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The Poiseuille flows have been extensively restricted to Newtonian fluids through a 
channel, and the significance of such flows has spanned several industries, from 
chemical industries to engineering applications. The restriction to Newtonian flows has 
impacted the further advancement in the study of Poiseuille flow and as a result, 
studies on Poiseuille flows have been neglected for decades. In this study, the 
Poiseuille flow of the second-grade nanofluid fluid is considered. The base fluid is the 
viscoelastic Second-grade fluid, a fluid that is both shear-thinning and shear-thickening 
under different conditions and whose applications can be found in polymer processing 
and cosmetic production. This study invokes the general assumptions of Poiseuille 
flow, which reduces the governing equations to ordinary differential equations. The 
results from simulating the model show that the velocity drops as both the second-
grade fluid parameter and the volume fraction increase. The flow rate increases with 
increasing channel width. 
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1. Introduction 
 

   Non-Newtonian fluids exhibit a nonlinear response of shear strain to shear stress. Various 
examples of such fluids include the Casson fluid by Reddy and Reddy [1]; Oke et al., [2], Williamson 
fluid by Divya et al., [3], Carreau fluid by Murthy and Reddy [4], Eyring-Powell fluid by Oke et al., [5], 
modified Eyring-Powell fluid by Oke [6, 7], and second-grade fluid by Krishna [8]. Second-grade fluids 
belong to the category of non-Newtonian fluids with viscoelastic properties, displaying a second-
order relationship between shear stress and shear strain. They exhibit the ability to shear-thin or 
shear-thicken based on the specific choice of second-grade fluid. The behaviour of these fluids is 
influenced by both their current state and past deformation history. Examples of second-grade fluids 
include substances like ketchup and blood, finding applications in various industrial sectors such as 
pharmaceuticals, cosmetics, and polymer processing. Krishna's study [8] delved into the Hall slip on 
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unsteady MHD flow of second-grade fluids, revealing novel applications in aerospace science. Yavuz 
[9] extended partial differential equations to fractional order equations, employing Laplace 
transform for solving. The results indicated a reduction in velocity profile with increasing Prandtl 
number. 

Nanofluids are engineered colloidal suspensions containing nanoparticles, typically ranging from 
1 to 100 nanometres in size, dispersed within a base fluid such as water, oil, or ethylene glycol. Gold 
nanoparticles, due to their unique optical, thermal, and electrical properties, have garnered 
significant interest in nanofluid research [10]. When dispersed in a fluid, these nanoparticles can 
significantly alter the thermal and optical properties of the base fluid. The significance of nanofluids, 
particularly those containing gold nanoparticles, lies in their potential applications across various 
fields, including thermal management, energy harvesting, biomedical sensing, and drug delivery [11, 
12]. Their enhanced thermal conductivity, optical absorption, and surface plasmon resonance 
properties make them promising candidates for improving heat transfer efficiency in cooling systems, 
enhancing the performance of photovoltaic devices, enabling sensitive detection of biomolecules, 
and facilitating targeted drug delivery to specific cells or tissues. This convergence of nanotechnology 
and fluid dynamics opens up avenues for innovative solutions in diverse areas, contributing to 
advancements in technology and healthcare [13-16]. 

Flows within a variety of pipe and channel geometries find widespread applications, typically 
classified as either Couette or Poiseuille flow, depending on the relative movement of the channel 
walls. A pressure-driven flow characterizes Poiseuille flow, while Couette flow pertains to the flow 
between parallel plates in relative motion by Coles [17]. In Poiseuille flow, non-overlapping layers of 
viscous fluid, known as laminar flow, are sustained by pressure variation by Gee & Gracie [18]. The 
velocity profile in Poiseuille flow takes the form of a symmetrical parabola, with a maximum point at 
the midpoint and no flow on the wall by Wu et al., [19]. Poiseuille flow plays a crucial role in the 
design and development of microfluidic devices, as the velocity gradient in this profile enhances 
material transport. Beyond microfluidics, Poiseuille flow finds real-world applications in various 
industrial processes and blood flow through capillaries. It serves as a valuable tool for mimicking 
capillary blood flow and simulating processes like fluid transport in pipelines, heat exchanger 
systems, and chemical reactors, with implications for the petroleum industry and other large-scale 
enterprises by Sulaimon [20]. The elegance in obtaining solutions for Poiseuille flow makes it easily 
adaptable for sophisticated medical diagnostics, medication delivery, and microscale chemical 
analysis. 

