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This paper explores the role of thermal radiation, viscous dissipation and chemical 
reaction on stagnation point flow of Williamson nanofluid over an exponentially 
stretching sheet. The similarity transformations are performed to extract ordinary 
differential equations (ODEs) via partial differential equations (PDEs) and the 
simulation was accomplished by employing homotopy analysis method (HAM). In 
addition, we evaluated by comparing our findings to those previously described for 
specific occurrences which are in perfect unison. Skin friction, Nusselt number and 
Sherwood numbers are captured in the form of graphs and tables for distinct quantities 
of the flow parameters. The skin friction coefficient improves as the Williamson fluid 
parameter is elevated. 
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1. Introduction 
 

Nanofluids are nanometer-sized particles less than 100 nanometres in size that are introduced 
into base fluids such as oil, water, bio fluids, ethylene, and lubricants. Despite their essential worth 
in industry, medicine, and a variety of other efficacious domains of science and technology, countless 
researchers have gained an interest in nanofluids as opposed to other fluids. However, nanofluids 
still occupy an indispensable key position in medical sectors, such as the use of gold nanoparticles in 
the screening of cancerous tumours and the processing of minuscule bombs that are exploited to 
eradicate cancerous tumours. Choi and Eastman [1] was the one who came up with the idea of nano 
materials. He inferred from his observations that infusing these particles strengthens the thermal 
conductivity of the fluid. Hayat et al., [2] produced analytical solutions for MHD nanofluid squeezing 
flow between two parallel plates. Makinde and Aziz [3] looked how an electrically conducting 
nanofluid distributes heat and mass over a radially stretched surface in the context of 
thermophoresis and Brownian motion. The consequence of escalating nonlinear thermal radiation 
on boundary layer flow of several nanofluids is explored by Mahanthesh et al., [4]. The strengthening 
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of the heat transmission rate with regular carrier liquids is highlighted in distinct scholarly articles 
pertaining to nano liquids [5-11]. 

Many published studies have evaluated MHD flow behaviour due to the multitude application 
scenarios of MHD in technological processes. Some occurrences of certain domains include fusing 
metals in an induction furnace generating a magnetic field and cooling the first layer around a nuclear 
reactor containment dome utilising a magnetic field to segregate the hot plasma from the wall. The 
external magnetic field might still perform an indispensable key position in influencing momentum 
and heat transfers in the boundary layer flow of multiple fluids together across stretching sheet. This 
has been undertaken in geophysical and astrophysical science to perceive and acknowledge about 
solar structures, radio propagation across the ionosphere, and so forth. Emancipated convective 
fluxes are significant in engineering and industrial sectors such as geothermal structures, fibre and 
granular insulations, and so on. Khan et al., [12] discussed the rapidly moving stretched surface 
subjected to MHD boundary layer nanofluid flow. Daniel et al., [13] employed variable thickness and 
thermal radiation to assess an MHD nanofluid over a nonlinear stretching sheet. Mustafa and Khan 
[14] analyzed the performance of a magnetic field on Casson nanofluid when that was stretched 
nonlinearly. 

Stagnation-point flow occurs when a fluid impinges on a solid object in any sort of flow. At the 
stagnation point, the fluid velocity drops to zero, and the fluid pressure and heat mass transfer rates 
are at their maximum. The stagnation point flow across a permeable shrinking sheet was addressed 
by Bhatti et al., [15]. Mabood et al., [16] explored the role of a chemical reaction on MHD stagnation 
point flow near a stretching sheet with injection/suction. The tabular reactor, oxidations of solid 
materials, and the synthesis of ceramics materials are all essential equipment in the study of 
chemically reacting fluid flow. Abbas et al., [17] evaluated the diffusion of chemical reactive species 
by studying homogeneous–heterogeneous reactions. 

It is essential to mention that innumerable non-Newtonian fluids are exploited in industry. Non-
Newtonian fluids are now widely acknowledged as contributing in engineering and industrial 
applications. Pseudoplastic fluids has broad spectrum of applications in petroleum industry and 
power engineering. Williamson fluid is one such fluid which exhibits the properties of Pseudoplastic 
fluids. Williamson developed a mathematical model of Pseudoplastic materials in 1929 and provided 
an equation-based concept to capture the flow of Pseudoplastic fluids, which has already been 
empirically proven. Malik et al., [18] studied homogeneous-heterogeneous interactions in the 
Williamson fluid model across a stretching cylinder. Impact of pressure dependent viscosity on 
Williamson fluid flow has been explored by Zehra et al., [19]. Much insight on this theme can be 
found in Bakar and Soid [20], Mabood et al., [21], Ibrahim et al., [22], Thirupathi et al., [23], Rosaidi 
et al., [24], Osman et al., [25], and Japili et al., [26]. 

