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TVD schemes have many selections of limiters, but the recommendation of limiters for 
specific cases is not available in the literature. This study focuses on incorporating two 
flux limiters as the extension of the TVD schemes proposed by Harten-Yee and Davis-
Yee and extends the test case on external flows, blunt-body. The method used in this 
study is Harten-Yee Upwind TVD and Davis-Yee Symmetric TVD scheme with different 
limiter functions to simulate cases for two-dimensional compressible flow. The results 
show that all the limiter functions can capture shock waves when the flow passes 
through the geometry at Mach number 𝑀𝑎 = 2.0. The flow features such as bow 
shock, oblique shock, shock wave reflection, interaction, and expansion wave can 
all be captured in the case of the bump in a channel and wedge. While in the case 
of the external supersonic flow passing through the blunt-body, the presence of a 
bow shock was captured. We discovered that Davis-Yee limiter number 2 performs 
significantly better than other proposed Davis-Yee and Harten-Yee limiters for the case 
in this study. Therefore, the Davis-Yee Upwind TVD method is recommended to be 
applied for the identical case on the expansion of this study. 
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1. Introduction 
 

Considering recent advances in aerospace engineering, current research focuses on supersonic 
and hypersonic flow domains. These engineering applications surpassed the Mach number of 0.3, 
where compressibility effects are no longer negligible [1]. As the Mach number increases, the 
variation in density within the flow becomes even more prominent [2]. The transition from an 
incompressible to a compressible state resulted in fascinating physical phenomena, which include 
shockwaves and contact discontinuities. In addition, the greater the Reynolds number of a flow, the 
thinner its boundary layers are relative to its streamlined size, which gives the flow an inviscid 
assumption due to the small dimension of its viscous region [3]. 

A significant amount of research and development has been done to perfect methods for 
capturing the sharp gradients associated with shock waves and contact discontinuities in 
compressible fluid flow. Total variation diminishing (TVD), essentially non-oscillatory (ENO), and 
weighted essentially non-oscillatory (WENO) are the most often used shock-capturing schemes. 
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Due to high performance and parallel scalability, explicit Runge-Kutta schemes are the most often 
utilized time discretization for hyperbolic partial differential equations (PDEs) [4]. The explicit Runge-
Kutta scheme prevents the inversion of large nonlinear systems by spatial discretizations [5]. Fourth-
order Runge-Kutta scheme with central differencing of the convective term has a stability 

requirement 𝑐 ≤ 2√2, exceeding the stability requirement, 𝑐 ≤ 1 of most linear hyperbolic 
equations. Damping term needs to be included for nonlinear hyperbolic equations to stabilize the 
solution as the scheme may be unstable when central differencing of the convective term is used [6]. 
Another scheme that can reduce the dispersion error that appears as oscillation other than an 
artificial viscosity term in the equation is the TVD scheme. 

Total variation Diminishing (TVD) scheme possesses properties needed to compute domains with 
discontinuities. The fundamental advantage of TVD schemes is that no additional artificial viscosity is 
required, and they can suppress the spurious numerical oscillation across discontinuities [7]. TVD 
schemes eliminate the oscillations within the domain while reducing the shock-smearing. However, 
the numerical solutions may not be free of oscillations as a high-order scheme could cause 
oscillations and overshoots under highly convective conditions [8,9]. Yee [10] presented a new 
implicit, unconditionally stable, high-resolution TVD scheme for steady-state calculations that are not 
generating spurious oscillations for a constant coefficient system and a nonlinear scalar equation. 
The accuracy and monotonicity are preserved by the Second-Order TVD schemes using limiter 
functions [11]. In a particular advection case, different limiters may operate differently. 

The modified Fourth-Order Runge-Kutta scheme uses a central difference approximation that 
may generate a significant dispersion error in the vicinity of sharp flow gradients, referred to as shock 
waves. Therefore, a post-processor that provides a way to add artificial dissipation mechanisms must 
be added to reduce oscillations in the solution [12]. TVD-limiters are selected as the artificial 
dissipation mechanisms in the present research. 