In this study, the Poiseuille flow of a second-grade fluid carrying gold nanoparticles is 
investigated. The flow is considered as it flows through a stationary channel. The novelty of this study 
includes the fact that it is a Poiseuille nanofluid flow, which is an extension of the classic Newtonian 
Poiseuille flow. The flow is modelled using the Navier-Stokes equations, and the boundary conditions 
are used to reduce the problem to ordinary differential equations, which are solved using appropriate 
methods. The following questions are answered in this study; 

 
(i) How does volume fraction affect the flow velocity in a second-grade nanofluid flow through 

a channel? 
(ii) How does dynamic viscosity affect the flow rate in a second-grade nanofluid flow through a 

channel? 
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2. Flow Description and Model Development 
 

A pipe in two dimensions is represented as two parallel plates separated by a certain distance. 
Consider a 2D channel, as shown in Figure 1, separated by a distance of 2ℎ such that the flow is 
symmetrical about the axis of flow 𝑦 = 0. A second-grade fluid in which a nanoparticle is suspended 
undergoes a steady incompressible flow through the channel. This study considers a fully developed 
flow of such a system. 

 
2.1 The Governing Equations 
 

By following the Navier-Stokes’ equations, the following governing equations include the 
continuity equation and the momentum equation. Adopting the studies of Sitamahalakshmi et al., 
[21], Kọríkọ et al., [22] and Oke et al., [2], we have the governing equations as 

 

 
Fig. 1. Flow configuration 

 

∇ ⋅ 𝑽⃗⃗ = 0,  (1)            

  

𝜌𝑛𝑓 (
𝜕𝑽⃗⃗ 

𝜕𝑡
+ (𝑽⃗⃗ ⋅ ∇)𝑽⃗⃗ ) = ∇ ⋅ 𝝈 + 𝜌𝑛𝑓𝑏,  (2)            

 

Where 𝑽⃗⃗ = (𝑢1, 𝑢2, 𝑢3) is the velocity vector, ∇ is the gradient operator in 3-dimensions defined as 
  

∇⃗⃗ = 𝑖
𝜕

𝜕𝑥1
+ 𝑗

𝜕

𝜕𝑥2
+ 𝑘

𝜕

𝜕𝑥3
, 

 
𝝈 is the stress tensor, 𝑏 is body forces. Steady flow is independent of time and Eq. (2) becomes  
 

 (𝑽⃗⃗ ⋅ ∇)𝑽⃗⃗ =
1

𝜌𝑛𝑓
∇ ⋅ 𝝈 + 𝑏            (3)                       

 
The second-grade nanofluid stress tensor follows the form 
 
𝝈 = −𝑝𝑰 + 𝜇𝑛𝑓𝑨1 + 𝛼1𝑨2 + 𝛼2𝑨1

2,            (4)                       

 
(See [23-25]), where 𝑰 is the identity tensor 𝑝 is the pressure, 𝜇𝑛𝑓 is the dynamic viscosity of the 

nanofluid. 𝑨1, 𝑨2 are the Rivillin Ericksen tensors defined for steady flow as  
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𝑨1 = ∇𝑽 + (∇𝑽)𝑇 , 𝑨2 = (𝑽 ⋅ ∇)𝑨1 + 𝑨1(∇𝑽) + (𝑨1
𝑇(∇𝑽))

𝑇
            (5)                       

 
Using the tensor notation, we have  
 

∇𝑽 = (𝜕𝑖𝑢𝑗),     𝑖, 𝑗 = 1,2,3 

 
and consequently, 
 

𝑨1 = (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖),     𝑖, 𝑗 = 1,2,3. 