Viscos dissipation is a concept adopted in fluid mechanics to characterize the extinction of 
oscillating velocity gradients driven by viscous stresses. The transition of kinetic energy into internal 
energy of the fluid is a phrase used to refer this partially irreversible phenomenon. Engineers and 
scientists are also fascinated in energy dissipation and non-Newtonian fluid flow. Acknowledging 
energy dissipation and transport in nanoscale structures, according to Pop [27], is crucial for the 
design of energy-efficient circuits and energy-conversion devices. Engineers and scientists are also 
fascinated in energy dissipation and non-Newtonian fluid flow. Ajayi et al., [28] discussed viscous 
dissipation implications in a non-Newtonian Casson fluid flow across a paraboloid of revolution's 
upper horizontal thermally stratified melting surface. Khan et al., [29] looked into how partial slip 
influenced Williamson stagnation nanofluid flow over a stretching/shrinking surface. In the fluid flow 
phenomenon, the outcomes of thermal radiation and heat transfer are crucial. Owing of its 
prominence, multiple researchers have explored the role of thermal radiation, thermal slip, and heat 



CFD Letters 

Volume 14, Issue 5 (2022) 68-86 

70 
 

transfer on MHD stagnation-point flow for distinct geometrical scenarios. The stagnation point flow 
of a magnetised Williamson fluid via a stretched sheet is addressed in the vicinity of nonlinear thermal 
radiation and the buoyancy factor by Rajput et al., [30]. 

This research emphasizes on the heat and mass transfer analysis of Williamson nanofluid where 
the sheet stretches exponentially using HAM, which has been formerly overlooked [31-35]. 
 
2. Mathematical Formulation 
 

Consider a steady, two-dimensional Williamson nanofluid stagnation point flow across an 
exponentially stretching sheet. Here, stretching and free stream velocities are speculated as and 
respectively, where are constants, is the coordinate measure along the stretching surface and is the 
length of the sheet. A non-uniform transverse magnetic field of strength is introduced parallel to axis, 
where is the uniform magnetic field strength. The induced magnetic field generated by the 
movement of an electrically conducting field is presumed to be insignificant. Additionally, the 
external electric field is presumed to be zero, and the electrical field owing to charge polarization is 
insignificant. Flow description is given in Figure 1. 
 

 
Fig. 1. Physical model of the flow 

 
The governing boundary layer equations based on the stated constraints are [33]: 
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The succeeding similarity transformations are now initiated: 
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where wq  and mq are the heat flux and mass flux at the surface respectively given by 
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where )i(Ci 7to1 are the arbitrary constants. 

We construct the zeroth-order deformation equations 
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subject to the boundary conditions 
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2.2 Convergence of HAM Solution 
 

The auxiliary parameters 1 2 3, &  are extremely significant for the convergence and 

interpolation rate of the specific inferences. Thus, -curves are acknowledged in Figure 2 in order to 
achieve the requisite quantities for the parameters. The principal scenario of the parameters is only 

about  0.86,0.0 , which is exploited from such a precise explanation. For 1 2 3 0.61    , the 

series solutions are convergent across the whole   area. The convergence of the approach is implied 

by Table 1. 
 

 
Fig. 2.  -curves for ' '(0), '(0) and '(0)f   at15th order 

approximations 
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Table 1 
Convergence of HAM solution for different orders of approximations 

when 0.2, 0.1, 0.5, 0.1, Pr 2.0, 0.5, 0.2, 0.2, 2.0, 0.2.M R Nb Nt Ec Le           

 

Order )0(''f  )(' 0
 

'(0)
 

5 -1.253503 0.766873 1.445153 
10 -1.253432 0.768051 1.445672 
15 -1.253432 0.768047 1.445602 
20 -1.253432 0.768046 1.445604 
25 -1.253432 0.768046 1.445605 
30 -1.253432 0.768046 1.445605 
35 -1.253432 0.768046 1.445605 
40 -1.253432 0.768046 1.445605 

 
3. Results and Discussion 
 

HAM has been exploited to address the modified equations which have been exposed to 
boundary conditions. For varying values of the controlling parameters, graphs are plotted for distinct 
profiles. A comparison with past trends was carried out to ascertain the veracity of our effort, and 
we got tremendous agreements, as made clear in the Table 2. We include the relevant values during 
whole evaluation as given below with the exemption of rebuilt values as shown in the tables and 
graphs. 
 

0.2, 0.1, 0.5, 0.1, Pr 2.0, 0.5, 0.2, 0.2, 2.0, 0.2.M R Nb Nt Ec Le             

 

It can be evident that as the Williamson fluid parameter  is grown,  f   lowers since the fluid 

produces higher amount of friction, lowering velocity. But with the elevation of  , the temperature 
and nanoparticle volume fraction profiles improve. This is given in Figure 3 to Figure 5. 
 

 
Fig. 3. Profiles of  'f  for   
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Fig. 4. Profiles of    for   

 

 
Fig. 5. Profiles of    for   

 

Figure 6 to Figure 8 reveal the impact of magnetic parameter M  on the profiles.  f   diminishes 

as the magnitude of M  climbs, although the temperature and concentration have the reverse 
pattern. Actually, the rate of transport falls as M  raises because the Lorentz force, which restricts 
fluid motion, grows as M  increases. 
 