Harten-Yee Upwind TVD and Davis-Yee Symmetric TVD are two out of various second-order TVD 
schemes. In order to evaluate high-resolution numerical solutions in smooth regions and sharp 
results in the vicinity of shocks and discontinuities, high-resolution schemes are developed [13]. 
Harten constructs high-resolution TVD schemes by applying modified flux to a first-order TVD scheme 
[14]. The scheme is second-order in smoothness regions and first-order in extrema points due to the 
modified flux. 

At each iteration level, the solution is enhanced with a Total Variation Diminishing (TVD) model 
in a post-process stage to stabilize it after modified Fourth-Order Runge-Kutta was applied to solve 
problems [15]. The modified Runge-Kutta scheme is then presented, followed by a description of the 
Davis-Yee symmetric TVD model in the methodology. 

The Fourth-Order Runge-Kutta scheme consists of four steps, and the last step is the TVD 
scheme's implementation. Various TVD schemes have been developed, such as Harten-Yee Upwind 
TVD, Roe-Sweby Upwind TVD, Davis-Yee Symmetric TVD, and MacCormack TVD schemes. Harten-
Yee Upwind TVD and Davis-Yee Symmetric TVD schemes will be utilized in this study. Hence the 
Modified Fourth-Order Runge Kutta augmented with TVD is applied to the flow passing through 
wedge, blunt-body, and bump in a channel. Wedge and bump in a channel belong to the internal 
flow problem, while blunt-body belongs to the external flow problem. This study will discuss the 
fluid flow with Mach number 𝑀𝑎 = 2.0. 

Harten-Yee and Davis-Yee have made significant contributions to the development of two of the 
most well-known techniques for TVD. On a numerical level, it is commonly acknowledged that these 
particular techniques have been replaced by newer, more stable, and computationally inexpensive 
solvers. Therefore, the purpose of this study is not to design a solver that surpasses the capabilities 
of existing CFD codes, but to investigate the possibilities of enhancing the shock-capture method by 
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comparing the flux limiters. Due to the inherent nature of high-order linear schemes, which create 
spurious oscillations in the region of discontinuities and shocks inside the solution, nonlinear 
approaches, such as flux or slope limiters, are implemented to mitigate these shortcomings. The prior 
study was limited to a single flux limiter, as illustrated by Eq. (32) and Eq. (33), and only internal flow 
within the wedge was considered [16]. 

As an extension of the TVD schemes proposed by Harten-Yee and Davis-Yee, this study aims to 
incorporate two flux limiters and extend the test of external flows on different geometries. To 
emulate the scheme's ability to record compression and expansion waves in an internal flow, the 
numerical analysis of these TVD schemes is extended to include a bump in a channel. Furthermore, 
in order to model bow shocks, the blunt-body geometry, which involves an external flow, is also 
examined. Finally, the performance of these several limiters is evaluated and compared to identify 
the flux limiter with the highest efficiency. 
 
2. Governing Equation of Fluid Motion 
 

The governing equation of motion for two-dimensional inviscid compressible flow in vector 
notation is written as: 
 
𝜕𝑄

𝜕𝑡
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
= 0             (1) 

 
Where 
 

𝑄 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑒𝑡

] , 𝐸 = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝜌𝑒𝑡 + 𝜌)𝑢

] , 𝐹 = [

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
(𝜌𝑒𝑡 + 𝜌)𝑣

]                     (2) 

 
In the equation above, the definition of variables can be described as follows. The variable Q is 

the vector of conserved variables, while E and F represent the flux vectors. The air density is , the 
component of velocity in x and y axis-direction are denoted respectively as u and v. The static 
pressure p and the total energy 𝑒𝑡. Eq. (2) represents a system equation that contains four nonlinear 
differential equations with five unknowns ( , 𝑢, 𝑣, 𝑝 , 𝑒𝑡). Hence, other relationships are required to 
become five equations with five unknowns. The additional relation can be used from the relationship 
between the total internal energy 𝑒𝑡 with other flow variables defined as: 
 

𝑒𝑡 = 𝑒 +
𝑢2+𝑣2

2
             (3) 

 
The flow problems can be solved by directly solving Eq. (2). However, due to a complex flow 

domain and eliminating the difficulties in implementing the boundary conditions, one may require 
transforming Eq. (2) in the form of the equation in curvilinear coordinates [17]. The Euler equation in 
a curvilinear coordinate can be referred to in a paper by Hixon et al., [18]. 
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3. Methodology 
 

