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The transport of atherogenic molecules across a bifurcated artery under the stenotic 
conditions are examined in this present work simultaneously with the effects of 
magnetohydrodynamics and non-Newtonian flow of blood. The streaming blood is 
characterised as the power law rheological model that pass through a constricted 
vessel which acts as a porous medium considering that stenosis is developed from the 
deposition of fatty substance. This abnormal growth of plaque accumulation which 
deposited at lumen of the mother artery is modelled as an overlapping shaped stenosis 
and can be categorized as multiple stenoses. The incompressible, steady, laminar and 
viscous flow of blood is governed by the continuity, Navier-Stokes and convection-
diffusion equations coupled with the non-Newtonian constitutive equation. The 
equations governing such fluid motion with appropriate boundary conditions are then 
numerically solved by a stabilized form of finite element approach known as Galerkin 
least-squares method. The computational domain and dependent variables are both 
being approximated by quadratic triangular element interpolation function of 
isoparametric formulation. Effects of different fluids characterisation and magnetic 
field has been validated and show a satisfactory agreement with findings from previous 
literatures, thus verify the applicability of the developed algorithms. The findings on 
the contour filled of velocity with streamlines pattern, contour field of shear stress 
distribution and contour filled of concentration are simulated with varying 
hemodynamic parameters of magnetic intensity and porosity constant. The simulated 
findings have revealed that shear-thinning fluid is vulnerable to an increasing extension 
of cholesterol accumulation, particularly in the downstream region of stenosis. This 
vulnerability is predominantly observed when the largest flow separating region and 
lowest luminal mass transfer coincide, especially when accompanied by the highest 
flow porosity and magnetic source application, as compared to its counterpart. 
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1. Introduction 
 

As a medium of transportation that carries vital responsibilities to sustain and keep the tissues of 
the body in great condition by supplying essential nutrients and oxygen to human’s cells and body 
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tissues, blood as a biological fluid also plays the role of getting rid of waste materials in the blood 
vessels from human’s body. Lipid particles that circulate in the blood in the form of low-density 
lipoproteins (LDLs) tend to accumulate cholesterol along the arterial wall and are frequently 
correlated with atherogenicity events. This strong connection between LDL cholesterol deposition 
with the pathogenesis of atherosclerotic cardiovascular disease, which is known as the number one 
killer among societies in industrialized world, has spurred numerous kinds of studies on LDL 
cholesterol level mechanisms of blood in the occurrence of cardiovascular events. 

This fact has been verified following the criteria outlined in nine Bradford-Hill epidemiological 
reports by Schade et al., [1] suggesting the significant contribution of LDL cholesterol in the 
pathogenesis of atherosclerosis and its subsequent progress. The build-ups of this atherosclerotic 
lesions in the form of fatty deposition at the arterial wall has caused a reduction in the arterial 
passage that could restrict the blood circulation through the arteries, which would then lead to the 
stenosis development [2,3]. Stenosis was portrayed as a multiple typed stenoses in two different 
investigations conducted by Liu and Liu [2] and Reima et al., [3], since this kind of arterial constriction 
is preferably found in most medical assessment of patients with cardiovascular diseases. The local 
luminal mass transport in a straight arterial stenosis was examined by these groups of researchers 
considering the shape of stenosis as an overlapping [2] and double stenoses [3]. 

Sites with low and fluctuated wall shear stress, which predominantly occurs around bends, 
bifurcations, junctions and curvatures in the arterial system, are identified by Sarifuddin et al., [4] as 
the sites highly predisposed to atherosclerotic formation and certain flow complications in the form 
of flow recirculation and stagnation. The formation of recirculation zone occurring in the downstream 
region of stenosis has a tendency to create a new intimal thickening by accumulating the cholesterol 
on its rear end [4]. These conditions may get worse if large strain of shear stresses and mass transfer 
rates are exerted near the throat of the stenosis, which directly could disrupt the plaque and promote 
the thrombosis occurrences that would lead to the total blockage of blood being transported to the 
brain or the heart [5,6]. These high diffusive fluxes exerted on the wall at several locations in the 
artery that possess a constriction at a maximum height indicated by Chakravarty and Sen [7] as having 
large concentration gradient result in low concentration of solute at the wall in comparison to the 
blood. Findings reported by Sarifuddin et al., [4] and Chakravarty and Sen [7] expressed the 
considerable impact of stenosis appearance in a bifurcated artery on the distribution of diffusive 
fluxes of the solute. Several different kinds of studies conducted by Iasiello et al., [8], Hossain and 
Haque [9] as well as Kumar et al., [10] agreed with this view by considering the formation of 
atherosclerotic plaque in arterial bifurcation with combined effect of mass transport. The significant 
impact of the severity of stenoses and Reynolds number on flow velocity and solute concentration 
was evident in a study conducted by Thirunanasambantham et al., [11], focusing on the mass 
transport phenomena of non-Newtonian flow of blood through a stenosed bifurcated artery. 

The outcomes from extensive analysis carried out by Iasiello et al., [8] on the impacts caused by 
different kind of rheological models (Newtonian, Carreau-Yasuda, power-law and Carreau) on LDL 
mass transport through the aorta-iliac bifurcation that possess a porous wall has highlighted the 
appropriateness of predicting the profiles of LDL concentration by treating the rheological behaviours 
of blood as a non-Newtonian fluid model primarily at large Reynolds number. In another study, 
Hossain and Haque [9] studied the dynamic response of LDL concentration through a stenosed 
bifurcated artery in the presence of magnetic field by describing the characteristics of the streaming 
blood as a Newtonian chemically reactive fluid. The focus of their study is then extended by Kumar 
et al., [10] with coupled effect of heat source on the flow of blood through a porous bifurcated artery 
in the presence of an inclined magnetic field that would be beneficial for the clinical treatment of 
hypotension and carotid tumour. The combined impacts of magnetic field, chemical reaction, and 
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heat source parameters on the heat and mass transport mechanisms of non-Newtonian flow of 
blood, treated as a micropolar fluid model accounting for the microscopic effect due to the local 
structure and micromotion of the fluid particles, was examined by Khan et al., [12], across a vertical 
stretching/shrinking sheet. Khan et al., [12] observed that the mass transfer rate occurring at the 
surface diminishes as the heat source parameter increases, and it is enhanced as the chemical 
reaction parameter increases. 

The negatively charged ions contained in the red blood cells has caused an opposing motion of 
blood in the presence of magnetic field. The electrical conductivity property of blood that works 
according to the magnetohydrodynamics (MHD) principle offers many positive medical benefits 
related to health concerns. For instance, magnetic therapy in sports has been reported by Mwapinga 
et al., [5] to alleviate pain as well as functioned well in blood flow regulation through his research 
that works on a chemically reactive blood flow through a single arterial stenosis in the presence of 
an external magnetic field and body acceleration. The interaction between an induced electric 
current with an externally applied magnetic field causes the cells to align along their long axis in the 
direction of the magnetic field. Hence, exposure to an externally applied magnetic field results in 
opposing motion against the blood flow, generating body forces known as the Lorentz force due to 
the anisotropic orientation of erythrocytes. This may also result in an increment of blood viscosity 
[13]. Consequently, the resistive force and the rise in fluid viscosity impede blood movement, 
decreasing its velocity as the strength of the magnetic field intensity increases [14]. Therefore, MHD 
principles have demonstrated their utility in preventing and providing rational therapy for arterial 
diseases characterized by accelerated blood flow, such as hypertension and haemorrhages [15]. 