 
The flow under consideration is happening only in the 𝑦-direction and as a result velocity 

components in the 𝑥 and 𝑧 directions are both zeros, which indicates that 𝑢2 = 𝑢3 = 0. Eq. (1) is 
therefore reduced to 

 
∂𝑢1

∂𝑥1
= 0, (6)                       

 
And 
 

𝝈 = (

−𝑝 𝜇𝑛𝑓𝜕2𝑢1 0

𝜇𝑛𝑓𝜕2𝑢1 −𝑝 + (2𝛼1 + 𝛼2)(𝜕2𝑢1)
2 0

0 0 −𝑝

) (7)                       

 
Hence,  
 

∇ ⋅ 𝝈 = (−𝜕1𝑝 + 𝜕2(𝜇𝑛𝑓𝜕2𝑢1) ,   − 𝜕2𝑝 + 2(2𝛼1 + 𝛼2)𝜕2𝑢1𝜕2
2𝑢1 ,   − 𝜕3𝑝) (8)                       

 
Setting the second-grade parameter as 𝜆 = 2(2𝛼1 + 𝛼2) and replacing the directions as 
 
𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, 
 
Observing Eq. (6), then we can rewrite the momentum equations as  
 

0 = −
1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑥
+

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕2𝑢

𝜕𝑦2
 , (9) 

  

0 = −
1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
 , (10) 

  

0 = −
1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑧
. (11) 

 
2.2 Initial and Boundary Conditions 

 
The boundary conditions for the flow will include the no-slip conditions at the wall. This condition 

ensures that the fluid layers glued to the wall maintain the same velocity as the channel and that the 
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fluid particles do not slide away. In this flow, the channel is not moving, and as a result, the wall 
velocity is zeros. This condition is observed at the two ends of the pipe (that is, at 𝑦 = +ℎ and 𝑦 =
−ℎ) and we, therefore have the no-slip boundary condition represented as  

 
𝑢(+ℎ) = 0   and   𝑢(−ℎ) = 0 
 

From practical observation, the fluid flow attains the maximum velocity on the axis of the 
symmetrical flow (that is, at 𝑦 = 0). From calculus, the maximum velocity is obtained at a point where 
the derivative is zero. To represent this condition, we write it as 

 
𝜕𝑢

𝜕𝑦
|
𝑦=0

= 0 

 
2.3 Thermophysical Properties 

 
As a nanofluid, both the base fluid and the nanoparticles contribute to the electrical and thermal 

properties of the flow. Hence, it is important to consider the effective properties of the flow. 
According to Oke et al., [6], the volume fraction has a significant influence on the dynamic viscosity 
and the density of the resulting nanofluid. The ratio of the nanofluid dynamic viscosity to base fluid 
dynamic viscosity is estimated to be 

 

  
𝜇𝑛𝑓

𝜇𝑏𝑓
= 0.904 exp(0.148𝜙),                  

⇒   𝜇𝑛𝑓 = 0.904𝜇𝑏𝑓 exp(0.148𝜙), (12)                       

 
Where the nanoparticle volume fraction is represented as 𝜙 and the dynamic viscosity for the base 
fluid is 𝜇𝑏𝑓. The ratio of the nanofluid density to the base fluid density is given, according to Oke [26, 

27], as  
 
𝜌𝑛𝑓

𝜌𝑏𝑓
= 1 − 𝜙 + 𝜙

𝜌𝑛𝑝

𝜌𝑏𝑓
,                   

⇒ 𝜌𝑛𝑓 = (1 − 𝜙 + 𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓 (13)                       

 
For simplicity, we set 
 

𝜂 = 0.904 exp(0.148𝜙) ,   𝜉 = (1 − 𝜙 + 𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
), (14)                       

 
and so, 
 

𝜇𝑛𝑓 = 𝜂𝜇𝑏𝑓 ,    𝜌𝑛𝑓 = 𝜉𝜌𝑏𝑓   and   
𝜇𝑛𝑓

𝜌𝑛𝑓
=

𝜂𝜇𝑏𝑓

𝜉𝜌𝑏𝑓
 (15)                       

 
The second-grade fluid chosen for this study is blood and the nanoparticle chosen is the gold 

nanoparticle. The physical properties as found in Azmi et al., [28] are provided in Table 1. 
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Table 1 
Thermophysical properties 
 Blood Gold 

