
 
CFD Letters 17, Issue 1 (2025) 35-45 

35 
 

 

CFD Letters 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/CFD_Letters/index 

ISSN: 2180-1363 
 

Effects of Mesh Number and the Time-step-based Parameter on the 
Accuracy of Couette Solution 

 

Ladyn Zulkapri1, Aslam Abdullah1,*, Ahmad Hamdan Ariffin1 

 
1 Department of Aeronautical Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 

Parit Raja, Johor, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 4 January 2024 
Received in revised form 6 February 2024 
Accepted 10 March 2024 
Available online 31 August 2024 

Couette flow, a flow between two parallel plates with one plate in motion and the 
other stationary, has been extensively studied and applied in various engineering and 
scientific fields. However, optimizing the accuracy of numerical solutions for such a 
flow is always a challenge. In this study, we focus on a quasi-1-dimensional Couette 
flow to investigate the impact of mesh number and the time-step-based parameter on 
the accuracy of the numerical solution. The Crank-Nicolson finite difference method is 
employed to solve the corresponding equation. The results suggest that the error 
linked to the unsteady Couette solution increases as the number of intervals rises. 
However, increasing the time-step-based parameter, has the potential to reduce the 
error, although it may lead to a simultaneous increase in the likelihood of oscillation. 
The findings can be leveraged in real applications to enhance the accuracy, efficiency, 
and reliability of computational simulations for improving the quality of the results, 
making informed decisions, and advancing the state of the art in respective fields. 
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1. Introduction 
1.1 Engineering and Science Applications 
 

Couette flow has been studied extensively in recent years. It is a type of flow between two parallel 
plates, where one plate is moving and the other is stationary. It has been used in various applications 
such as fluid transport devices, MHD power generators, and directional solidification. 

One of the most prominent applications of Couette flow in the manufacturing industry is the 
extrusion process. The gap between the barrel and the screw of the extruder is narrow such that 
assuming a fluid flowing between parallel plates leads to representative of results. The findings are 
significant in increasing the production rate and enhancing the quality of the final product [1]. 

Couette flow is also considered to represent the flow in plain bearings which are used in many 
industries and across various applications where there is a need to cost-efficiently and reliably meet 
the challenge of oscillating movements and any possible misalignments [2]. 
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One study characterizes near-wall turbulence in the buffer region of Couette and Poiseuille flows 
in terms of nonlinear three-dimensional solutions to the incompressible Navier-Stokes equations for 
wall-bounded shear flows [3]. Another study presents an extensive compilation of direct numerical 
simulation (DNS) data for Poiseuille and Couette flows, from the laminar into the fully turbulent 
regime, with the goal of highlighting similarities and differences [4]. The data suggest that, for a given 
bulk velocity, Couette flow yields less resistance than Poiseuille flow and greater turbulence kinetic 
energy, which may be beneficial for more efficient diffusion. 

Couette flow has also been studied in the context of stability analysis. One study investigates the 
linear stability of viscous compressible plane Couette flow for a perfect gas governed by Sutherland 
viscosity law [5]. Another study examines the stability of plane Couette flow of a Newtonian liquid 
with constant viscosity and variable density subjected to a temperature gradient [6]. 

Couette flow has also been used in the study of turbulence. Experiments and numerical 
simulations have shown that turbulence in transitional wall-bounded shear flows frequently takes 
the form of long oblique bands if the domains are sufficiently large to accommodate them. These 
turbulent bands have been observed in plane Couette flow, plane Poiseuille flow, counter-rotating 
Taylor–Couette flow, torsional Couette flow, and annular pipe flow [7]. 

In addition, Couette flow has been used in the study of heat transfer. One study presents 
analytical analysis of the steady flow of an incompressible third grade fluid between two parallel 
plates, and the effect of heat transfer is considered [8]. 

Overall, Couette flow plays an important role in various engineering and science applications and 
has been studied extensively in recent years. Its applications range from fluid transport devices to 
MHD power generators and directional solidification. The application of Couette flow is summarized 
in Table 1. 
 