The porous nature of the diseased vessel, which consists of pores allow molecules of various sizes 
to penetrate and pass through the endothelial cells, is realistically relevant in characterizing the local 
luminal mass transport mechanisms. In consideration that stenosis is formed through the 
accumulation of fatty substances and the proliferation of connective tissues on the endothelial 
layers, the pathological condition of a diseased vessel as a porous media should seriously be included 
in the hemodynamic investigation of blood flow through atherosclerotic vessels accompanied by the 
transport phenomena of solute concentration. In view of that, the mass transport phenomena which 
takes place in a single arterial stenosis with porosity effect was described by Saket and Kumar [16] 
on the basis that the steady convection diffusion process of dissolved oxygen is taken into account. 
Proper research on the interaction that occurs when blood flows through a porous constricted artery 
under the presence of wall slip, body acceleration, non-Newtonian and magnetic field effects then 
was conducted by Nandal et al., [17]. The main highlight from this study involves the slip velocity 
condition at the permeable wall that was found to be beneficial with the combined effects from body 
acceleration and magnetic field to effectively regulate blood pressure, necrosis, headaches as well as 
joints and muscles pain [17]. Previously, Nadeem et al., [18] examined the coupled effects of heat 
and mass transport on Newtonian biomagnetic fluid of blood flow through a tapered single arterial 
stenosis that is considered equivalent to a fictitious porous structure. A recent study by Omar et al., 
[19] on the unsteady Casson fluid through a porous medium in the presence of thermal radiation and 
chemical reaction highlighted the significant role of porous medium. This contribution leads to a 
reduction in flow resistance, consequently enhancing the fluid motion. 

A more comprehensive study that combined the effects of chemical reaction, thermal radiation, 
heat source and magnetic field inclination on the unsteady magnetohydrodynamics flow of blood 
passed through a straight porous arterial stenosis was examined by Omamoke and Amos [20]. Results 
obtained from the investigation conducted by Amos et al., [6] could assist in predicting the possible 
outcomes for the treatment of cancerous tumour, hypothermia and hyperthermia through the 
extension of idea from the prior works by Omamoke and Amos [20] with inclusion of slip velocity and 
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body acceleration effects. The radiation effect, which helps in forecasting the progress of cancerous 
tumour treatment, is neglected by Amos et al., [6]. Magnetic field exposure of suitable intensities 
was reported by Abdullahi et al., [17] through the recent study on the MHD Newtonian blood flow 
through a porous straight artery subjected to the impacts of heat source, thermal radiation, and 
chemical reaction and inclined magnetic field as a practical way to cure the low blood pressure 
disorder by controlling the blood flow rate. In addition, by adjusting the magnetic field exposure on 
the affected areas to a certain slant angle, the incident of strokes, pain and swelling of the infected 
site could be reduced [21]. 

The serious complications that occur in the veins or arteries resulted from the atherosclerotic 
plaque accumulation may contribute to various kinds of cardiovascular diseases such as myocardial 
infarction, ischemic stroke as well as low and high blood pressure. Therefore, a realistic and relevant 
set of mathematical models on mass transport phenomena through an arterial constriction may 
provide an accurate understanding of the transport of macromolecules with dissolved gases to and 
through the walls of the artery which are also correlated with the growth and progress assessment 
of atherogenic processes. The mechanisms of mass transfer through an atherosclerotic artery have 
been addressed in nearly all works cited here that takes into consideration the other combined 
impacts of magnetic field and porous nature of the diseased vessel. Despite that, the authors 
discovered that only a few attempts have focused on the non-Newtonian rheological behaviours of 
blood passed through the atherosclerotic bifurcated artery. These aspects are definitely essential in 
order to accurately describe the behaviours of blood through the diseased vessel. Hence, our 
intention through this work is primarily to fill those gaps by mathematically modelling and examining 
the coupled effects of mass transport on the magnetohydrodynamics flow of blood through a porous 
arterial bifurcation with an overlapping shaped arterial constriction at the mother artery. The novelty 
of this study lies in representing blood behaviour using the non-Newtonian fluid model, specifically 
the power law model, and considering variations in fluid nature such as shear-thinning, Newtonian, 
and shear-thickening, denoted by appropriate power law indices. This is significant because previous 
works have not paid much attention to the mass transportation of blood within the constricted artery 
characterized as a non-Newtonian model. The findings from this study may assist in predicting the 
outcome of alternative treatment plans for cardiovascular diseases patients, which in terms of cost 
offers an economically cheap rate. Many medical diagnostic devices rely on magnetic fields for 
diagnosing cardiovascular diseases. The findings of this study may offer valuable insights to medical 
practitioners regarding the therapeutic use of magnetic therapy in managing conditions like 
hypertension, haemorrhages, and gastric infections. Moreover, surgeons aiming to maintain the 
desired blood flow rate during surgical procedures could harness the resistive nature of the 
Lorentzian magnetic body force produced by applying an external magnetic field. Additionally, 
accurate regulation of blood flow rate measurements, which holds significant interest for clinicians 
and medical scientists, can be achieved by thoroughly considering the realistic pathological 
conditions of blood as a porous medium, as investigated in this study. 
 
2. Mathematical Formulation of the Problem 
 

The mathematical model for the problem under consideration is developed following a few 
assumptions that are inflicted into the flow domain in order to simulate the outcome from this 
present model realistically, such that 

 
i. The mother artery has an arterial constriction which is symmetrical about the axis of the 

trunk in the shape of overlapping with a maximum height m  which occurs at 02 / 6d l+  
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and 04 / 6d l+ . The critical height of an overlapping stenosis, 0.75 m  is located at 0 / 2d l+  

as portrayed in Figure 1. 

ii. The arterial bifurcation possesses a finite length, maxx  with 30º angle of bifurcation, .  

iii. The appropriate curvatures are proposed at the flow divider and lateral junctions of the 
branch artery to avoid any kind of discontinuity that would lead to either a huge 
separating flow or its non-existence. 

iv. The computational domain and flow are represented by using the two-dimensional 

Cartesian coordinate system by taking the material point ( , )x y  where the horizontal x -

axis is taken along the axis of the trunk, while the y -axis is taken perpendicularly to the 

axial flow direction. 
v. The wall motions of the outer and inner arterial wall are considered rigid in view of its 

diseased state which made it less compliant. 
vi. The cholesterol deposits on the arterial wall that is portrayed as an atherosclerotic 

constriction is considered similar to a fictitious porous structure. 
vii. The streaming fluid is considered steady, laminar, incompressible, fully developed and 

non-Newtonian in nature under the influence of an external magnetic field that is applied 
in a transverse direction. 

viii. The motion of blood is characterised as a non-Newtonian fluid by taking into account a 
different fluid characterisation corresponding to the shear-thinning, Newtonian as well as 
shear-thickening nature of blood described by the appropriate values of the power law 
index conditionally as 1,  1n n =  and 1,n   respectively. 

ix. The LDL mass transport within an arterial bifurcation is simulated by individually coupling 
the mass transport equation with the velocity components. 

