𝑓  is the 

specific heat coefficient of fluid, 𝜏 = (𝜌𝑐)𝑝 (𝜌𝑐)𝑓⁄  is the ratio of effective heat capacity of the 

nanoparticle material to heat capacity of the fluid, 𝐷𝑇  is the coefficient of thermophoretic diffusion, 
𝑞𝑟 is the radiative heat flux, 𝐷𝑇𝐶  is the Dufour type of diffusivity. 
 
The final energy equation is 
 

{1 + 𝑅𝑑[1 + (𝜃𝑤 − 1)𝜃]3}𝜃𝜂𝜂 +
3

4
𝜃𝜂𝑓 + 𝑁𝑡(𝜃𝜂)

2
+ 𝐷𝑏1(𝜑1)𝜂𝜂 + 𝐷𝑏2(𝜑2)𝜂𝜂           

   

+3𝑅𝑑[1 + (𝜃𝑤 − 1)𝜃]2(𝜃𝑤 − 1)(𝜃𝜂)
2

= 0        

(7) 

 
Where 𝑅𝑑  is the radiation,  𝜃𝑤  is the temperature ratio,  𝑁𝑡  is the thermophoresis and 𝐷𝑏 is the 
Dufour number. 𝑅𝑑  indicates the relative contribution of conduction heat transfer to thermal 
radiation transfer,  𝑁𝑡 defines the force induced a temperature gradient, and 𝐷𝑏 defines the effect 
of the concentration gradients to the thermal energy transfer.  
 
2.5 Concentration Equation 
 
The concentration of 2 components are 
 

𝑝(𝐶1)𝑥 + 𝑞(𝐶1)𝑦 = 𝐷𝑠1(𝐶1)𝑦𝑦 + 𝐷𝐶1𝑇𝑇𝑦𝑦            (8) 

  
𝑝(𝐶2)𝑥 + 𝑞(𝐶2)𝑦 = 𝐷𝑠2(𝐶2)𝑦𝑦 + 𝐷𝐶2𝑇𝑇𝑦𝑦    (9) 

 
By substituting the similarity variables Eq. (2) and Eq. (4) into Eq. (8)-(9), then these equations 

become 
 

𝜙1𝜂𝜂
+

3

4
𝐿𝑒1𝑓𝜙1𝜂

+ 𝑆𝑟1𝜃𝜂𝜂 = 0       (10) 

  

𝜙2𝜂𝜂
+

3

4
𝐿𝑒2𝑓𝜙2𝜂

+ 𝑆𝑟2𝜃𝜂𝜂 = 0    (11) 
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Where 𝐿𝑒 and 𝑆𝑟 is the Lewis number and Soret number, respectively. 𝐿𝑒 is defined as the ratio of 
thermal diffusivity to mass diffusivity. Besides, 𝑆𝑟 shows the result of the concentration distribution 
induced by a temperature gradient.  
 
2.6 Boundary Conditions 
 
The restrictions at the boundaries are stated as  
 

𝑝 = 𝜆𝛼𝐴1 2⁄ 𝑥1 2⁄ ,     𝑞 = 𝑞𝑤,     𝑇 = 𝑇𝑤,      𝐶1 = 𝐶1𝑤,       𝐶2 = 𝐶2𝑤          at   𝑦 = 0, 
𝑝 → 0,                       𝑞 → 0,      𝑇 → 𝑇∞,      𝐶1 → 𝐶1∞,      𝐶2 → 𝐶2∞          as   𝑦 → ∞. 

(12) 

 
The compressing sheet parameter is denoted by 𝜆 < 0. The wall mass suction velocity, 𝑞𝑤(𝑥) <

0 and 𝐿 refers to the reference length of the compressing inclined sheet. 
 

Above equation is transformed as below, by using Eq. (2) and Eq. (4): 
 

𝑓𝜂 = 𝜆,          𝑓 = 𝑆,          𝜃(0) = 1,           𝜑1(0) = 1,          𝜑2(0) = 1           at   𝜂 = 0, 

𝑓𝜂 → 0,          𝑓 → 0,         𝜃(∞) → 0,         𝜑1(∞) → 0,         𝜑2(∞) → 0         as   𝜂 → ∞.  

(13) 

 
where 𝑆 > 0 is the suction parameter. 
 