Table 1 
The review summary of Coutte flow application 

No Application References  

1 The extrusion process in manufacturing industry [1] 

2 Oscillating movements and any possible misalignments in plain bearings [2] 

3 Characterization of near-wall turbulence in the buffer region [3,4] 

4 Flow stability analysis [5,6] 

5 Turbulence flow analysis [7] 

6 Heat transfer flow analysis [8] 

 
There are relationships between Couette flow and other flows. For instance, its connection to 

convection-diffusion flow has been studied by several researchers [4,9,10]. Domaradzki and Metcalfe 
[9] suggested that Couette flow can enhance heat transfer and may be beneficial for more efficient 
diffusion. Shear tends to organize the flow into quasi-two-dimensional rolls parallel to the mean flow 
and can enhance heat transfer, while at higher Rayleigh number, shear tends to disrupt the formation 
of convective plumes and can reduce heat transfer. 
 
1.2 Numerical Methods for Parabolic Equations 
 

Parabolic equations are a class of partial differential equations that arise in many fields of science 
and engineering. Implicit finite difference methods are commonly used to solve these equations 
including the Couette equation numerically. 

Dawson, Du, and Dupont [11] proposed a finite difference domain decomposition algorithm for 
the numerical solution of the heat equation. This algorithm can be applied to parabolic equations, 



CFD Letters 

Volume 17, Issue 1 (2025) 35-45 

37 
 

giving domain decomposition iterative methods for the solution of the equations at each time step. 
Another approach has also been given [11], which uses overlapping subdomains to approximately 
solve the implicit equations arising from a standard finite difference discretization. 

Kuznik and Virgone [12] used a finite-difference method to solve numerically the problem of 
wallboard containing phase change material. They replaced the continuous information contained in 
the exact solution of the differential equation with discrete temperature values. 

Olshanskii, Reusken, and Xu [13] studied numerical methods for the solution of partial differential 
equations on evolving surfaces. They derived and analyzed a variational formulation for a class of 
diffusion problems on the space-time manifold. 

Lord and Tambue [14] considered the numerical approximation of a general second-order semi-
linear parabolic stochastic partial differential equation (SPDE) driven by additive space-time noise. 
They introduced a new modified scheme using a linear functional of the noise with a semi-implicit 
Euler-Maruyama method in time and in space. 

Liu [15] presented a stable explicit difference approximation to parabolic partial differential 
equations. The method is a modification of the method of Douglas and Rachford, which achieves the 
higher-order accuracy of a Crank-Nicholson formulation while preserving the advantages of the 
Douglas-Rachford method: unconditional stability and simplicity of solving the equations at each time 
level. 

Crank-Nicolson scheme is a finite difference scheme used to solve parabolic partial differential 
equations. The scheme is almost unconditionally stable and converges optimally [16]. It is more stable 
than fully explicit methods and without the damping effects of fully implicit methods [17]. The 
scheme has been used to solve various problems [18, 19], including the Schrödinger equation [20], 
the Huxely equation [21], and the time fractional Sobolev equations [22]. The scheme has also been 
used in combination with other methods, such as the finite element method [21] and the finite 
volume element method [22]. 

In conclusion, implicit finite difference methods are widely used to solve parabolic equations 
including Couette equation numerically. In this study, we use Crank-Nicolson scheme which is a well-
known method for solving Couette equation [16]. The scheme has been shown to be accurate and 
efficient in solving various problems, and it is still a well-accepted method in the scientific community. 
In numerical method, the selection of mesh number and the time-step based parameter is crucial to 
obtain an accurate and less error output. However, these parameters are different for any 
application. Therefore, the objective of this research is to study the effects of mesh number and the 
time-step-based parameter on the accuracy of Coutte flow. 
 
2. Methodology  
 
The governing equation is expressed by 
 

𝜌𝜕𝑡𝑢 = 𝜇𝜕𝑦
2𝑢           (1) 

 
Where 𝜌 is density, 𝑢 is 𝑥-component of velocity field, 𝜇 is viscosity, and the flow variables are 
independent of 𝑥 and 𝑦-component of velocity field 𝑣 = 0. This unsteady 𝑥-momentum equation for 
incompressible Couette flow is a parabolic partial differential equation for which a time-marching 
solution represents a well-posed problem. 
 