 
2.1 Arterial Geometry 
 

The arterial geometry involved in this study is modelled as a porous bifurcated channel that 
possesses an overlapping shaped stenosis in the parent artery as depicted in Figure 1. The 
construction of this computational domain is expressed mathematically by Chakravarty et al., [22] 
and Chakravarty and Mandal [23] for the geometric model of the bifurcated system and vessel 

constriction, respectively. In Figure 1, the parameters a  and 1r  describe the radii for the mother and 

daughter artery, respectively. Meanwhile, 0l  acts as the arterial constriction’s length at a distance d  

from the origin. The onset and offset of the lateral junction are located, respectively, at the axial 

distance of 1x  and 2x , while 3x  denotes the apex of the vessel. 
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Fig. 1. Schematic diagram of porous bifurcated artery with magnetix 
flux intensity, 

0B  acts in a perpendicular direction of blood flow 

 
2.2 Governing Equations and Boundary Conditions 
 

Based on the specified assumptions, the relevant sets of governing equations for the streaming 
blood are given as the coupled system of equations comprising of the continuity, Navier-Stokes and 
convection-diffusion equations, written individually in non-dimensional form as, 
 

0,
u v

x y

 
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 
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2 2

2 2

1
,

C C C C
u v

x y Re Sc x y

    
+ = + 

     
           (4) 

 
Where , , ,u v p T  and C  act as the axial velocity, radial velocity, pressure, temperature and solute 

concentration components of the streaming blood, respectively. Meanwhile, the appropriate 
conditions are imposed at certain boundaries of the domain corresponding to a fully developed flows 
of a non-Newtonian fluid [24], a non-slip condition along the wall boundaries of the artery 
considering that the malfunction of wall motion occurs in a diseased artery [25] and a traction free 
condition on the outlet boundaries of the branch artery [16], respectively, given in non-dimensional 
form as, 
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where   and 

         (5) 

 

Where ,inlet wall   and outlet  are the inlet, wall and outlet boundaries of the domain , respectively. 

The unit outward normal vector, the vector of the prescribed boundary tractions, the unit tensor, 

and the strain rate tensor are exhibited by the respective parameters , ,hn t I  and .D  The parameters 

, , ,a Re M K  and Sc  which appear due to the non-dimensionalization procedure represent the 

apparent viscosity for the power law fluid model, Reynolds number, Hartmann number, porosity 
constant and Schmidt number, respectively. These parameters are produced through a combination 
of several parameters for the simplification of physical dimensions involved in this model. Hence, 
these non-dimensional variables which appear in Eq. (1) – Eq. (4) could be defined as, 
 

1
11 2 1 2

01 1 2
, , , , .

nn n n n

r ra
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mr r
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Re M B K Sc
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      (6) 

 

In Eq. (6), the diameter of the arterial’s inlet is denoted by the characteristic length, ,h  the fluid’s 

consistency parameter is characterised as ,m  and the average mean inflow velocity is represented as 

.ru  In addition, the parameters 
0, , ,B k   and 

mD  indicate the density of blood, intensity of magnetic 

flux, electrical conductivity of blood, constant coefficient which defines the porosity of the medium 
and constant coefficient of diffusion, respectively. Also, the viscosity function for the power law fluid 
model signified here as 

a  could be mathematically expressed as [26], 

 

( )
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2
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2 22 2
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        (7) 

 
Where n  is the power law index that is chosen following the condition of fluid characterisation and 

2I  is the second invariant of the strain rate tensor. The non-dimensional variables involved in the 

transformation of governing equations obtained in Eq. (1) – Eq. (4) and boundary conditions acquired 
in Eq. (5) as a simplified non-dimensional system are as follows, 
 

2
,  ,  ,  ,  , ,

r sr r

x y u v p C
x y u v p C

Ch h u u u
= = = = = =          (8) 

 
Where 

sC  stands as the reference concentration of solute at the arterial inlet, while the ‘ˉ’ which 

appears in Eq. (8) on top of certain variables are indication of each physical quantity which exist in 
their dimensional form. To ease the numerical formulation which will be implemented in the 
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following section, the governing equations expressed in Eq. (1) – Eq. (4) with prescribed boundary 
conditions specified in Eq. (5) are written in a simplified vector form as follows, 
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Where ( )( )1
, ( , , )

2

T
u v C=  +  =D ω ω ω  and 0.h =t  g  indicates the boundary section,   of the 

domain   that is imposed by the Dirichlet boundary conditions. Referring to the body forces 
expressed in Eq. (2) and Eq. (3), the body force vector, f  from Eq. (9) are then comprised as 

2 1 1
( , ).

M
u u v

Re Re K Re K
− − −

 
 By the non-dimensionalisation procedure, the boundary configurations 

of the domain illustrated in Figure 1 are also being non-dimensionalised to a finite horizontal length 
of 6.333333  with vessel’s inlet equivalent to 1. 
 
3. Numerical Methodology 
3.1 Galerkin Least-squares Method 
 

The solutions for the boundary value problem for the system of equations specified in Eq. (1) - 
Eq. (4) subject to boundary conditions inflicted as Eq. (5) are approximated numerically by a 
stabilization technique of a finite element approach, known as the Galerkin least-squares method. 
Therefore, the degrees of freedom involved in this study are comprised of the components of velocity

(  and )V Vh

h g
, pressure ( )hP  and concentration of solute (  and )h

h gC C  which are approximated 

according to the finite element subspaces which are typically defined in fluid dynamics [27, 28] as, 
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The standard finite element spaces in Eq. (10) are defined over a partition 

hX  in a closed domain 

  consisting of a triangular element ( )m KP   with degree 2.m =  Hence, the polynomial spaces for all 

components denoted as mR  are defined as ( , )m k l=  corresponding to an equal degree of 

interpolation functions for ,h hpu  and hC  which are approximated by using a quadratic order of 

triangular element, 2 2/ .P P  Also, the vector gω  describes the conditions for , pu  and C  which are 

prescribed over g  boundaries of the domain. Based on the functional spaces defined in Eq. (10), the 
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Galerkin least-squares formulation for the non-linear boundary value problem introduced in Eq. (9) 
can be stated as to find the solutions of ,  u Vh h h hp P   and ,h hC C given as 
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From the above formulation, it is worth noting here that the terms without the summation sign 

are originated from the weak formulation of a classical Galerkin method and the terms within the 
summation sign in Eq. (12) and Eq. (13) are the added stabilization terms which are obtained from 
the minimization of the functional residuals constructed from Eq. (9). The stabilization parameter, 