The previous subchapter stated various numerical schemes were developed to solve the Euler 
equation. This study adopts the method introduced by Hoffmann called the Modified Fourth-Order 
Runge Kutta augmented with TVD. Although the flow problem is a steady flow problem, the 
governing equation used is the governing equation in unsteady form by the existence of the time 
derivative term. This approach is applied to make the governing equation over the whole flow domain 
behave as an utterly hyperbolic differential equation, and a time marching approach to the steady-
state solution can be adopted. In this time marching approach, the calculation is from time step 𝑡 =
𝑡𝑛 to 𝑡 = 𝑡𝑛+1, starts with the Fourth-Order Runge-Kutta scheme, followed by the TVD scheme to 
update the flow variables obtained by the Runge-Kutta before continuing to the next following time 
step. These two methods will be described in the following subchapter. 
 
3.1 The Fourth-Order Runge-Kutta Scheme 
 

If the conserved variable 𝑄𝑖,𝑗
𝑛 at any control point i, j at any time level known 𝑡 = 𝑡𝑛, then to 

update that conserved variables as the quantities at the time level 𝑡 = 𝑡𝑛+1. Hence, the Euler 
equation, Eq. (2), in view of the Fourth-Order Runge-Kutta scheme, becomes 
 

𝑄̅𝑖,𝑗
(1)

= 𝑄̅𝑖,𝑗
𝑛               (4) 

 

𝑄̅𝑖,𝑗
(2)

= 𝑄̅𝑖,𝑗
𝑛 −

∆𝜏

4
[(

𝜕𝐸̅

𝜕𝜉
)

𝑖,𝑗

(1)

+ (
𝜕𝐹̅

𝜕𝜂
)

𝑖,𝑗

(1)

]           (5) 

 

𝑄̅𝑖,𝑗
(3)

= 𝑄̅𝑖,𝑗
𝑛 −

∆𝜏

3
[(

𝜕𝐸̅

𝜕𝜉
)

𝑖,𝑗

(2)

+ (
𝜕𝐹̅

𝜕𝜂
)

𝑖,𝑗

(2)

]           (6) 

 

𝑄̅𝑖,𝑗
(4)

= 𝑄̅𝑖,𝑗
𝑛 −

∆𝜏

2
[(

𝜕𝐸̅

𝜕𝜉
)

𝑖,𝑗

(3)

+ (
𝜕𝐹̅

𝜕𝜂
)

𝑖,𝑗

(3)

]           (7) 

 

𝑄̅𝑖,𝑗
(𝑛+1)

= 𝑄̅𝑖,𝑗
𝑛 − ∆𝜏 [(

𝜕𝐸̅

𝜕𝜉
)

𝑖,𝑗

(4)

+ (
𝜕𝐹̅

𝜕𝜂
)

𝑖,𝑗

(4)

]          (8) 

 
The variable 𝑄̅ is the vector of conserved variables, while 𝐸̅, 𝐹̅ represent the flux vectors. Viscous 

stress is 𝜏.In the next following steps, the obtained values 𝑄̅𝑖,𝑗
(𝑛+1)

 will be used as the value conserved 

variables in the TVD scheme. 
 
3.2 Second-Order TVD Formulation 
 

The second-order TVD scheme for the quasi-one-dimensional Euler equation is extended to the 
two-dimensional Euler equation, and the finite-difference equation is written as follows [8]. 
 