Corresponding dimensionless variables are defined as 
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𝑢∗ = 𝑢 𝑢𝑌⁄        𝑦∗ = 𝑦 𝑌⁄        𝑡∗ = 𝑡𝑢𝑌 𝑌⁄         (2) 
 
Thus, Eq. (1) can be written in dimensionless form as 
 

𝜌 𝑢𝑌
2 𝑌⁄ 𝜕(𝑡𝑢𝑌 𝑌⁄ )(𝑢 𝑢𝑌⁄ ) = 𝜇 𝑢𝑌 𝑌2⁄ 𝜕

(
𝑦

𝑌
)

2 (𝑢 𝑢𝑌⁄ )       (3) 

 
or 
 
𝜕𝑡∗𝑢∗ = 1 Re𝑌⁄ 𝜕2

𝑦∗𝑢∗          (4) 

 
Where 𝑅𝑒𝑌 is the Reynolds number based on the height of the top plate from the bottom one, 𝑌. The 
steady state solution is given by 
 
𝑢∗ = 𝑦∗            (5) 
 

We use Crank-Nicolson method to solve Eq. (4) numerically [1, 23]. Assuming that the velocity 
profile is non-linear, the initial conditions are 
 
𝑢∗ = 0 at 𝑦∗ = [0, 𝑌)           (6) 
 
and 
 
𝑢∗ = 𝑢𝑌 at 𝑦∗ = 𝑌           (7) 
 
while the boundary conditions are 
 
𝑢∗ = 0 at 𝑦∗ = 0           (8) 
 
and 
 
𝑢∗ = 𝑢𝑌 at 𝑦∗ = 𝑌           (9) 
 

By setting up a time marching solution for the flow field beginning with the initial conditions, the 
velocity profile is expected to change in steps of time until it reaches the steady state. 

The solution of Eq. (4) is performed on a uniform mesh. The vertical distance, 𝑌 across the duct 
is divided into 𝑁 equal increments of length ∆𝑦 by distributing 𝑁 + 1 mesh points over 𝑌 as 
 
∆𝑦 = 𝑌 𝑁⁄  (10) 
 
The time-step-based parameter 𝐸 is defined as 
 

𝐸 =
∆𝑡∗

Re𝑌(∆𝑦∗)2 (11) 

 
The error corresponding to each mesh number is defined as 
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Error =
Σ|𝑢∗−𝑢𝑒𝑥𝑎𝑐𝑡

∗ |

𝑁+1
 (12) 

 
The error percentage is given by 

 

𝐸𝑟𝑟𝑜𝑟% =
Σ|𝑢∗−𝑢𝑒𝑥𝑎𝑐𝑡

∗ |

Σ𝑢𝑒𝑥𝑎𝑐𝑡
∗ × 100% (13) 

 
The average error percentage can then be calculated as 

 

𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 =
Σ𝐸𝑟𝑟𝑜𝑟%

4
 (14) 

 
3. Results  
3.1 Preliminary Results 
 

The initial number of intervals 𝑁 is 20. The parameter 𝑁 is then increased by a factor 2 until it 
subsequently reaches 5120. The initial findings are shown in Figure 1 and Figure 2 for 40 time steps. 
In Figure 1 where 𝑁 ranges from 20 to 320, the corresponding velocity profiles oscillate. For 𝑁 ranges 
from 640 to 5120, the velocity profiles leave that of steady state from the very beginning. Oscillations 
occur when 𝑦∗ approaches 1. Thus, both figures present physically unacceptable results. 
 

 
Fig. 1. Velocity profile, 𝑢∗ against vertical distance, 𝑦∗ at 40∆𝑡 for 
a specific range of the number of intervals 𝑁 from 20 to 320 

 

 
Fig. 2. Velocity profile, 𝑢∗ against vertical distance, 𝑦∗ at 40∆𝑡 for 
a specific range of the number of intervals 𝑁 from 640 to 5120 
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3.2 Main Results 
3.2.1 Case I: simulation results after 100 time steps 
 

As tabulated in Table 2, Error displays an upward trend for each 𝐸 except for 𝐸 ≥ 25. In addition, 
Error% increases with respect to 𝑁 except for 𝐸 ≥ 25. There is an early sign of oscillation when both 
Error and Error% fluctuate for 𝐸 = 25. Data in Table 2 also indicates that the higher the time-step-
based parameter, 𝐸, the higher the tendency of velocity profile to oscillate. 