2.7 Physical Parameters for the Heat and Mass Transfers 
 

The physical parameters helps to understand how the fluid flow, heat and mass transfer behaves 
on the surface of the stretching sheet. It is important to explore the effects that the governing 
parameters will leave on these parameters in order to have the knowledge about the fluid dynamics 
on the surface. In this study, two physical parameters are considered. The local Nusselt number and 
local Sherwood number for the both components are defined as below, 
 

𝑁𝑢𝑥 = [𝑥/𝑘(𝑇𝑤 − 𝑇∞)] (−𝑘
𝜕𝑇

𝜕𝑦
+ (𝑞𝑟)𝑤)

𝑦=0

 (14) 

  

𝑆ℎ𝑥1 = [𝑥/(𝐶1𝑤 − 𝐶1∞)] (−
𝜕𝐶1

𝜕𝑦
)

𝑦=0

 (15) 

  

𝑆ℎ𝑥2 = [𝑥/(𝐶2𝑤 − 𝐶2∞)] (−
𝜕𝐶2

𝜕𝑦
)

𝑦=0

 (16) 

 
         

The non-dimensional form of the physical parameters is obtained by substituting Eq. (2) and Eq. 
(4) into Eq. (14)-(16), and then the below equations are formed. 

 

𝑅𝑎𝑥
−1 4⁄ 𝑁𝑢𝑋 (1 + 𝑅𝑑𝜃𝑤

3)⁄ = −θ'(0),           𝑅𝑎𝑥
−1 4⁄ 𝑆ℎ𝑥1 = −𝜙1′(0). 

𝑅𝑎𝑥
−1 4⁄ 𝑆ℎ𝑥2 = −𝜙2′(0). 

(17) 
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From Eq. (17), the symbols 𝑁𝑢𝑥 , 𝑆ℎ𝑥1  and 𝑆ℎ𝑥2  are included in the main parameters −θ'(0),  
−𝜙1′(0), and −𝜙2′(0), respectively. In the subsequent sections, the local Nusselt number, local 
Sherwood number for NaCI and local Sherwood number for sucrose are recognized as −θ'(0),  
−𝜙1′(0), and −𝜙2′(0), separately. 
 
3. Results and Discussion 
 

The aim of the current model is to numerically solve the triple diffusive convection in an 
incompressible Newtonian fluid and bounded by an inclined compressing surface. With the usage of 
Matlab bvp4c, the graphs of local Nusselt number and local Sherwood number have been drawn. 
Dual numerical solutions are found for all the graphical results in this study (Figures 2-5): First solution 
is drawn as a upper branch of the physical parameters (dashed line) and second solution (lower 
branch in the same graphs and is it sketched as a solid line). However, only the first solution is 
considered stable and physically reliable in the actual fluid situation [27-29]. The parametric values 
in this model are as follows:  α = 60°,   Pr = 1,  𝑁𝑡 =0.1, 𝑁𝑐1 =0.5, 𝑁𝑐2 =0.1, Rd =  10,  𝐿𝑒1 =0.5, 
𝐿𝑒2=0.7, and 𝜆 = 0.8. All these values can produce the numerical results that follows the boundary 
conditions, as presented in Eq. (13). 

Before discussing the results from this mathematical model, the verification from the previous 
study has to be described. Therefore, this model has been compared with another type of numerical 
method, namely as shooting method. This specific method for the triple diffusive case has been 
described in details [30], hence only the comparison table (Table 1) is displayed in this paper for the 
single solution only (stable numerical solution). Table 1 displays the good comparison in the heat 
transfer rate, proves that the current method (bvp4c function provided by MATLAB software) is 
applicable to implement to perform the numerical results in this triple diffusive model. 
 

Table 1 
The heat transfer rate between Matlab bvp4c and shooting method 
Compressing rate λ MatLab bvp4c Shooting method 

 -0.2 0.329666623 0.32957 
-0.3 0.323023345 0.32301 
-0.35 0.268465753 0.26832 

 
 Eq. (8)-(11), Eq. (13) and Eq. (17) are solved in the Matlab bvp4c method. The values of governing 

parameters, namely as buoyancy ratios of both components, thermophoresis parameter, Dufour 
number of both components, Lewis number for both components, radiation parameter, and Soret 
number for both components will be fixed in bvp4c function, together with the highest boundary 
layer thickness. These values, are accepted as long as the numerical results satisfy the boundary 
conditions. The physical parameters that have been reported in this paper are the local Nusselt 
number and local Sherwood number for component 1 and component 2, due to the effect of Soret 
and Dufour numbers. 

 
3.1 Variations of Local Nusselt Number 
 

It is important to study this variation in order to detect how much heat is being transferred by 
convection and how much is being transferred by conduction. Figures 2 and 3 are the graphs against 
𝑆𝑟1 and 𝑆𝑟2 for increasing values of 𝐷𝑏1 and 𝐷𝑏2. The first and second solution of behave in opposite 
manner and intersect at the critical points as 𝑆𝑟1 increases. The graphs decline for increasing value 
of 𝐷𝑏1 . This emphasizes that the more the heat transferred by concentration difference of 
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component 1, the less the heat will be transferred by convection. In addition, the position of the 
critical point shows the region or the range of the stable or unstable solution. The critical points for 
𝐷𝑏1=0.2, 0.4, 0.6 are 0.4648, 0.4761 and 0.4884 respectively. The critical points move to the right 
which shows that the greater value of 𝑆𝑟1 is needed to make the first and second solutions equal as 
𝐷𝑏1 increases. 