𝑄̅𝑖,𝑗
𝑛+1 = 𝑄̅𝑖

𝑛 −
Δ𝜏

Δ𝜉
[(𝑅𝜉)

𝑖+
1

2
𝑗

𝑛
− (𝑅𝜉)

𝑖−
1

2
𝑗

𝑛
] −

Δ𝜏

Δ𝜂
[(𝑅𝜂)

𝑖,𝑗+
1

2

𝑛
− (𝑅𝜂)

𝑖,𝑗−
1

2

𝑛
]      (9) 
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Where 
 

(𝑅𝜉)
𝑖+

1

2
𝑗

𝑛
=

1

2
[𝐸̅𝑖+1𝑗

𝑛 + 𝐸̅𝑖,𝑗
𝑛 + (𝑋𝐴)

𝑖+
1

2
𝑗

𝑛 (𝜙𝜉)
𝑖+

1

2
𝑗

𝑛
]                   (10) 

 

(𝑅𝜉)
𝑖−

1

2
𝑗

𝑛
=

1

2
[𝐸̅𝑖,𝑗

𝑛 + 𝐸̅𝑖−1𝑗
𝑛 + (𝑋𝐴)

𝑖−
1

2
𝑗

𝑛 (𝜙𝜉)
𝑖−

1

2
𝑗

𝑛
]                   (11) 

 

(𝑅𝜉)
𝑖,𝑗+

1

2

𝑛
=

1

2
[𝐹̅𝑖,𝑗+1

𝑛 + 𝐹̅𝑖,𝑗
𝑛 + (𝑋𝐵)

𝑖,𝑗+
1

2

𝑛 (𝜙𝜉)
𝑖+,𝑗+

1

2

𝑛
]                   (12) 

 

(𝑅𝜉)
𝑖,𝑗−

1

2

𝑛
=

1

2
[𝐹̅𝑖,𝑗

𝑛 + 𝐹̅𝑖,𝑗−1
𝑛 + (𝑋𝐵)

𝑖,𝑗−
1

2

𝑛 (𝜙𝜉)
𝑖+,𝑗−

1

2

𝑛
]                   (13) 

 
In the second term, on the right-hand side of Eq. (9) and all quantities appear in Eq. (10) to Eq. 

(13) are calculated according to the quantity 𝑄̅𝑖,𝑗
(𝑛+1)

. In view of the TVD scheme, the difference 

between one variant of the TVD scheme with another variant TVD scheme is in terms of the flux 

limiter vectors [(𝛷𝜉)
𝑖+

1

2
𝑗

𝑛
, (𝛷𝜉)

𝑖+
1

2
𝑗

𝑛
] and [(𝛷𝜂)

𝑖,𝑗+
1

2

𝑛
, (𝛷𝜂)

𝑖,𝑗−
1

2

𝑛
]. In this respect, one may recognize the 

presence of the Harten-Yee TVD scheme, Davis-Yee TVD scheme, and Roe-Sweby TVD scheme. As 
mentioned in the previous subchapter, the present work uses a first and second-order TVD scheme. 
 
3.2.1 Harten-Yee upwind TVD 
 
The general expressions for the component of the flux limiter vectors are defined as 
 

(𝛷𝜉)
𝑖+

1

2
𝑗

𝑛
= 𝜎 [(𝛼𝜉)

𝑖+
1

2
𝑗
] [(𝐺𝜉)

𝑖+1𝑗
+ (𝐺𝜉)

𝑖,𝑗
] − 𝜓 [(𝛼𝜉)

𝑖+
1

2
𝑗

+ (𝛽𝜉)
𝑖+

1

2
𝑗
] (𝛿𝜉)

𝑖+
1

2
𝑗
               (14) 

 

(𝛷𝜉)
𝑖−

1

2
𝑗

𝑛
= 𝜎 [(𝛼𝜉)

𝑖−
1

2
𝑗
] [(𝐺𝜉)

𝑖,𝑗
+ (𝐺𝜉)

𝑖−1𝑗
] − 𝜓 [(𝛼𝜉)

𝑖−
1

2
𝑗

+ (𝛽𝜉)
𝑖−

1

2
𝑗
] (𝛿𝜉)

𝑖−
1

2
𝑗
               (15) 

 

(𝛷𝜂)
𝑖,𝑗+

1

2

𝑛
= 𝜎 [(𝛼𝜂)

𝑖,𝑗+
1

2

] [(𝐺𝜂)
𝑖,𝑗+1

+ (𝐺𝜂)
𝑖,𝑗

] − 𝜓 [(𝛼𝜂)
𝑖,𝑗+

1

2

+ (𝛽𝜂)
𝑖,𝑗+

1

2

] (𝛿𝜂)
𝑖,𝑗+

1

2

              (16) 

 