Density [𝑀𝐿−3] 1063 19300 

Viscosity [𝑀𝐿−1𝑇−1] 3.5-5.5  –  

 
Making the substitutions Eq. (14) and Eq. (15), the governing equation is therefore rewritten as 
 

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑥
+

𝜂𝜇𝑏𝑓

𝜉𝜌𝑏𝑓

𝜕2𝑢

𝜕𝑦2
, (16) 

  

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
,  (17) 

  

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑧
, (18) 

 
With the conditions   
 

𝑢(+ℎ) = 0,   𝑢(−ℎ) = 0,   and    
𝜕𝑢

𝜕𝑦
|
𝑦=0

= 0 (19)                       

 
3. Exact Solution 

 
The indication of Eq. (18) where the rate of change of pressure with length is zero is that pressure 

is constant in the 𝑧-direction. Now, 
 

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑧
      ⇒  0 =

𝜕𝑝

𝜕𝑧
      

⇒ 𝑝 = 𝑝(𝑥, 𝑦) (20)                       
 
Also, from Eq. (16) 
 

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑥
+

𝜂𝜇𝑏𝑓

𝜉𝜌𝑏𝑓

𝜕2𝑢

𝜕𝑦2
 , 

 

     ⇒      
𝜂𝜇𝑏𝑓

𝜉𝜌𝑏𝑓

𝜕2𝑢

𝜕𝑦2
=

1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑥
 , 

 

     ⇒      
𝜕2𝑢

𝜕𝑦2
=

1

𝜂𝜇𝑏𝑓

𝜕𝑝

𝜕𝑥
 .                (21) 

 
Putting Eq. (21) in Eq. (17) gives 
 

0 = −
1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑦
(

1

𝜂𝜇𝑏𝑓

𝜕𝑝

𝜕𝑥
), 

 

     ⇒     
𝜆

𝜂𝜇𝑏𝑓

𝜕𝑝

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

1

𝜉𝜌𝑏𝑓

𝜕𝑝

𝜕𝑦
 , 
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     ⇒     
𝜕𝑢

𝜕𝑦
=

𝜂𝜇𝑏𝑓

𝜆𝜉𝜌𝑏𝑓
(
𝜕𝑝

𝜕𝑦
÷

𝜕𝑝

𝜕𝑥
),          (22) 

 
From Eq. (20), 𝑝 = 𝑝(𝑥, 𝑦), hence considering a pressure distribution of the form 
 
𝑝(𝑥, 𝑦) = 𝑥2 + 𝑦2 = ℎ2. 
 
Then 
 
𝜕𝑝

𝜕𝑦
÷

𝜕𝑝

𝜕𝑥
=

2𝑦

2𝑥
=

𝑦

𝑥
 , 

 
and consequently, 
 
𝜕𝑢

𝜕𝑦
= −

𝜂𝜇𝑏𝑓

𝜆𝜉𝜌𝑏𝑓

𝑦

𝑥
 . 

 
On integrating both sides 
 

∫
𝜕𝑢

𝜕𝑠
𝑑𝑠

𝑠=𝑦

𝑠=−ℎ

 = −∫
𝜂𝜇𝑏𝑓

𝜆𝜉𝜌𝑏𝑓

𝑠

𝑥
𝑑𝑠

𝑠=𝑦

𝑠=−ℎ

, 

 
(replacing 𝑦 with 𝑠 in the integral to avoid conflict with the limit), we have 
 

𝑢(𝑠)|𝑠=−ℎ
𝑠=𝑦

= −
𝜂𝜇𝑏𝑓

𝜆𝜉𝜌𝑏𝑓
(
𝑠2

2𝑥
|
𝑠=−ℎ

𝑠=𝑦

), 
 

𝑢(𝑦) − 𝑢(−ℎ) = −
𝜂𝜇𝑏𝑓

𝜆𝜉𝜌𝑏𝑓
(
𝑦2

2𝑥
−

ℎ2

2𝑥
), 

 