( )KRe  is adopted from the existing study performed by Franca and Madureira [29] which is 

applicable for the higher order element with degree 2k .  These added residual-based terms may 
be specified as [29], 
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Where the parameter K  is uniquely determined as the maximum eigenvalue for the generalized 

eigenvalue problem defined for each K  following the associated problem designed and solved by 

Franca and Madureira [29] as well as Harari and Hughes [25] for the selected degree of polynomial 

.k , as to find   ( ), , / ,K k KR  N N  such that 

 

( ) ( ) ( ). ., , 0,  / .h K h h k KR     −   =   N N                    (15) 

 
To solve the set of coupled, non-linear, differential equations expressed in Eq. (11) – Eq. (13), the 

non-linear algebraic system is introduced by writing the equations in terms of the symbolic format 
of, 
 

0,= − =R(U) K(U)U F                        (16) 

 
where U  denotes vectors for the degrees of freedom of the associated problem that are spatially 
discretized with isoparametric triangle elements of quadratic order for the velocity, pressure and 

concentration components within an element, , 1,2,3,....i ee i N= , given as 

 

,

,

,

i i

i i

i i

e e

j j

e e

j j

e e

j j

p p q p

T C C

= =

= =

= =

u u N u

N

                       (17) 

 

Where eN  denotes the total number of elements, while 1,2,3,4,5,6j =  correspond to three corner 

nodes and three centre nodes. Also, R  stands as the nonlinear operator containing the vector 

components of the residuals function, K  is the stiffness matrix made up of the advective, diffusive, 
pressure, constraint of incompressible terms as well as terms generated from the added least squares 

formulation and F  represents the functions of body force and applied boundary conditions. In order 
to solve the above non-linear system, help from an iterative method is required to linearize the non-
linear terms originating from the advection terms. Hence, for the above system, the algorithm for 
solving the equation set is given as, 
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( ) ,
b

b bJ


= −   − 
 U

R
R(U ) U U U

U
                     (18) 

 

Where 1( ).b b+ = −U U U  As specified in Eq. (17), ( )
b

bJ


=
 U

R
U

U
 implies the Jacobian matrix, also 

recognized as tangent matrix, while the superscript b  and 1b+  acts as the iteration number. The 
solutions for the above system then are computed as, 
 

1 ( ) .b b b bJ+ = −U U U R(U )                       (19) 

 
The above relation is computed iteratively until the specific values of convergence tolerance,   

for the maximum residual norm, IR  is fulfilled. The convergence parameter may be calculated as 

 

2

1

.
N

I

I

R
=

                          (20) 

 
The computation of numerical integrals of Eq. (11) – Eq. (13) are carried out via the Gaussian 

quadrature technique. The essential steps for the algorithm are summarized as, 
 

i. The Stokes solution for the Newtonian fluid flow ( 1)b =  is estimated as the initial guess for
0

U . The number of iterations, b  is set. 

ii. The Residuals matrix is constructed by using the initial guess 0 ,U  stiffness matrix, b
K(U )  and 

body force matrix, b
F(U )  which is constructed by using the Picard iteration method. 

iii. The convergence tolerance,   is computed as Eq. (20). If 1( ) ,b

IR +


U  then the Jacobian 

matrix, ( )bJ U  is computed by using Newton’s method. 

iv. The incremental vector, U  then is computed as 1( ).b b+ −U U   

v. The solutions vector is solved for 1b+
U . 

vi. Repeat step 2-5 by using the updated solutions for the next iteration until the convergence 
criteria in step 3 is achieved. If the condition set for convergence tolerance is fulfilled, the 

solutions found are converged. The solutions for 1b+
U  are saved and the algorithm is 

completed. 
 

In this study, finite element meshes are generated using the "mesh2d" function developed by 
Darren Engwirda for triangular elements, which is available online and can be downloaded from the 
MathWorks webpage (www.mathworks.com). 
 
3.1 Algorithms Validation 
 

In this section, a numerical validation on the source code that has been developed according to 
the Galerkin-least squares algorithm is performed to certify the applicability of the developed source 
code in computing the solutions of the system of Eq. (11) - Eq. (13). The verification is conducted with 
the existing studies of Bell and Surana [31] as well Ghia et al., [32] which works on the respective flow 
of non-Newtonian power law model and Newtonian model in a lid-driven cavity. Fundamentally, the 
results on the u -velocity profile along the vertical centreline of the cavity for 100Re =  and 1n = are 

http://www.mathworks.com/


CFD Letters 

Volume 17, Issue 1 (2025) 90-113 

101 
 

generated for several mesh distributions to publish a mesh-independent finding as shown in Figure 
2. To achieve that, the results are generated by using five variations of finite element meshes 
consisting of 6856, 10328, 12076, 14396 and 17524 unstructured triangular elements. As presented 
in Figure 2, it is obvious that the mesh-independent results are obtained with a mesh design 
comprising 12076 unstructured triangular elements which is made up of 6239 nodes. The final 

optimized selected mesh is prescribed with a maximum element size of 0 0115maxh . ,=  since modifying 

the element size beyond this design does not significantly alter the accuracy of the u -velocity profiles 
along the vertical centreline of the cavity. 

 

 
Fig. 2. Mesh independence test of u -velocity profiles 
along the vertical centreline of the cavity for 

100Re =  and 1n =  

 
The mesh design for the selected mesh is demonstrated in Figure 3 with the conditions prescribed 

over the boundaries of the domain. 
 

 
Fig. 3. The selected mesh for lid cavity problem with 
prescribed boundary conditions 
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Hence, by using the selected mesh, the benchmark analysis is then performed for the axial 
velocity distributions along the vertical mid line of the cavity for different fluid characterisations 
classified with varying power law index, .n  The validity of the developed source code, which works 
according to the Galerkin least-squares algorithms summarised in the preceding sub-section, is 
declared here through the close correlation of findings obtained for the non-Newtonian power law 
model as well as Newtonian model with existing findings attained by Bell and Surana [31] and Ghia 
et al., [32], respectively, as shown in Figure 4. 
 

 
Fig. 4. Comparison of results on u -velocity profiles 
along the vertical centreline of the cavity obtained 
from this present study verified with existing results 

by Bell and Surana [31] for 0.5,1.5n =  and Ghia et 

al., [32] for 1n =  at 100Re =  

 
4. Result and Discussion 
4.1 Mesh Independence Test 
 

A similar approach to accomplish a mesh independent solution in the last sub-section is carried 
out on the bifurcated channel by considering four different kinds of mesh design comprised of 10857, 
14780, 17278 and 26814 domain elements across several locations of the branch artery. From the 
mesh independence analysis that is demonstrated, an appreciable difference between the results 
generated on u -velocity profiles are detected predominantly at the apex of the branch artery 

approximated for shear-thinning fluids nature, 0 5n .=  at 300 0 2Re ,Sc ,M= = =  and 1K ,=  as 

visualized in Figure 5. 
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Fig. 5. Mesh independence test of u -velocity profiles 
at 3 345102x .=  (apex) location of the channel for 

0 5 300 0 2n . ,Re ,Sc ,M= = = =  and 1K =  

 

It is clearly observed from the present figure that a smooth curve is developed for mesh 2, mesh 
3 and mesh 4. In addition, the curves produced for these three consecutives meshes are in close 
correlation between one another with no significant difference spotted between the curves line as 
the element density is increased. Hence, the mesh independence results are attained by using the 
finite element mesh design consisted of 14780 unstructured triangular elements generated from 

8283 nodes that is prescribed with a maximum element size of 0 065maxh . ,=  as presented in Figure 6. 