Average error percentage, 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 shows initially a downward trend with respect to 𝐸. 
However, for 𝐸 ≥ 50, the data is invalid due to the oscillations. 
 

Table 2 
Data corresponding to the time-step-based parameter, 𝐸 
and the number of mesh intervals, 𝑁 after 100 time steps 

𝐸 𝑁 Oscillation Error Error% 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣  

1 

20 NO 0.03272 6.545 

51.363 
40 NO 0.21338 42.677 

80 NO 0.35430 70.879 

160 NO 0.42677 85.353 

3.125 

20 NO 0 0.001 

33.911 
40 NO 0.05754 11.508 

80 NO 0.24762 49.538 

160 NO 0.37298 74.596 

6.25 

20 NO 0 0 

24.131 
40 NO 0.00833 1.666 

80 NO 0.15257 30.522 

160 NO 0.32167 64.335 

10 

20 NO 0 0 

18.083 
40 NO 0.00078 0.156 

80 NO 0.08555 17.115 

160 NO 0.27531 55.062 

12.5 

20 NO 0 0 

15.374 
40 NO 0 0.001 

80 NO 0.05812 11.626 

160 NO 0.24934 49.867 

25 

20 NO 0.00014 0.029 

8.109 
40 NO 0.00007 0.015 

80 NO 0.00831 1.662 

160 NO 0.15364 30.729 

50 

20 NO 0.00119 0.238 

3.046 
40 NO 0.00061 0.122 

80 YES 0.00040 0.080 

160 YES 0.05872 11.745 

100 

20 YES 0.00500 1.000 

0.909 
40 YES 0.00256 0.512 

80 YES 0.00147 0.294 

160 YES 0.00916 1.831 
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3.2.2 Case II: simulation results after 200 time steps 
 

Data in Table 3 indicate that Error increases for each 𝐸 except for 𝐸 ≥ 50. Moreover, Error% 
displays an upward trend with respect to 𝑁 except for 𝐸 ≥ 50. Fluctuations in both Error and 
Error% for 𝐸 = 50 indicate an early sign of oscillation. It is obvious that the tendency of velocity 
profile to oscillate is higher with 𝐸. 

Initially downward trend of 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 with respect to 𝐸 can be observed. For 𝐸 ≥ 100, however, 
the oscillations invalidate the data. 
 

Table 3 
Data corresponding to the time-step-based parameter, 𝐸 
and the number of mesh intervals, 𝑁 after 200 time steps 

𝐸 𝑁 Oscillation Error Error% 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣  

1 

20 NO 0.00281 0.563 

40.618 
40 NO 0.11507 23.014 

80 NO 0.29665 59.345 

160 NO 0.39776 79.551 

3.125 

20 NO 0 0 

24.131 
40 NO 0.00833 1.666 

80 NO 0.15257 30.522 

160 NO 0.32167 64.335 

6.25 

20 NO 0 0 

15.372 
40 NO 0 0.001 

80 NO 0.05810 11.624 

160 NO 0.24933 49.865 

10 

20 NO 0 0 

10.228 
40 NO 0 0 

80 NO 0.01824 3.650 

160 NO 0.18632 37.264 

12.5 

20 NO 0 0 

8.098 
40 NO 0 0 

80 NO 0.00831 1.662 

160 NO 0.15364 30.729 

25 

20 NO 0 0 

2.936 
40 NO 0 0 

80 NO 0.00009 0.018 

160 NO 0.05863 11.725 

50 

20 NO 0.00014 0.029 

0.444 
40 NO 0.00007 0.015 

80 NO 0.00011 0.022 

160 NO 0.00855 1.711 

100 

20 NO 0.15144 30.288 

7.641 
40 NO 0.00061 0.122 

80 YES 0.00042 0.084 

160 YES 0.00036 0.072 
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3.2.3 Case III: simulation results after 400 time steps 
 

Increment of Error and Error% with respect to 𝑁 for each 𝐸 except for 𝐸 ≥ 100 is recorded in 
Table 4.  As in Case I and Case II, it is clear that the tendency of velocity profile to oscillate is higher 
with 𝐸.  
 
Downward trend of 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 with respect to 𝐸 can be observed. 
 