(𝛷𝜂)
𝑖,𝑗−

1

2

𝑛
= 𝜎 [(𝛼𝜂)

𝑖,𝑗−
1

2

] [(𝐺𝜂)
𝑖,𝑗−1

+ (𝐺𝜂)
𝑖,𝑗

] − 𝜓 [(𝛼𝜂)
𝑖,𝑗−

1

2

+ (𝛽𝜂)
𝑖,𝑗−

1

2

] (𝛿𝜂)
𝑖,𝑗−

1

2

              (17) 

 
In the context of limiter function, 𝐺, five limiters will be used for Harten-Yee. The limiters are in 

the form of x-direction and y-direction as follows. 
 
The first limiter 
 

(𝐺𝜉)𝑖,𝑗 = 𝑚𝑖𝑛𝑚𝑜𝑑 [[(𝛿𝜉)
𝑖−

1

2
𝑗
, (𝛿𝜉)

𝑖+
1

2
𝑗
]]                    (18) 

 

(𝐺𝜂)𝑖,𝑗 = 𝑚𝑖𝑛𝑚𝑜𝑑 [[(𝛿𝜂)
𝑖,𝑗−

1

2

, (𝛿𝜂)
𝑖,𝑗+

1

2

]]                    (19) 
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Second limiter 
 

(𝐺𝜉)𝑖,𝑗 =
(𝛿𝜉)

𝑖+
1
2

𝑗
(𝛿𝜉)

𝑖−
1
2

𝑗
+[(𝛿𝜉)

𝑖+
1
2

𝑗
(𝛿𝜉)

𝑖−
1
2

𝑗
]

(𝛿𝜉)
𝑖+

1
2

𝑗
+(𝛿𝜉)

𝑖−
1
2

𝑗

                    (20) 

 

(𝐺𝜂)𝑖,𝑗 =
(𝛿𝜂)

𝑖,𝑗+
1
2

(𝛿𝜂)
𝑖,𝑗−

1
2

+[(𝛿𝜂)
𝑖,𝑗+

1
2

(𝛿𝜂)
𝑖,𝑗−

1
2

]

(𝛿𝜂)
𝑖,𝑗+

1
2

+(𝛿𝜂)
𝑖,𝑗−

1
2

                    (21) 

 
Third limiter 
 

(𝐺𝜉)𝑖,𝑗 =
(𝛿𝜉)

𝑖−
1
2

𝑗
{[(𝛿𝜉)

𝑖+
1
2

𝑗
]

2

+𝜔}+(𝛿𝜉)
𝑖+

1
2

𝑗
{[(𝛿𝜉)

𝑖−
1
2

𝑗
]

2

+𝜔}

[(𝛿𝜉)
𝑖+

1
2

𝑗
]

2

+[(𝛿𝜉)
𝑖−

1
2

𝑗
]

2

+2𝜔

                   (22) 

 

(𝐺𝜂)𝑖,𝑗 =
(𝛿𝜂)

𝑖,𝑗−
1
2

{[(𝛿𝜂)
𝑖,𝑗+

1
2

]

2

+𝜔}+(𝛿𝜂)
𝑖,𝑗+

1
2

{[(𝛿𝜂)
𝑖,𝑗−

1
2

]

2

+𝜔}

[(𝛿𝜂)
𝑖,𝑗+

1
2

]

2

+[(𝛿𝜂)
𝑖,𝑗−

1
2

]

2

+2𝜔

                  (23) 

 
Fourth limiter 
 

(𝐺𝜉)𝑖,𝑗 = 𝑚𝑖𝑛𝑚𝑜𝑑 {2(𝛿𝜉)
𝑖−

1

2
𝑗
, 2(𝛿𝜉)

𝑖+
1

2
𝑗
,

1

2
[(𝛿𝜉)

𝑖+
1

2
𝑗

+ (𝛿𝜉)
𝑖−

1

2
𝑗
]}                 (24) 

 

(𝐺𝜂)𝑖,𝑗 = 𝑚𝑖𝑛𝑚𝑜𝑑 {2(𝛿𝜂)
𝑖,𝑗−

1

2

, 2(𝛿𝜂)
𝑖,𝑗+

1

2

,
1

2
[(𝛿𝜂)