𝑢(𝑦) = −
𝜂𝜇𝑏𝑓

2𝑥𝜆𝜉𝜌𝑏𝑓

(𝑦2 − ℎ2).             (23) 

  

The other two conditions are automatically satisfied since  
 

𝑢(+ℎ) = −
𝜂𝜇𝑏𝑓

2𝑥𝜆𝜉𝜌𝑏𝑓

(ℎ2 − ℎ2) = 0, 

𝑑𝑢

𝑑𝑦
= −

𝜂𝜇𝑏𝑓𝑦

𝑥𝜆𝜉𝜌𝑏𝑓
       ⇒  

𝑑𝑢

𝑑𝑦
|
𝑦=0

= 0. 

 
From the pressure distribution, it is clear that  
 

𝑥 = √𝑦2 − ℎ2, 
 
and so, the velocity is  
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𝑢(𝑦) = −
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓√𝑦2 − ℎ2
(𝑦2 − ℎ2), 

𝑢(𝑦) =
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓√𝑦2 − ℎ2
(ℎ2 − 𝑦2), 

𝑢(𝑦) =
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓

√ℎ2 − 𝑦2. 

 
The rate of flow of nanofluid within a pipe of diameter 2ℎ is  
 

𝑞 = ∫
ℎ

−ℎ

𝑢𝑑𝑦, 

    =
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓
∫

ℎ

−ℎ

√ℎ2 − 𝑦2𝑑𝑦, 

    =
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓
∫

𝜋
4

−
𝜋
4

ℎ2 cos2 𝜃 𝑑𝜃,    (using the substitution 𝑦 = ℎ sin 𝜃) 

    =
𝜂𝜇𝑏𝑓ℎ

2

2𝜆𝜉𝜌𝑏𝑓

1

2
(𝜃 +

sin(2𝜃)

2
)

−
𝜋
4

𝜋
4

, 

    =
𝜂𝜇𝑏𝑓ℎ

2

4𝜆𝜉𝜌𝑏𝑓
((

𝜋

4
+

sin (
𝜋
2)

2
) − (−

𝜋

4
+

sin (−
𝜋
2)

2
)) , 

    = (1 +
𝜋

2
)
𝜂𝜇𝑏𝑓ℎ

2

4𝜆𝜉𝜌𝑏𝑓
. 

 
Compiling the results, we have the flow velocity as 
 

𝑢(𝑦) =
𝜂𝜇𝑏𝑓

2𝜆𝜉𝜌𝑏𝑓

√ℎ2 − 𝑦2, (24)                       

 
and the rate of flow as 
 

𝑞 = (1 +
𝜋

2
)
𝜂𝜇𝑏𝑓ℎ

2

4𝜆𝜉𝜌𝑏𝑓
 (25)                       

 
Where 
 

𝜂 = 0.904 exp(0.148𝜙) ,   𝜉 = (1 − 𝜙 + 𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
) (26)                       

 
And 𝑞[𝐿2𝑇−1] is the rate of flow, 𝜙 is the dimensionless volume fraction, ℎ [𝐿] is the channel radius 
𝜆 [𝐿2] is the second-grade fluid parameter, 𝜌𝑛𝑝 and 𝜌𝑏𝑓 [𝑀𝐿−3] the density of the nanoparticle and 

the base-fluid respectively. 
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4. Analysis and Discussion of Results 
 
Numerical simulation refers to experimenting with different values of the parameters to see how 

they influence the behaviour of the variables.  The MATLAB software was adopted for the numerical 
solution and the graphical illustrations of the results. In this case, the parameters of interest are the 
fluid parameter 𝜆, volume fraction 𝜙 and the channel radius ℎ.  As a necessary condition, we establish 
the parabolic nature of the velocity to ascertain the Poiseuille nature of the flow. Figure 2 show that 
the velocity and flow rate are parabolic, with the highest velocity attained at the centre and the flow 
rate increasing with increasing channel radius. 

 

 

 

(a)  (b)  
Fig. 2. Figure (a) Velocity (b) flow rate profiles with ℎ = 1, 𝜇𝑏𝑓  = 3.5, 𝜆 = 0.2, 𝜙 = 0.1 

 
The simulation is carried out with default values of the parameters set as  
 
ℎ =  1,   𝜇 = 3.5,   𝜆 = 0.2 

 
One parameter is varied, while others are fixed and the results are discussed below. 