All simulations performed in this present study are approximated by the selected mesh 2 having 
quadratic order on each triangular element. 
 
4.2 Hemodynamical Analysis of Blood Flow Simulation 
 

Note that parameters involved in the considered problem must be assigned prior to further 
numerical computation. The Hartmann number M  signifies the ratio of electromagnetic force to the 
viscous force that is considered as purely hydrodynamics, 0M =  as well as purely 
magnetohydrodynamics, 2,4M =  when the system is influenced respectively by no magnetic source, 

0 0TB =  and strong magnetic field of strength, 0 8.819171T,17.638342TB =  with the blood electrical 

conductivity, 0.8S/m =  and the blood density, 31050kg/m . =  The enhancement in permeability of 

the porous medium is represented by increasing value of parameters 0,1,2.K =  The main aim of this 

work is to simulate the mass transport phenomena of the non-Newtonian power law fluid flow that 
is affected by the magnetic source application, M  and flow porosity, .K  The non-Newtonian nature 
of blood is described as shear-thinning, Newtonian and shear-thickening fluids corresponding to 
varying values of power law index indicated as 0.6 ( 1),n n=  1,n =  and 1.4 ( 1),n n=   with fluid’s 

consistency parameter varied as 0.006356,0.0035,0.001927,m =  respectively, for fixed value of 

average inflow velocity, 26.666667 10 m/sru −=   obtained for Reynolds number, 300.Re =  Meanwhile, 

for constant coefficient of diffusion, 6 2=6.666666 10 m /s,mD −  the Schmidt number then is calculated 

as 0.5.Sc =  The solutions for the considered problem act in a satisfied manner with a convergence 

tolerance set in an order of 610 −=  and by using these sets of parameters to construct the arterial 

geometry of the branch artery: 0.5,a =  0 1.333333,l =  1,d =  6.333333,maxx =  1 3,x =  0.013333,q =  

30 , =  1 0.51r a=  and 0.015m.h =  
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Fig. 6. The optimized selected mesh for the 
present GLS algorithms simulation of 
unstructured triangular element 

 
The distribution of non-dimensional variables of velocity and shear stress are simulated 

graphically in terms of filled contour by varying the values of flow porosity, K  and magnetic source, 
M  for different kinds of fluid characterisation, n  as depicted in Figure 7 – Figure 10 at fixed values 
of Reynolds and Schmidt numbers, 300 0 5Re ,Sc . .= =  Apparently, the increment in flow porosity has 

led to a reduction in the maximum velocity that is developed in the constricted area with intangible 
changes in flow recirculation formed at the downstream region of stenosis in spite of an elevation in 
K  from 0K =  to 2.K =  This flow pattern could result from the enhancement of fluid motion driven 
by the decreased resistance of blood flow as the flow porosity increases [19]. As the power law index 
is increased from 0 6n .=  to 1 4n . ,=  the maximum velocity which is developed in the area of 

constriction has increased significantly. The obstructed area caused by the formation of stenosis has 
hindered the flow of blood while approaching this area, the fluids flow is accelerated to keep the 
blood circulation across this region. Therefore, the shear-thickening fluid attains the highest 
maximum velocity around the constricted area compared to its counterparts. This is due to its fluid 
viscosity, which is much lower in the low shear rate region compared to the Newtonian and shear-
thinning fluids. As a result, the shear-thickening fluid flows at a higher velocity through the 
constricted region compared to its counterparts. The velocity across the daughter branches for 

1 4n .= are the most declined in magnitudes based on the filled contour of velocity visualized in Figure 
7 compared to the other fluid characterisations. These fluid behaviours correspond to changes in the 
apparent viscosity of fluids according to different power law indices. This enables the shear-thinning 
fluid to flow more easily (with less resistance) compared to fluids characterized by Newtonian and 
shear-thickening behaviour. Conversely, the shear-thickening fluid exhibits a more resistive motion 
of fluid in accordance with its viscosity, which increases with the shear rate. 

On the other hand, the notable influence of magnetic fields is discovered for the distributions of 
velocity contour and vortex formation, which are both diminished in magnitude and size, 
respectively, as the magnetic sources are magnified from 0M =  to 4M .=  The increment in magnetic 
field intensities obviously lead to the enhancement of hydro magnetic Lorentzian drag force that has 
a tendency to oppose the fluid particles and diminishes the blood flow motion. As illustrated in Figure 
8, shear-thinning fluid, 0 6n .=  is the fluid characterisation that is less viscous in comparison to its 
counterpart, which is Newtonian, 1n =  and shear-thickening fluid, 1 4n . ,=  possesses the highest 

magnitude of velocity passing through the arterial branches with the least maximum velocity 
developed in the stenotic region. Therefore, the size of vortex formation is decreasing as the power 
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law index is increased from 0 6n .=  to 1 4n . ,=  which is in agreement with previous findings obtained 

by Halifi et al., [26]. Among these three fluids, the shear-thinning fluid moves faster and possesses 
higher momentum. It is resistant for the same fluid layer to remain attached to suddenly changing 
geometry, thus exhibiting a more predominant vortex along the outer wall. 
 

     
(a)   

 
(b)  

 
(c)  

Fig. 7. Velocity contour and streamline pattern at various values of power law index, n  and 

porosity constant, K  for 300 0 5Re ,Sc .= =  and 2M = (a) 0.6n =  (Shear-thinning) (b) 1n =  

(Newtonian) 

 

𝐾 = 0 𝐾 = 2 

𝐾 = 0 𝐾 = 2 

𝐾 = 0 𝐾 = 2 
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(a)  

 
(b)  

 
(c)  

Fig. 8. Velocity contour and streamline pattern at various values of power law index, n  

and magnetic number, M  for 300 0 5Re ,Sc .= =  and 1K = (a) 0.6n =  (Shear-thinning) 

(b) 1n =  (Newtonian) (C) 1.4n =  (Shear-thickening) 

 