𝑖,𝑗+
1

2

+ (𝛿𝜂)
𝑖,𝑗−

1

2

]}                (25) 

 
And the fifth limiter 
 

(𝐺𝜉)𝑖,𝑗 = 𝑆𝑔𝑛 ∗ 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 [2 |(𝛿𝜉)
𝑖+

1

2
𝑗
| , 𝑆𝑔𝑛 ∗ (𝛿𝜉)

𝑖−
1

2
𝑗
] , 𝑚𝑖𝑛 [|(𝛿𝜉)

𝑖+
1

2
𝑗
| , 2𝑆𝑔𝑛 ∗ (𝛿𝜉)

𝑖−
1

2
𝑗
]}               (26) 

 

(𝐺𝜂)𝑖,𝑗 = 𝑆𝑔𝑛 ∗ 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 [2 |(𝛿𝜂)
𝑖,𝑗+

1

2

| , 𝑆𝑔𝑛 ∗ (𝛿𝜂)
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3.2.2 Davis-Yee symmetric TVD 
 
The general expressions for the component of the flux limiter vectors are 
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Similar to the Harten-Yee TVD scheme, this scheme also has a different model of limiter function. 

There are three limiters used for the Davis-Yee TVD scheme. These three limiter functions are defined 
as: 
 
The first limiter 
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Second limiter 
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Third limiter 
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              (37) 

 
3.2.3 Geometry 
 

The first Euler solver, Fourth-Order Runge-Kutta with Harten-Yee Upwind TVD, allows one to 
choose one limiter function from five available limiter functions defined by Eq. (18) to Eq. (31). At the 
same time, the second Euler solver, Fourth-Order Runge-Kutta with Davis-Yee Symmetric TVD 
enables one to select one of the three available limiter functions, as stated in Eq. (32) to Eq. (37). 
These two Euler solvers are then applied to the case of two internal flow problems (bump in a channel 
and wedge) and one external flow problem (blunt-body). Finally, all the flow problems under 
consideration are set to have the flow condition at the flow Mach number, 𝑀 = 2.0. 

It is necessary to be noted that these two Euler solvers required a meshing over the flow domain. 
In the case of the internal flow along the bump in a channel, the required meshing flow domain is 
depicted in Figure 1. The geometry of the bump is adapted from a paper by Demirdžić et al., [19]. 
In the case of internal flow along the wedge, the meshing flow domain is used, as shown in Figure 2. 
Figure 3 is blunt-body grid generation which involves external flow. The solid domain can be 
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mesh with a coarser size if the fluid domain is mesh with a finer size [20]. The previous computer 
codes used to solve the wedge flow problem have been modified by adding surface angles on the 
upper boundary. Table 1 shows the characteristics of the geometry used. 
 

Table 1 
Characteristics of geometry 
 Bump in a channel Wedge Blunt-body 

Mesh (x,y) 97 × 33 169 × 88 96 × 60 
Flow problem Internal Internal External 

 

 
Fig. 1. Bump in a channel grid generation 

 

 
Fig. 2. Wedge grid generation 

 

 
Fig. 3. Blunt-body grid generation 
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3.2.4 Grid independence test 
 

A grid independence test was performed to discover the optimum grid size for this study. In 
addition, it shows us the limit to which we must refine our mesh to get accurate results since further 
refining the mesh would only increase computational time. Table 2 shows the grid sizes tested. 
 

Table 2 
Grid sizes to be tested 
 Bump in a channel Wedge Blunt-body 

Grid 1 87 × 33 169 × 88 96 × 60 
Grid 2 77 × 33 149 × 88 86 × 60 
Grid 3 97 × 33 129 × 88 76 × 60 
Grid 4 97 × 43 169 × 68 96 × 50 
Grid 5 97 × 53 169 × 108 96 × 70 
Grid 6 - 169 × 128 96 × 80 

 

The grid sizes were tested to determine the effect on the pressure distribution at a selected 
position (Figure 1, Figure 2 and Figure 3), as shown in Figure 4(a), Figure 5(a) and Figure 6(a). It was 
found that there are no significant changes in pressure distribution beyond the grid size of 97 × 33 
(3201 as Grid 3) which is shown in Figure 4(a) and can be seen clearly in Figure 4(b). Figure 4(b) shows 
the highest pressure occurs at a specific point chosen as presented in terms of dimensionless form 
by dividing with the pressure obtained at grid size 2541. Therefore, for the numerical simulation, the 
grid size of 3201 has been used to perform simulation for the bump in a channel geometry. 
 