 
4.1 Variation of Velocity with the Parameters 

 
This section exhibits the velocity distribution of the gold-blood nanofluid flow through a 

stationary channel as the parameters are varied. Figure 3 shows that the velocity drops gradually as 
the fluid parameter increases.  Increasing 𝜆 implies that the flow becomes more viscous and, more 
fluid layers are dragged by the viscous force. The more layers of fluid are affected by the drag, the 
slower the fluid flows. This explains the observation in Figure 3. The effect of volume fraction on 
velocity distribution is shown in Figure 4. It is observed that velocity drops as volume fraction 
increases. Volume fraction represents the percentage of the fluid volume that is made up of the 
nanoparticles. Any increment in the volume fraction simply means more nanoparticles are present 
in the fluid.  Gold nanoparticles are heavier than fluid particles and tend to settle down in the channel. 
The agglomeration of the gold nanoparticles can result in clogging and blockage of the pipe, which 
consequently leads to a reduced flow velocity as shown in Figure 4.  Hence, increasing the volume 
fraction will lead to a reduction in the flow velocity. The viscosity of blood varies from 3.5 to 
5.5𝑘𝑔 𝑚−1 𝑠−1. By varying the values of 𝜇𝑏𝑓 in the interval [3.5, 5.5], the velocity distribution is 

plotted in Figure 5 indicating an increasing velocity with increasing dynamic viscosity of the base-
fluid. 
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Fig. 3. Velocity distribution for various λ 

 

 
Fig. 4. Velocity distribution for ϕ 
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Fig. 5. Velocity distribution for 𝜇𝑏𝑓 

 
4.2 Variation of Flow Rate with the Parameters 

 
This section exhibits the flow rate of the gold-blood nanofluid through a 2ℎ-diameter stationary 

channel as the parameters are varied.  Each parameter is varied several times at a fixed ℎ and the 
flow rate is recorded each time so that the flow rate is plotted against the varying parameters. The 
process is repeated for several fixed values of ℎ and the resulting graphs are shown in Figures 6 – 8.  
The flow rate represents the volume of nanofluid that goes through a cross-sectional area of the 
channel at a time.  Figure 6 shows that the flow rate reduces with increasing fluid parameters 
whereas the flow rate increases with increasing channel radius.  As the channel radius increases, 
more fluid can move through the channel at any given time, and that explains the reason for the rise 
in the flow rate as the flow radius increases (see Figure 6).  The flow rate goes down as the fluid 
becomes more viscous (that is, as 𝜆 increases) due to the increase in the number of fluid layers 
affected by the viscous drag.  This is also depicted in Figure 6, where the flow rate decreases with 𝜆 
but increases with channel radius.  Figure 7 shows that the flow rate reduces with increasing volume 
fraction.  The agglomeration of nanoparticles in the channel caused due to the increasing volume 
fraction will reduce the amount of fluid that can flow through a certain cross-sectional area and 
hence, a decreasing flow rate. Figure 8 shows that as viscosity increases, the flow rate increases. 
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Fig. 6. Flow rate with λ at different h 

 

 
Fig. 7. Flow rate with ϕ at different ℎ 
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Fig. 8. Flow rate with μ at different ℎ 

 
5. Conclusion 
 

The flow of a suspension of gold nanoparticles in the blood is considered within a channel of 
diameter 2ℎ. The governing equations are derived alongside the boundary and initial conditions. The 
analytical solution is sought by adopting the methods of solving ordinary differential equations. 
Simulation of the model shows the following; 

 
i. There is a velocity drop as the second-grade fluid parameter and volume fraction increase. 

ii. The velocity rises as the dynamic viscosity of the base fluid increases. 
iii. Flow rate reduces with increasing fluid parameters.  
iv. The flow rate increases with increasing channel radius.  
v. The flow rate goes down as the fluid becomes more viscous. 

vi. The flow rate reduces with increasing volume fraction. 
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