𝑀 = 0 

𝑀 = 4 

𝑀 = 0 
𝑀 = 4 

𝑀 = 0 𝑀 = 4 
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Shear stress is a tangential shear force driven from the friction that is exerted by the blood on the 
arterial wall resulting from the fluids viscous nature [33, 34]. The assessment on shear stress 
distribution is clinically essential to gain knowledge on the local hemodynamic environment of 
coronary atherosclerosis, to identify a high-risk plaque as well as to examine the sites prone to plaque 
accumulation and its further atherosclerotic lesion progression [33]. As revealed in Figure 9 and 
Figure 10, a higher shear stress is observed at the throats of the stenosis and the apex of the branch 
artery irrespective of differences in fluid nature for varying effects of permeability of the porous 
medium, K  and magnetic sources application, M ,respectively. A large shear stress value 

corresponding to a large shear rate value promotes a high concentration of platelet near the vessel 
wall to assist in clotting and wound healing [35]. Meanwhile, the other regions in the arterial 
bifurcation seem to have a low shear stress value. Precisely, the lowest shear stress values are found 
around the axis of symmetry located at the parent’s artery and downstream of stenosis where the 
flow separation region are identified as established in Figure 7 and Figure 8. A low shear stress value 
which developed at the downstream region of stenosis may promote the fat deposition to extend its 
size into the lumen of the side branch [36]. In fact, a low shear stress may turn a stable lesion into a 
high-risk plaque [37]. A constant exposure to a low shear stress value leads to a higher risk of plaque 
growth extended at the rear end of stenosis resulting in a severe stenotic condition. Clinically, the 
low shear stress pattern which may induce the inflammatory endothelial cells and a coupled effect 
of high LDL concentration would promote the growth of atherosclerosis [37]. The equivalent trends 
are observed on the increasing shear stress pattern as flow porosity, K  as well as magnetic source, 
M  intensifies, which suggests the idea of regulating the blood flow rates with a sufficient level of 
magnetic application and permeability of the porous media in a surgical procedure. 

 

 
(a)  

 
(b)  

𝐾 = 0 𝐾 = 2 

𝐾 = 0 𝐾 = 2 
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(c)  

Fig. 9. Shear stress distribution at various values of power law index, n  and porosity constant, 

K  around the stenosis and apex of the branch artery for 300 0 5Re ,Sc .= =  and 2M = (a) 

0.6n =  (Shear-thinning) (b) 1n =  (Newtonian) (c) 1.4n =  (Shear-thickening) 

 

 
(a)  

 
(b)  

 
(c)  

Fig. 10. Shear stress distribution at various values of power law index, n  and magnetic number, 

M  around the stenosis and apex of the branch artery for 300 0 5Re ,Sc .= =  and 1K = (a) 

0.6n =  (Shear-thinning) (b) 1n =  (Newtonian) (c) 1.4n =  (Shear-thickening) 

 
The quantitative analysis on the mass transfer patterns that take place in three different fluid 

classifications through a stenosed arterial bifurcation are examined for varying effects of 
permeability of the porous media, K  and magnetic source application, M  as exhibited in Figure 11 

and Figure 12 for 300Re =  and 0 5Sc .=  in terms of the local Sherwood number distributions, 
computed mathematically as [3,4], 

𝐾 = 0 𝐾 = 2 

𝑀 = 0 𝑀 = 4 

𝑀 = 0 

𝑀 = 0 

𝑀 = 4 

𝑀 = 4 
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,m
D

m

j h
Sh

D C
=


                        (21) 

 
Where 

mj the local is mass flux to the arterial wall and C  is a reference concentration difference 

that is evaluated as the difference between the concentration at the arterial inlet and the 
concentration at the arterial wall. 
 

 
Fig. 11. Sherwood number distribution along the outer 
arterial wall at various values of power law index, n  

and porosity constant, K  for 300 0 5Re ,Sc .= =  and 

2M =  
 

 
Fig. 12. Sherwood number distribution along the outer 
arterial wall at various values of power law index, n  

and Hartmann number, M  for 300 0 5Re ,Sc .= =  and 

1K =  
 

The important features that may be observed from the two present figures are on a similar 
pattern of the 

DSh  distribution obtained from the inlet to the onset of stenosis irrespective of the 

variation in fluid natures ( )n , magnetic sources ( )M  and flow porosity ( )K . A disparity in the 
DSh  

distribution is developed primarily at the constricted region where two peak values of mass transfer 
rate have developed prior to reaching the first throat of stenosis before passing through the second 
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throat of stenosis where fluids with increasing values of power law index, 0.6,1,1.4n =  contributed to 

the rising magnitudes of .DSh  Apparent findings from Figure 11 and Figure 12 reported on the 
DSh  

distributions dropped significantly to the lowest magnitude at the offset of stenosis where the 
negative flow velocity has initiated and caused steep concentration gradients. The lowest mass 
transfer experienced at the downstream region of stenosis may enhance the cholesterol deposition 
at this region leading to a severe stenosis. While approaching the lateral junction of the daughter 
branch the magnitudes of 

DSh has slightly reduced and remains almost consistent throughout the 

non-constricted region of the branch artery. The effects of enhancing the permeability of the porous 
medium, K  as well as the magnetic intensity, M  is not salient in these present figures; somehow a 
slight reduction on the magnitudes of 

DSh  are captured along with the increment of these two 

parameters. Hence, from this assessment, it is concluded that the streaming blood which behaves as 
a shear-thinning fluid accompanied by the greatest flow porosity and magnetic source application 
are more feasible to extend the accumulation of cholesterol at the downstream region of stenosis 
due to the distortions of local luminal mass transfer experienced by the shear-thinning fluid which 
possess the longest flow separated region in comparison to its counterpart. 
 
4. Conclusions 
 

A mathematical model on the hemodynamic of non-Newtonian power law model of blood flow 
influenced by the permeability of the porous medium and magnetic source application has been 
developed in relation to the mass transport mechanisms through an arterial segment having a 
constriction located at the parent artery in the shape of overlapping. The impacts of different fluid 
classifications are examined for 0.6n =  (shear-thinning), 1n =  (Newtonian), 1.4n =  (shear-thickening) 
concurrently with the variation in increasing magnetic intensities ( )0,4M =  and flow porosities 

( )0,2K =  on the study of the velocity contours, streamline, shear-stress contours and the diffusive 

flux of the solute concentration. A close correlation achieved with previous numerical investigation 
has proved the applicability of the developed algorithms that work according to the Galerkin least-
squares method as an effective method for simulating a purely viscous flow of non-Newtonian fluid 
through a complex arterial geometry coupled with the mass transport mechanisms in an arterial 
segment. The prominent findings acquired from this present investigation are: 
 

i. Recirculation region (negative flow area) decreases for increasing values of power law 
index ( )n  and magnetic intensity ( ).M  

ii. The effects of enhancing the permeability of the porous media ( )K  to the vortex 

formation is relatively negligible. 
iii. Shear stress increases when flow porosity ( )K  and magnetic intensity ( )M  increases. 

iv. Increasing the values of power law index ( )n  increases the shear stress. 

v. The highest shear stress values are attained at the throat of an overlapping stenosis and 
around the apex of the arterial bifurcation for shear-thinning ( )0.6n = , Newtonian ( )1n =  

and shear-thickening ( )1.4n =  fluids idealization. 

vi. 
DSh  distribution slightly decreases for increasing values of flow porosity ( )K  and 

magnetic intensity ( ).M  

vii. Increasing values of power law index ( )n  increases the 
DSh  distributions. 
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Based on the quantitative analysis conducted for the mass transfer and shear stress distributions 
of magnetohydrodynamics non-Newtonian power law flow of blood through a porous stenosed 
bifurcated artery, it can be inferred that streaming blood, behaving as a shear-thinning fluid, along 
with the greatest flow porosity and magnetic source application, is more likely to exacerbate the 
accumulation of cholesterol at the downstream region of stenosis. This is attributed to the distortions 
of local luminal mass transfer experienced by the shear-thinning fluid, resulting in the longest flow 
separated region compared to its counterpart. Additionally, with the highest magnitude of shear 
stress attained at the throat of stenosis, the shear-thinning fluid is implicated in endothelial 
detachment and platelet adhesion, thereby inducing thrombotic occlusion without rupture [30]. 
 