  
(a) (b) 

Fig. 4. Comparison of pressure distribution for the bump in a channel in (a) selected 
position, (b) dimensionless form at the highest point of pressure 

 
For wedge geometry, the grid independence test was carried out at the selected position, 0 to 

0.2m. Six different grid sizes were tested to determine the effect on the pressure distribution, as 
shown in Figure 5(a). The pressure distribution at the highest point of pressure (0.11m) is shown in 
Figure 5(b). The graph is obtained by dividing all the pressure of different grid sizes by the pressure 
at Grid 3, 11352. At grid size 13112, which is Grid 2, the pressure distribution is nearly constant. Thus, 
a grid size of 14872, Grid 1 has been selected for wedge geometry. 
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(a) (b) 

Fig. 5. Comparison of pressure distribution for a wedge in (a) selected position, (b) 
dimensionless form at the highest point of pressure 

 
Figure 6(a) shows pressure distribution for blunt-body from Grid 1 to Grid 6. The difference in 

pressure between the grid size at the highest point of pressure can be seen clearly in Figure 6(b). The 
pressure distribution fluctuates at grid size less than 5760 and increases afterwards. There are 
significant pressure changes as the optimum pressure has not been obtained yet. The grid size 5760, 
Grid 1 has been used to perform simulation for blunt-body geometry. 
 

  
(a) (b) 

Fig. 6. Comparison of pressure distribution for blunt-body in (a) selected position, (b) 
dimensionless form at the highest point of pressure 

 
4. Results and Discussions 
 

The results obtained by the codes' extension are compared to those obtained by Harada et al., 
[21]. Figure 7(a) is the pressure contours for 𝑀∞ = 2.0 (case 1) obtained by Harada is similar to the 
results shown in Figure 8. The modified Fourth-Order Runge-Kutta has been validated against the 
analytical solution for 𝑀∞ = 2.0, as shown in Figure 7(b). 
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(a) (b) 

Fig. 7. (a) Pressure contours for 𝑀∞ = 2.0 by Harada, (b) Comparison of the pressure distributions 
on the lower surface for 𝑀∞ = 2.0 by Harada 

 

 
 

(a) (b) 

Fig. 8. (a) Pressure contours for 𝑀∞ = 2.0, (b) Comparison of the pressure distributions on the 
lower surface for 𝑀∞ = 2.0 

 
4.1 The Application of the Davis-Yee Upwind TVD Scheme 
 

The first test case is an internal flow pass-through bump in a channel. The geometry of a bump 
channel can produce bow shocks, oblique shocks, and expansion waves, which are captured 
using the Davis-Yee upwind TVD scheme with different limiter functions. When the flow enters the 
channel and hits the bump, it will produce bow shocks and create reflection on the upper wall. 
In addition, it will generate wave interaction between the upper and lower oblique shock. The 
shocks do not result in a boundary-value separation near the entrance since they are not strong [22]. 
Figure 9 exhibits the same pattern but different values of density. Figure 9(a) shows that the strong 
oblique shock captured by the TVD scheme using limiter 1 has the highest density value compared to 
limiter 2 and limiter 3. 

Figure 9(b) and Figure 9(c) exhibit almost the same density value compared to Figure 9(a). 
Therefore, based on the three limiters used, limiter 2 is the best as the density value is between the 
upper extremity and lower extreme, limiter 1 and limiter 3, respectively. 
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(a) (b) 

 

 

(c) (d) 

Fig. 9. Density contour of internal bump channel flow for 𝑴𝒂 = 𝟐. 𝟎 using (a) limiter 1, (b) 
limiter 2, (c) limiter 3, (d) density distribution at selected area 

 
Figure 10 displays the density contour for the internal flow pass-through wedge. As it can be seen, 

the oblique shock captured in Figure 10(a) is thinner and more compact than in Figure 10(b) and 
Figure 10(c). This is because oblique shocks refract at tangential discontinuities and intersect with 
other shock waves after reflecting from the walls [23]. The limiter functions used as the results depict 
a similar pattern, but the minimum and maximum density values are obtained by limiter 1. The 
highest and lowest density regions were identified behind the oblique shock wave and in the vortex 
region. A high-density region is generated as the oblique shock extends farther downstream [24]. 