 
Fig. 6. Profiles of  'f  for M  
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Fig. 7. Profiles of    for M  

 

 
Fig. 8. Profiles of    for M  

 

As an elevation in  ,  f   and boundary layer thickness grow when the free stream velocity is 

lower than the stretching sheet velocity.    and     of the surface fall at the surface as   

improves. This is illustrated in Figure 9 to Figure 11. 
 

 
Fig. 9. Profiles of  'f  for   
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Fig. 10. Profiles of    for   

 

 
Fig. 11. Profiles of    for   

 
In heat transfer problems, the Prandtl number Pr is intended to lower the relative thickening of 

the thermal boundary layer. Since Pr is a dimensionless number characterized as the proportion of 
momentum diffusivity to thermal diffusivity, enhancing Pr  values diminish thermal diffusivity. This 
is given in Figure 12. 
 

 
Fig. 12. Profiles of    for Pr  
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When the amount of thermal radiation R is elevated, the fluid acquires more heat, leading in a 
temperature escalation portrayed in Figure 13. 
 

 
Fig. 13. Profiles of    for R  

 
The higher values of parameter Ec  have quite an effect on the temperature distribution, 

rendering this result positive in the perspective that it amplifies the temperature implications given 
in Figure 14. 
 

 
Fig. 14. Profiles of    for Ec  

 

The influence of Brownian motion parameter Nb  on    and    is witness in Figure 15 and 

Figure 17. Brownian motion, in general, helps to heat the fluid in the boundary layer and prevent 
particle deposition away from the fluid on the surface. As the amount of Nb  in the fluid grows, the 
temperature rises and the concentration drops. 
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Fig. 15. Profiles of    for Nb  

 

 
Fig. 16. Profiles of    for Nb  

 

 
Fig. 17. Profiles of    for Nt  

 

The influence of the thermophoresis parameter Nt on    and     is portrayed in Figure 16 

and Figure 18. It is reported that when Nt  climbs, so does the temperature and the fraction of 
nanoparticles. Since both are directly proportional to Nt . 
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Fig. 18. Profiles of    for Nt  

 

Figure 19 illustrates that as the Lewis number Le grows, the    of nanoparticles drops. Larger 

values of Le  relate to a poorer Brownian diffusion coefficient, leading in a diminution in the 
concentration distribution of nanoparticles. 
 

 
Fig. 19. Profiles of    for Le  

 

The consequence of a chemical reaction parameter on     is visualized in Figure 20. It has been 

recognised that as the chemical reaction parameter grows, the concentration lowers. 
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Fig. 20. Profiles of    for   

 
From Figure 21, it is illustrated that skin friction coefficient enhances with  and drops with M . 

Figure 22 gives the impact of R  and   on heat transfer rate. This consequence is clearly positive in 
the sense that a boost in R  and   values lead to a rise in the Nusselt number. Figure 23 illustrates 
the influence of   and   on mass transfer rate. This influence is clearly positive, as higher values of 

  and  lead to higher Sherwood numbers. 

 

 
Fig. 21. Profiles of fC  for   and M  

 

 
Fig. 22. Profiles of xNu  for   and R  
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Fig. 23. Profiles of xSh  for   and   

 
A correlation with existing records was executed to properly assess the reliability of our research, 

and we gained immense agreements, as expressed in Table 2. 
 

Table 2 
Comparison of )0('  for different values of REcPr,,M and in the absence of 

remaining parameters 

Ec  M  R  Pr  Bidin and 
Nazar [36] 

Ishak [37] Reddy and 
Shankar [38] 

HAM 

0.0 0.0 0.0 1.0 0.9547 0.9547 0.9548 0.954783 
0.0 0.0 0.0 3.0 1.8691 1.8691 1.8692 1.869067 
0.0 0.0 1.0 1.0 0.5315 0.5315 0.5311 0.531503 
0.0 1.0 0.0 1.0 0.8611 -- 0.8611 0.861427 
0.9 0.0 0.0 1.0 -- 0.5385 -- 0.538541 
0.9 0.0 0.0 3.0 -- 0.8301 -- 0.830137 
0.9 0.0 1.0 1.0 -- 0.3343 -- 0.334521 
0.9 0.0 1.0 3.0 -- 0.6055 -- 0.605519 

 
4. Conclusions 
 

We assessed the MHD stagnation point flow of Williamson fluid over an exponential stretching 
sheet considering the contribution of various factors in the research work. The noteworthy facts are 
summed up here. 

I. The fluid velocity dropped when  was elevated, while the Skin friction coefficient rose. 
II. When   is elevated, the velocity profile raises, while the temperature and concentration 

profiles diminish. 
III. The thermal boundary layer thickness lowers as the Prandtl number raises, whereas the 

radiation parameter has the flip consequence. 
IV. Concentration profiles drop as Le  and   are elevated. 

V. Nusselt number accelerates with  and R . 
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