Table 4 
Data corresponding to the time-step-based parameter, 𝐸 
and the number of mesh intervals, 𝑁 after 400 time steps 

𝐸 𝑁 Oscillation Error Error% 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣  

1 

20 NO 0 0 

30.313 
40 NO 0.03356 6.712 

80 NO 0.21597 43.205 

160 NO 0.35669 71.337 

3.125 

20 NO 0 0 

15.374 
40 NO 0 0.001 

80 NO 0.05812 11.626 

160 NO 0.24934 49.867 

6.25 

20 NO 0 0 

8.096 
40 NO 0 0 

80 NO 0.00828 1.657 

160 NO 0.15364 30.727 

10 

20 NO 0 0 

4.346 
40 NO 0 0 

80 NO 0.00072 0.143 

160 NO 0.08621 17.241 

12.5 

20 NO 0 0 

2.936 
40 NO 0 0 

80 NO 0.00009 0.018 

160 NO 0.05863 11.726 

25 

20 NO 0 0 

0.435 
40 NO 0 0 

80 NO 0.00009 0.017 

160 NO 0.00860 1.721 

50 

20 NO 0 0 

0.015 
40 NO 0 0 

80 NO 0.00009 0.017 

160 NO 0.00022 0.044 

100 

20 NO 0.00014 0.029 

0.022 
40 NO 0.00007 0.015 

80 NO 0.00011 0.022 

160 NO 0.00012 0.023 
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Even though there is no oscillation recorded in Table 4, upon closer analysis of Error and Error%, 
it is expected that the oscillation would occur for 𝐸 ≥ 200. This is due to an early sign of oscillation 
when 𝐸 = 100 where there is a fluctuation in both Error and Error%. 
 
3.2.4 Pattern of errors 
 

Referring to Figure 3, in general, Error% decreases with the number of time steps when N is 
fixed, and increases with N when the number of time steps is constant. 
 

 
Fig. 3. Error percentage, 𝐸𝑟𝑟𝑜𝑟% against the number of intervals, 
𝑁 for 𝐸 = 1 

 
As shown in Figure 4, 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 decreases with the number of time steps when 𝐸 is constant, 

and decreases with 𝐸 when the number of time steps is fixed. Note that these findings are specific 
to the unsteady Couette solution. 
 

 
Fig. 4. Average error percentage, 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣  against 𝐸 
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solution tends to be larger as 𝑁 increases. Furthermore, if we increase the value of 𝐸 for a given 𝑁, 
it necessitates a greater ∆𝑡∗. This, in turn, leads to oscillation. 

Additionally, the study found that increasing 𝐸 can lead to a decrease in the average error 
percentage, 𝐸𝑟𝑟𝑜𝑟%𝑎𝑣 for all three cases of interest (i.e. those of 100, 200, and 400 time steps). 
However, this is not always the case for relatively large values of 𝐸, as the solution may start to 
oscillate. A careful analysis revealed a threshold value of 𝐸 beyond which oscillation can be predicted. 
For example, in the case of 400 time steps, there is a slight chance of oscillation occurring for 𝐸 ≥
200, as indicated by early signs when 𝐸 = 100. 

The error patterns observed in these simulations provide valuable information that can be 
leveraged in real applications to enhance the accuracy, efficiency, and reliability of computational 
simulations. By incorporating these findings into their workflow, engineers and researchers can 
improve the quality of their results, make informed decisions, and advance the state-of-the-art in 
their respective fields. 
 
4. Conclusions 
 

In conclusion, the error patterns identified in the simulations offer significant insights that can be 
effectively applied in practical scenarios to enhance the precision, effectiveness, and dependability 
of computational simulations. By integrating these observations into their practices, engineers and 
researchers have the opportunity to elevate the quality of their outcomes, make well-founded 
decisions, and propel advancements in their respective domains. 

The study indicates that the error associated with the unsteady Couette solution escalates with 
an increase in the number of intervals, 𝑁. Nonetheless, augmenting the time-step-based parameter, 
𝐸 has the potential to mitigate the error, albeit with a concurrent rise in the probability of oscillation. 

These results underscore the critical importance of taking into account the specific attributes of 
the problem under consideration when interpreting outcomes, particularly in cases involving 
unsteady solutions. The research underscores the necessity for a meticulous examination and 
comprehension of the parameters involved to precisely forecast the system's behavior. 
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