All the limiter functions have almost the same density value. Still, limiter 2 had been chosen as 
the best to capture the shock wave rather than limiter 1 and limiter 3 as the density value is in the 
middle of the upper extreme and lower extreme.  
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(a) (b) 

  
(c) (d) 

Fig. 10. Density contour of wedge flow for 𝑴𝒂 = 𝟐. 𝟎 using (a) limiter 1, (b) 
limiter 2, (c) limiter 3, (d) density distribution at selected area 

 
Figure 11 shows the density flow contour regarding the location of oblique shock waves with 

different limiter functions. When supersonic flow imparts a body with an angle of deviation, bow 
shocks can be observed on the blunt-body test case due to geometrically induced pressure, 
temperature, and density [25]. Limiter function 3 captured more compact bow shocks, as shown 
in Figure 11(c), compared to the bow shocks captured in Figure 11(a) and Figure 11(b). The 
highest density region was identified at the bottom of the blunt-body, and the highest density 
value was obtained using limiter 3. 
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(c) (d) 

Fig. 11. Density contour of external blunt-body flow for 𝑴𝒂 = 𝟐. 𝟎 using (a) limiter 1, 
(b) limiter 2, (c) limiter 3, (d) density distribution at selected area 

 
4.2 The Application of Harten-Yee Upwind TVD Scheme 
 

Based on Figure 12, the density contour of external flow using limiter 1 shows different bow 
shocks and expansion waves locations compared to limiter 2 and limiter 3. The bow shocks captured 
using limiter 2 and limiter 3 can be seen nicely and easily understood compared to limiter 1 in Figure 
12(a). Limiter 1 had made the Harten-Yee TVD scheme becomes a diffusive scheme, as shown in 
Figure 12(a), as minmod is more diffusive [26]. Figure 12(b) and Figure 12(c) depict a similar contour 
pattern to Figure 7, even though different schemes are used. 
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(c) (d) 

Fig. 12. Density contour of internal bump channel flow for 𝑴𝒂 = 𝟐. 𝟎 using (a) limiter 
1, (b) limiter 2, (c) limiter 3, (d) density distribution at selected area 

 
Based on the results obtained by the Harten-Yee Upwind TVD scheme and Davis-Yee 

Symmetric TVD scheme for the bump in a channel, as shown in Figure 9 and Figure 12, 
respectively, the Davis-Yee Symmetric TVD scheme is better at capturing shock wave, which is 
in this study in term of density. The density value for the Davis-Yee Upwind TVD scheme is not 
in the upper extreme or lower extreme compared to the Harten-Yee Upwind TVD scheme. 
 
5. Conclusions 
 

Based on the results, one can conclude that the Modified Fourth-Order Runge Kutta Scheme 
with TVD; Harten-Yee Upwind TVD scheme, or Davis-Yee Symmetric TVD scheme represents the 
algorithm that can be applied for analyzing supersonic internal flows as well as an external flow 
problem. There is no problem with the presence of various limiter functions. In the case of internal 
flow problems, high supersonics various flow features that may appear in the flow field, such as bow 
shock, oblique shock, shock wave reflection, interaction, and expansion wave, can be captured. While 
in the case of the external supersonic flow passing through the blunt-body, both Euler solvers are 
produced the same flow pattern, namely the presence of a bow shock wave. In the case we used in 
the study, we found that Davis-Yee limiter number 2 performs much better than other suggested 
Davis-Yee and Harten-Yee limiters. Therefore, for the same case on the extension of this study, the 
Davis-Yee Upwind TVD scheme is recommended. This Euler solver may be extended to the case of 
transonic flow passing through airfoils, making the solver more valuable since it will become an 
aerodynamics analysis tool. 
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