Acknowledgement 
This research was funded by a grant from Research Management Centre, Universiti Teknologi 
Malaysia (UTM) under UTMShine grant 09G88.  
 
References 
[1] Schade, David S., Deborah Helitzer, and Philip Eaton. "Evidence that low density lipoprotein is the primary cause of 

atherosclerotic cardiovascular disease: a Bradford-Hill approach." World Journal of Cardiovascular Diseases 7, no. 
9 (2017): 271-284.  

[2] Liu, Yadong, and Wenjun Liu. "Blood flow analysis in tapered stenosed arteries with the influence of heat and mass 
transfer." Journal of Applied Mathematics and Computing 63, no. 1 (2020): 523-541. 
https://doi.org/10.1007/s12190-020-01328-5  

[3] Alsemiry, Reima D., Prashanta K. Mandal, Hamed M. Sayed, and Norsarahaida Amin. "Numerical solution of blood 
flow and mass transport in an elastic tube with multiple stenoses." BioMed research international 2020 (2020). 
https://doi.org/10.1155/2020/7609562  

[4] Sarifuddin, Santabrata Chakravarty, Prashanta Kumar Mandal, and Helge I. Andersson. "Mass transfer to blood 
flowing through arterial stenosis." Zeitschrift für angewandte Mathematik und Physik 60 (2009): 299-323. 
https://doi.org/10.1007/s00033-008-7094-2  

[5] Mwapinga, Annord, Eunice Mureithi, James Makungu, and Verdiana Masanja. "Non-Newtonian heat and mass 
transfer on MHD blood flow through a stenosed artery in the presence of body exercise and chemical 
reaction." Commun. Math. Biol. Neurosci. 2020 (2020): Article-ID.https://doi.org/10.28919/cmbn/4906  

[6] Amos, E., E. Omamoke, and Chinedu Nwaigwe. "Chemical reaction, heat source and slip effects on MHD pulsatory 
blood flowing past an inclined stenosed artery influenced by body acceleration." International Journal of 
Mathematics Trends and Technology-IJMTT 68 (2022).  

[7] Chakravarty, Santabrata, and Subir Sen. "Dynamic response of heat and mass transfer in blood flow through 
stenosed bifurcated arteries." Korea-Australia Rheology Journal 17, no. 2 (2005): 47-62.  

[8] Iasiello, Marcello, Kambiz Vafai, Assunta Andreozzi, and Nicola Bianco. "Analysis of non-Newtonian effects on low-
density lipoprotein accumulation in an artery." Journal of biomechanics 49, no. 9 (2016): 1437-1446. doi: 
10.1016/j.jbiomech.2016.03.017 

[9] Hossain, Khan Enaet, and Md Mohidul Haque. "Influence of magnetic field on chemically reactive blood flow 
through stenosed bifurcated arteries." In AIP Conference Proceedings, vol. 1851, no. 1. AIP Publishing, 2017.doi: 
10.1063/1.4984641 

[10] Kumar, Devendra, B. Satyanarayana, Rajesh Kumar, Sanjeev Kumar, and Narendra Deo. "Application of heat source 
and chemical reaction in MHD blood flow through permeable bifurcated arteries with inclined magnetic field in 
tumor treatments." Results in Applied Mathematics 10 (2021): 100151. 
https://doi.org/10.1016/j.rinam.2021.100151  

[11] Thirunanasambantham, Kannigah, Zuhaila Ismail, Lim Yeou Jiann, and Amnani Shamjuddin. "Numerical 
Computational of Blood Flow and Mass Transport in Stenosed Bifurcated Artery." Journal of Advanced Research in 
Fluid Mechanics and Thermal Sciences 110, no. 2 (2023): 79-94. https://doi.org/10.37934/arfmts.110.2.7994  

[12] Khan, Ansab Azam, Khairy Zaimi, Suliadi Firdaus Sufahani, and Mohammad Ferdows. "MHD Flow and Heat Transfer 
of Double Stratified Micropolar Fluid over a Vertical Permeable Shrinking/Stretching Sheet with Chemical Reaction 
and Heat Source." Journal of Advanced Research in Applied Sciences and Engineering Technology 21, no. 1 (2020):1-
14. https://doi.org/10.37934/araset.21.1.114  

[13] Misra, J. C., A. Sinha, and G. C. Shit. "Mathematical modeling of blood flow in a porous vessel having double stenoses 
in the presence of an external magnetic field." International Journal of Biomathematics 4, no. 02 (2011): 207-225.   

https://doi.org/10.1007/s12190-020-01328-5
https://doi.org/10.1155/2020/7609562
https://doi.org/10.1007/s00033-008-7094-2
https://doi.org/10.28919/cmbn/4906
https://doi.org/10.1016/j.rinam.2021.100151
https://doi.org/10.37934/arfmts.110.2.7994
https://doi.org/10.37934/araset.21.1.114


CFD Letters 

Volume 17, Issue 1 (2025) 90-113 

112 
 

[14] Sinha, A., J. C. Misra, and G. C. Shit. "Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel 
in the presence of non-uniform heat source." Alexandria Engineering Journal 55, no. 3 (2016): 2023-2033. 
https://doi.org/10.1016/j.aej.2016.07.010  

[15] Sankar, A.R., Gunakala, S.R., Comissiong, D.M.G., Gunakala, S.R., and Comissiong, D.M.G. "Two-layered Blood Flow 
through a Composite Stenosis in the Presence of a Magnetic Field." International Journal of Application or 
Innovation in Engineering & Management (IJAIEM) 2, no. 12 (2013): 30-41. 

[16] Saket, R. K., and Anil Kumar. "Reliability of Convective Diffusion Process in Stenosis Blood Vessels." Chemical 
product and process modeling 3, no. 1 (2008). https://doi.org/10.2202/1934-2659.1175  

[17] Nandal, J., S. Kumari, and R. Rathee. "The effect of slip velocity on unsteady peristalsis MHD blood flow through a 
constricted artery experiencing body acceleration." International Journal of Applied Mechanics and Engineering 24, 
no. 3 (2019): 645-659. https://doi.org/10.2478/ijame-2019-0040  

[18] Nadeem, S., Noreen Sher Akbar, T. Hayat, and Awatif A. Hendi. "Influence of heat and mass transfer on Newtonian 
biomagnetic fluid of blood flow through a tapered porous arteries with a stenosis." Transport in porous media 91 
(2012): 81-100. https://doi.org/10.1007/s11242-011-9834-6  

[19] Omar, Nur Fatihah Mod, Husna Izzati Osman, Ahmad Qushairi Mohamad, Rahimah Jusoh, and Zulkhibri Ismail. 
"Analytical solution of unsteady MHD casson fluid with thermal radiation and chemical reaction in porous 
medium." Journal of Advanced Research in Applied Sciences and Engineering Technology 29, no. 2 (2023): 185-194. 
https://doi.org/10.37934/araset.29.2.185194  

[20] Omamoke, Ekakitie, and Emeka, Amos. "Chemical Reaction, Radiation and Heat Source Effects on Unsteady MHD 
Blood Flow Over a Horizontal Porous Surface in the Presence of an Inclined Magnetic Field." International Journal 
of Scientific & Engineering Research 11, no. 4 (2020): 1187-1192.  