The Soret parameter for component 2 also affects the profile of local Nusselt number in same 
manner as of component 1. For increasing value of 𝑆𝑟2, the second solution of the profile increases 
while the first solution decreases until both solutions meet at one point. In Figure 3, when 𝐷𝑏2 is 
increased, both the solutions decline. These two solutions meet at the critical points 𝑆𝑟2𝑐 = 1.0420, 
1.0275, 0.9870. Unlike component 1, for component 2, the critical points are decreasing. These 
values clearly show that for greater value of 𝐷𝑏2, the solutions intersect at small value of 𝑆𝑟2. 

 

 
Fig. 2. The variation of local Nusselt number against 𝑆𝑟1 for different values of 𝐷𝑏1 

 
From Figure 2, the largest range of the local Nusselt number for NaCI is owned by the numerical 

solution obtained by 𝐷𝑏1=0.2 and 𝑆𝑟1𝑐= 0.4648. On the other hand, the largest range of the local 
Nusselt number for the sucrose (Figure 3) is when 𝐷𝑏2=1.0 and 𝑆𝑟2𝑐= 1.0420. As a result, the highest 
range of numerical solution of the local Nusselt number can be obtained for the lowest Dufour 
number. 

The variations of the local Nusselt number (Figures 2 and 3) show that the region of the numerical 
solution is largest for the lowest Dufour number. This observation indicates that the heat transfer is 
affected by some range of the Soret number and to archieve a maximum range of heat transfer, the 
lowest Dufour number must be selected in the mathematical model. Besides, since the local 
Sherwood number can be expanded when the Dufour number is high, the range of the mass transfer 
can be extended by the high value of Dufour number. 
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Fig. 3. The variation of local Nusselt number against 𝑆𝑟2 for different values of 𝐷𝑏2 

 
3.2 Variations of Local Sherwood Number 
 

In triple diffusive flow, the mass of fluid is transferred according to temperature and 
concentration gradient by both convection and diffusion. It is very crucial to study about how much 
of mass is actually being transferred by convection and how much is being transferred by diffusion 
along the surface of compressing sheet which is actually the local Sherwood number. The related 
studies regarding to the combination of heat-mass transfer, together with the numerical results of 
local Sherwood number have been reported [31-33]. The related graph against 𝑆𝑟1 is illustrated in 
Figure 4. It could be observed that as the value of 𝐷𝑏1 increases, both the solutions rise. The critical 
points are moving to the right from 0.4648 to 0.4884. 

In Figure 5, the values of local Sherwood number of component 2 is plotted against the increasing 
value of 𝑆𝑟2. Like the previous profile, both solutions of this profile also rise for increasing value of 
𝐷𝑏2. In addition, the critical values are moving to the left from 1.042 to 0.987 with increment in the 
parameter. 

An increment in Dufour parameter means the decrement in the molecular diffusion. Thus, less 
mass of fluid is being transferred by diffusion which in return makes the value of Sherwood numbers 
to be large. This means that the mass of fluid being transferred by convection could be increased by 
increasing the value of Dufour parameters. 

Both of the local Sherwood number graphs (Figures 4 and 5) show the largest range of stable and 
unstable numerical solution for the lowest Dufour number, by observing the position of the critical 
number of Soret number. Besides, the smallest region of the numerical solution is obtained when the 
Dufour number is the highest. 
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Fig. 4. The variation of local Sherwood number of component 1 against 𝑆𝑟1 for different values 

of 𝐷𝑏1 
 

 
Fig. 5. The variation of local Sherwood number of component 2 against 𝑆𝑟2 for different values 

of 𝐷𝑏2 
 
4. Conclusions 
 

The numerical graphics of local Nusselt number and local Sherwood number of the triple diffusive 
in the Newtonian fluid flow are presented. Hence, the following statements can be written as a 
conclusions from the Results and Discussion section: 

 
i. When the Dufour number increases, the local Nusselt number will face a decrement. This 

indicates that if the Dufour parameter is increased, the heat transferred by the mean of 
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conduction increases. In order to ensure most of the heat would be transferred by 
convection, the Dufour parameter should be decreased.  

ii. However, the local Sherwood number increases when the Dufour parameter is increased. 
Therefore, the mass of Casson fluid to be transferred by convection could be increased by 
increasing the Dufour number of both components. 

 
This research is restricted to the non-Newtonian Casson fluid, since this type of fluid has higher 

concentration compared to the Newtonian fluid. This research can be extended to the other non-
Newtonian fluid such as Carreau fluid, Maxwell fluid and Eyring-Powell fluid. Moreover, hybrid 
nanofluids are highly recommended where the specific components of mass 𝐶1  and 𝐶2  can be 
renamed. 
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