[21] Abdullahi, Isah, A. A. Hussaini, Domven Lohcwat, Ali Musa, and Mohammed Adamu. "Influence of Chemical 
Reaction, Heat Source and Thermal radiation on MHD Blood flow through a Porous Medium with an Inclined 
Magnetic field in Treatments of Cardiovascular Diseases." GSJ 10, no. 3 (2022). 

[22] Chakravarty, Santabrata, and Prashanta Kumar Mandal. "An analysis of pulsatile flow in a model aortic 
bifurcation." International journal of engineering science 35, no. 4 (1997): 409-422. https://doi.org/10.1016/S0020-
7225(96)00081-X  

[23] Chakravarty, S., and P. K. Mandal. "Mathematical modelling of blood flow through an overlapping arterial 
stenosis." Mathematical and computer modelling 19, no. 1 (1994): 59-70.https://doi.org/10.1016/0895-
7177(94)90116-3  

[24] Husain, Iqbal, Fotini Labropulu, Chris Langdon, and Justin Schwark. "A comparison of Newtonian and non-
Newtonian models for pulsatile blood flow simulations." Journal of the Mechanical Behaviour of Materials 21, no. 
5-6 (2013): 147-153. https://doi.org/10.1515/jmbm-2013-0001 

[25] Sousa, Luisa, C. A. T. A. R. I. N. A. Castro, C. A. R. L. O. S. Antonio, and R. Chaves. "Computational techniques and 
validation of blood flow simulation." WEAS Transactions on biology and biomedicine, ISI/SCI Web of Science and 
Web of Knowledge 8, no. 04 (2011): 145-155.  

[26] Halifi, Adrian S., Sharidan Shafie, and Norsarahaida S. Amin. "Numerical solution of biomagnetic power-law fluid 
flow and heat transfer in a channel." Symmetry 12, no. 12 (2020): 1959. https://doi.org/10.3390/sym12121959  

[27] Zinani, Flávia, and Sérgio Frey. "Galerkin least-squares solutions for purely viscous flows of shear-thinning fluids 
and regularized yield stress fluids." Journal of the Brazilian Society of Mechanical Sciences and Engineering 29 
(2007): 432-443. https://doi.org/10.1590/S1678-58782007000400012  

[28] Machado, Fernando, Flávia Zinani, and Sérgio Frey. "Herschel-Bulkley Fluid Flows Through a Sudden Axisymmetric 
Expansion via Galerkin Least-Squares Methodology." (2007). 

[29] Franca, Leopoldo P., and Alexandre L. Madureira. "Element diameter free stability parameters for stabilized 
methods applied to fluids." Computer methods in applied mechanics and engineering 105, no. 3 (1993): 395-403. 
https://doi.org/10.1016/0045-7825(93)90065-6  

[30] Harari, Isaac, and Thomas JR Hughes. "What are C and h?: Inequalities for the analysis and design of finite element 
methods." Computer methods in applied mechanics and engineering 97, no. 2 (1992): 157-192. 
https://doi.org/10.1016/0045-7825(92)90162-D  

[31] Bell, Brent C., and Karan S. Surana. "p‐version least squares finite element formulation for two‐dimensional, 
incompressible, non‐Newtonian isothermal and non‐isothermal fluid flow." International journal for numerical 
methods in fluids 18, no. 2 (1994): 127-162. https://doi.org/10.1002/fld.1650180202  

[32] Ghia, U. K. N. G., Kirti N. Ghia, and C. T. Shin. "High-Re solutions for incompressible flow using the Navier-Stokes 
equations and a multigrid method." Journal of computational physics 48, no. 3 (1982): 387-411. 
https://doi.org/10.1016/0021-9991(82)90058-4  

https://doi.org/10.1016/j.aej.2016.07.010
https://doi.org/10.2202/1934-2659.1175
https://doi.org/10.2478/ijame-2019-0040
https://doi.org/10.1007/s11242-011-9834-6
https://doi.org/10.37934/araset.29.2.185194
https://doi.org/10.1016/S0020-7225(96)00081-X
https://doi.org/10.1016/S0020-7225(96)00081-X
https://doi.org/10.1016/0895-7177(94)90116-3
https://doi.org/10.1016/0895-7177(94)90116-3
https://doi.org/10.1515/jmbm-2013-0001
https://doi.org/10.3390/sym12121959
https://doi.org/10.1590/S1678-58782007000400012
https://doi.org/10.1016/0045-7825(93)90065-6
https://doi.org/10.1016/0045-7825(92)90162-D
https://doi.org/10.1002/fld.1650180202
https://doi.org/10.1016/0021-9991(82)90058-4


CFD Letters 

Volume 17, Issue 1 (2025) 90-113 

113 
 

[33] Papafaklis, Michail I., and Lampros K. Michalis. "Intravascular Imaging and Haemodynamics: The Role of Shear 
Stress in Atherosclerosis and In-Stent Restenosis." In Intravascular Imaging: Current Applications and Research 
Developments, pp. 326-348. IGI Global, 2012. https://doi.org/10.4018/978-1-61350-095-8.ch019  

[34] Abdelwahab, A. M., Kh S. Mekheimer, Khalid K. Ali, A. El-Kholy, and N. S. Sweed. "Numerical simulation of 
electroosmotic force on micropolar pulsatile bloodstream through aneurysm and stenosis of carotid." Waves in 
Random and Complex Media (2021): 1-32. https://doi.org/10.1080/17455030.2021.1989517  

[35] Weddell, Jared C., JaeHyuk Kwack, P. I. Imoukhuede, and Arif Masud. "Hemodynamic analysis in an idealized artery 
tree: differences in wall shear stress between Newtonian and non-Newtonian blood models." PloS one 10, no. 4 
(2015): e0124575. https://doi.org/10.1371/journal.pone.0124575  

[36] Song, Jianfei, Smaine Kouidri, and Farid Bakir. "Numerical study of hemodynamic and diagnostic parameters 
affected by stenosis in bifurcated artery." Computer Methods in Biomechanics and Biomedical Engineering 23, no. 
12 (2020): 894-905.  

[37] Arzani, Amirhossein. "Coronary artery plaque growth: A two‐way coupled shear stress–driven 
model." International journal for numerical methods in biomedical engineering 36, no. 1 (2020): e3293.  

https://doi.org/10.4018/978-1-61350-095-8.ch019
https://doi.org/10.1080/17455030.2021.1989517
https://doi.org/10.1371/journal.pone.0124575

